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^Äëíê~ÅíK= This paper introduces the application of a stochastic search technique, known as 
Simulated Annealing to the problem of tuning the proportional-integral controller for a linearized 
coupled tank liquid level control. After describing the basic principles of the Simulated 
Annealing, the proposed method concentrates on finding the optimal solution of PI controller by 
optimizing the performance index, the Integral Time Absolute Error, ITAE. The efficiency of 
Simulated Annealing algorithm for tuning the controller is compared with an evolutionary 
method, Genetic Algorithm. The comparison is based on the time response performance. The 
results shows the effectiveness and the capability of the SA to tune the proportional-integral (PI) 
controller for the coupled tank liquid level control. The proposed method does not depend on 
the system order and has the ability to tune the controller even there is unknown process 
parameters. In addition, the technique avoids the requirement for mathematical modeling of the 
system and the overall results have shown that SA yields better performance as compared to GA, 
hence, it is recommended for an alternative for optimizing the PI controller.  
 

hÉóïçêÇëW= Proportional integral tuning; simulated annealing; genetic algorithm   
=

^Äëíê~âK Kertas ini membincangkan tentang aplikasi teknik pencarian stochastic yang dikenali 
sebagai Simulated Annealing bagi mengatasi masalah menala (tuning) alat pengawal Proportional 
plus Integral (PI) bagi pengawalan takat cecair di dalam sistem tangki berkembar. Setelah 
penerangan tentang prinsipal asas kepada Simulated Annealing diberikan , kertas ini 
mencadangkan tentang pencarian penyelesaian yang optimal bagi alat kawalan PI dengan 
mengoptimumkan prestasi indek, ITAE. Keberkesanan menggunakan kaedah Simulated 
Annealing telah dibandingkan dengan satu lagi kaedah iaitu Genetic Algorithm. Perbandingan 
adalah berdasarkan prestasi time response. Hasil keputusan menunjukkan perbandingan antara 
kaedah Simulated Annealing dan Genetic Algorithm. Kaedah yang di cadangkan tidak bergantung 
kepada tahap sesuatu sistem dan berupaya untuk menala walaupun tanpa diketahui parameter 
sesuatu proses . Di samping itu, kaedah yang di cadangkan tidak memerlukan sistem tersebut di 
modelkan dalam bentuk matematik dan keseluruhan keputusan menunjukkan Simulated 
Annealing menghasilkan keputusan yang lebih baik dari Genetik Algorithm. Oleh itu, Simulated 
Annealing bolehlah dicadangkan sebagai salah satu cara bagi mengoptimumkan alat kawalan PI. 
 

h~í~=âìåÅáW= Penalaan proportional integral tuning; imulated annealing; genetic algorithm =
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NKM= fkqolar`qflk=
=
Many industrial applications are concerned with level control, may it be a single 
loop level control or sometimes multi-loop level control. Interacting tanks is an 
example of such applications. Hence, level control is one of the control system 
variables which are very important in process industries [1]. There are various 
numbers of control strategy and methods in controlling the liquid level in the 
coupled-tank system and some of these researches are: Hybrid control system that 
consisting of a PID controller and a time optimal controller [2], Nonlinear back 
stepping liquid level controller [3], Multivariable MIMO controller strategy [4], 
Sliding mode controller [5], Neuro fuzzy controller and ANFIS controller [6, 7]. 
Among these methods, there are one method that is widely used which is 
Proportional plus Integral (PI) controllers which offer for the functionality of liquid 
level control systems with moderate performance specifications [3]. 
  There are a lot of works related about stochastic search techniques in control 
systems in particular the Simulated Annealing (SA). SA has been widely used in 
large combinatorial optimization problems due to its ability of finding the global 
optimum with a high probability even for ill conditioned functions with numerous 
local optima [8] such as parameter optimisation [9], controller optimisation [10, 
11] and filter tuning [12] although it usually requires a large number of function 
evaluations to find the optimum solution [8]. 
  In [13], SA is used for the optimal tuning of a Proportional plus Integral plus 
Derivative (PID) controller to deal with time-varying delay.  The PID control 
system adjusts the command feed to regulate the drilling force through a 
multipoint interface network using the computational resources of computerized 
numerical control.  The author claimed that the controller parameters obtained on 
the basis of SA provide better transient response and a better performance than 
any other methods. 
  Also in [11], SA is claimed to be an effective way to determining the 
appropriate parameters of electric drive speed controllers. This stochastic search 
technique avoids the requirement for mathematical modeling of the drive and its 
load and is able to deal with the inherent non-linearity of the system.  In [14], SA 
has been used to tune the observer for the induction motor drives and have shown 
that the SA have the potential to be an alternative method for optimizing the 
Extended Kalman Filter as compared to GA [15]. While in [16], the GA-based 
and SA-based optimal tuning techniques are used to optimize the parameter 
settings of the robot arm PID controllers.  The results have shown that the GA-
based and SA-based optimal-tuning techniques can work effectively and efficiently 
and have a great potential to become an optimal-tuning approaches for the robot 
arm controllers. 
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This paper is organized in five sections. Following this introduction, a brief 
overview of the coupled tank system used in this work is provided.  Then the 
stochastic method and the methodology of using SA and GA are discussed. Next, 
the performance of the proposed method and the comparison with another 
method is illustrated and summarized and followed by the conclusion of the work.   
 
 
OKM= `lrmibaJq^kh=pvpqbj=
 
In this work, the KRi Coupled-Tank Control Apparatus PP-100 is used as a low-
cost pilot plant. It is designed for laboratory teaching of both introductory and 
advanced control systems theory.  A schematic diagram of the coupled-tank 
apparatus is shown in Figure 1. 
 
 

 
 

cáÖìêÉ=N The schematic diagram of coupled tank apparatus 
 
 
H1, H2 
A1, A2  
Qi1, Qi2  
Qo1, Qo2 
Qo3  

= Height of liquid in tank 1 and tank 
= Cross-sectional area of the tanks. 
= Pump flow rate into tank 1 and tank 2. 
= Flow rate of liquid out of tank 1 and tank 2 
= Flow rate of liquid between tanks. 

 
For each tank 1 and tank 2, the dynamic equation is developed as follows [1]: 
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Where parameters α1, α2, α3 are proportionality constants which depend on the 
coefficients of discharge. 
  For a set of inflows Qi1 and Qi2, the liquid level in the tanks is at some steady 
state levels H1 and H2. Consider small variations in each inflow, q1 in Qi1 and q2 in 
Qi2. The resulting perturbation in levels is h1 and h2 respectively. From equations 
(1) and (2), the linearized perturbations equations can be derived [1]: 
 

ଵܣ
݄݀ଵ

ݐ݀ ൌ ଵݍ െ ௢ଵݍ െ
ଷߙ

2ඥܪଵ െ ଶܪ
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ଷߙ
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The valve/pump actuator can be modeled using the following differential equation 
describes the valve/pump actuator’s dynamics [17], [18]. 
 

߬௔
ሻݐ௜ሺݍ݀

ݐ݀ ൅ ሻݐ௜ሺݍ ൌ ܳ௖ሺݐሻ                                     ሺ5ሻ 

 
Where, τa is the time constant of the valve/pump actuator,   q i (t) is the time-
varying input flow rate and Q c (t) is the computed or the commanded flow rate. 
The objective of the system is to control the liquid level in Tank 2 by controlling 
the flow rate of the liquid into Tank 1. For simplification, assuming q2 and Qi2 to be 
zero. 
 
 
PKM= pql`e^pqf`=pb^o`e=qb`ekfnrb=
 
Stochastic search is a method of solving many hard combinatorial problems. 
Stochastic search can be defined as “a method that makes use of random numbers 
and is able to find good solutions within reasonable time without guaranteeing the 
optimum” [19] where near optimal solutions are sufficient for most engineering 
tasks [20]. 
 
 
PKN= páãìä~íÉÇ=^ååÉ~äáåÖ=
=
Simulated Annealing (SA) which chooses their path randomly through the design 
space has been successfully applied to many system optimization problems. SA is 
viable approaches to finding optimal, or near optimal solutions for large scale 
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problems.  The attractive feature of SA is that it is very easy to program and the 
algorithm typically has few parameters that require tuning. 
  Simulated Annealing (SA), which has much in common with evolutionary 
computation, is a derivative-free stochastic search method for determining the 
optimum solution in an optimization problem. The method was proposed earlier 
[21] and has since been used extensively to solve large-scale problems of 
combinatorial optimization, such as the well-known traveling salesman problem 
(TSP), the design of very large scale integration (VLSI) circuitry and in the design 
of optimum controllers. The main difference between evolutionary computation 
and SA is that the latter is inspired by the annealing process for metals during 
cooling, while the former is based on evolutionary processes. 
  The principle of annealing is simple: at high temperatures the molecules in a 
metal move freely but as the metal is cooled gradually this movement is reduced 
and atoms align to form crystals. This crystal-line form actually constitutes a state 
of minimum energy. Metals that are cooled gradually reach a state of minimum 
energy naturally, while if they are forcibly cooled they reach a polycrystalline or 
amorphous state whose energy level is significantly higher. Metals that are 
annealed are pliable while the latter are brittle.  
  However, even at low temperatures there exists a small, but finite probability 
that the metal will enter a state of higher energy. This implies that it is possible that 
the metal will leave the state of minimum energy for a new state where the energy 
is increased. During the cooling process, the intrinsic energy may rise or drop but 
as the temperature is lowered the probability that the energy level will increase 
suddenly is reduced.  
  The probability that a change in the state of the metal at some temperature T 
and initial energy level E1 to some other state with energy level Ε2 is given by: 
 

ܲ ൌ ቐ
݁ିሺாమିாభሻ

௞் ଶܧ ݂݅ ൐  ଵܧ

1 ݁ݏ݅ݓݎ݄݁ݐ݋
ቑ     ሺ6ሻ 

 
Where κ is Boltzmann’s constant. 
 
  This thermodynamic principle was adapted to numerical analysis by Metropolis 
et al. in 1953 giving rise to the terms SA. SA attempts to minimize energy. This is 
similar to minimizing a Lyapunov function in modern control theory. In 
implementing the Metropolis algorithm the following must be known:  
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• The objective function φ (by analogy with the energy E of the metal) 
whose minimum is sought and, 

•  A control parameter T (the simulated temperature) whose temporal 
strategy defines the changes in the simulated temperature at every iteration 
of the algorithm.  

 
  Although the analogy between the physical annealing process and SA is far 
from perfect, there is clearly much in common. In all the stochastic algorithms of 
optimization, an attempt is made to guide the solution from an initial random 
point to an optimum solution as rapidly as possible. This can lead to entrapment 
in some local optimum from which it may be difficult if not impossible to 
extricate. SA does not suffer this problem, since the technique is stochastic and 
searches the solution space randomly.  
  The flow chart of the SA is shown in Figure 2. For the solution of an 
optimization problem with SA, the following steps are required: 
 

(1) An initial random solution vector ñ
1 
in the bounded parameter space is 

selected and its objective function φ(ñ
1
) is computed,  

(2) An initial temperature q(0)= q
init 

is specified,  

(3) Using some stochastic or heuristic strategy, a new solution vector ñ
2 
is 

selected and the corresponding objective function value is evaluated 
φ(ñ

2
),  

(4) The difference of the objective function Δφ = φ(ñ
2
)-φ(ñ

1
) is computed,  

(5) If Δφ< 0, then the solution vector ñ
2 
is accepted, otherwise if  Δφ> 0 

accept the solution vector according to the probability of acceptance: 

ሺ݇ሻ݌ ൌ ݁ି ∆ఝ
௧ሺ௞ሻ 

otherwise go to step 7, 
(6) Set ñ

1
==ñ

2
 and φ(ñ

1
)=φ(ñ

2
) and weight the current simulated temperature 

with the coefficient λ, where 0<λ<1, decreasing the simulated temperature 
successively at every iteration, so that at the (â+1)ëí iteration: 

ܶሺ݇ ൅ 1ሻ ൌ  ሺ݇ሻܶߣ
where â is the iteration index, 

(7) If the current simulated temperature is lower or equal to the final 
temperature, i.e., q(â) ≤ q

final
, then accept the current solution vector as 

being çéíáãìã, otherwise return to Step 3 and repeat the process.  
 

  If the SA algorithm is to succeed, it is important that the temporal annealing 
strategy that is followed, i.e., the simulated temperature profile, be suitable. The 
rate at which the simulated temperature is decreased depends on the weighting 
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coefficient λ. If it is too high a simulated cooling rate leads to non-minimum 
energy solutions, while if it is too low a cooling rate leads to excessively long 
computation times. The closer the value of λ is to unity, the slower simulated 
temperature decreases. In order to achieve effective exploration of the search 
space, it is advisable to use 0.95<λ<0.98.  Finally, as in Evolutionary Computation, 
the trajectory of an optimization problem is critically dependent on the initial 
estimates of the optimum solutions that are heuristic or the result of statistical 
analysis [20], [22], [23], [24], [25].  
 

 
 

cáÖìêÉ=O Flow chart of the SA algorithm 
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PKO= dÉåÉíáÅ=^äÖçêáíÜã=
=
Genetic algorithm (GA) is a direct random search technique to find a global 
optimal solution in a complex search space. It was first invented in 1970’s by 
Holland [26].  GA is modeled on the natural biological evolution process. It 
operates on a population of potential solutions or individuals over several 
generations to gradually improve on their fitness. At each generation, a new set of 
approximations is created by the process of selecting individuals according to their 
level of fitness in the problem domain, and breeding them together using genetic 
operators. 
  The potential solution for a problem is an individual known as a chromosome.  
The chromosomes can be represented by strings of numbers, normally but not 
necessarily, binary numbers.  After decided on the chromosome representation, it 
is possible to access the performance and filtering the individual members of a 
population. The individuals are evaluated according to the objective and fitness 
function. The best individuals are selected to mate and generate offspring. Then, a 
new generation is created and the best fit individuals are selected to replace the 
least fit individuals of the previous generation while keeping the same population 
size.  Through an iterative process, the population evolves towards better regions 
of the search space.  The algorithm then converges to the best chromosome which 
represent the optimal or near optimal solution for the problem.   
  Given a clearly defined problem to be solved and a binary string representation 
for candidate solutions, the pseudo code for a GA and the flowchart for the 
algorithm are presented in a basic as in Figure 3 and 4. GA applies the following 
major steps: 
 

(1) Represent the problem variable domain as a chromosome of a fixed 
length, choose the size of a chromosome population N, the crossover 
probability pc and the mutation probability pm. 

(2) Define a fitness function to measure the performance, or fitness, of an 
individual chromosome in the problem domain. The fitness function 
establishes the basis for selecting chromosomes that will be mated during 
reproduction. 

(3) Randomly generate an initial population of chromosomes of size N: 
x1, x2, . . . , xN 

(4)  Calculate the fitness of each individual chromosome: 
f(x)1, f(x)2, . . . , f(xN) 

(5) Select a pair of chromosomes for mating from the current population. 
Parent chromosomes are selected with a probability related to their 
fitness. Highly fit chromosomes have a higher probability of being 
selected for mating than less fit chromosomes. 
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(6) Create a pair of offspring chromosomes by applying the genetic operators 
-crossover and mutation. 

(7)  Place the created offspring chromosomes in the new population. 
(8)  Repeat Step 5 until the size of the new chromosome population 

becomes equal to the size of the initial population, N. 
(9)  Replace the initial (parent) chromosome population with the new 

(offspring) population. 
(10) Go to Step 4, and repeat the process until the termination criterion is 

satisfied. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

cáÖìêÉ=P Pseudo code of GA given by Chipperfield [27] 
 
 
QKM= pfjri^qflk=obpriqp=
 
The PI controller of coupled tank liquid level control is simulated using SA so that 
the ITAE is minimized. The following parameters had been used for simulation 
as shown in Table 1 which was tested experimentally in previous work [17]. 
 
 

q~ÄäÉ=N Coupled-Tank system parameters 
 

k~ãÉ= bñéêÉëëáçå= s~äìÉ=

Cross Sectional Area of the 
coupled tank reservoir A1&A2 32 cm2 
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`çåíáåìÉÇ q~ÄäÉ=N 

Proportionality α constant 
that depends on discharge 
coefficient, orifice cross 
sectional area and gravitational 
constant 

subscript=á denotes 
which tank it refers 

α1 α2 α3 

14.30 
cm3 / 2 / sec 

14.30 
cm3 / 2 / sec 

20.00 
cm3 / 2 / sec 

Maximum allowable 
volumetric flow rate pumped 
by motor 

náã~ñ= 300 cm3 / s 

Pump motor(valve) time 
constant 

q`= 1 sec (can be adjusted) 

 

 

cáÖìêÉ=Q Genetic algorithm architecture 
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To carry out the simulation, the control system is implemented in Matlab software 
ver. 2008a. The linearized model has been shown in Figure 5,6 respectively. 
=
=

=
 

cáÖìêÉ=R Linearized Model of coupled tank 

=
=

=
=

cáÖìêÉ=S The mask of the model 

=
=
QKN= páãìä~íÉÇ=^ååÉ~äáåÖ=oÉëìäíë=
=
The SA program was done in Matlab as m-file. In order to run the program we 
need to initialize some of the program parameters as shown in Table 3.  
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=
=

cáÖìêÉ=T A complete modeling of coupled tank 

=
=

q~ÄäÉ=P Simulated Annealing initial parameters 
 

Tinit 10 

Tfinal 0.00001 

λ 0.98 

Kp max limit 30 

Ki max limit 5 

=
=
The SA program used Integral Time Absolute Error ITAE as the objective 
function φ in order to optimize the PI control parameters Kp and Ki. 
 

ܧܣܶܫ ൌ ሻݐሺ׎ ൌ න .ݐ |݁ሺݐሻ|݀ݐ
∞

଴
                              ሺ6ሻ 

 
Where: 
e(t) = error signal at time t. 
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SA program has work successfully to minimize the objective function in order to 
control the Tank 2 level for the system as shown in Figure 8 and 9.  
 
=

=
cáÖìêÉ= U Performance of Tank 1 using SA 

 

=
cáÖìêÉ=V Performance of Tank 2 using SA 

=
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Kp=15.2318, Ki=0.9607
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Kp=15.2318, Ki=0.9607
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SA use random number generators so each time the program run, this algorithm 
may give different results [28]. The trajectory of the stochastic search as in Figure 
10 shows the randomly generated numbers in two dimensions of Kp and Ki. The 
value for the optimum PI controller parameter is shown as in Figure 11.=
=

=
cáÖìêÉ=NM The trajectory of the stochastic search for the system 

=
cáÖìêÉ=NN Detail of controller gain, Kp and Ki using SA 
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For the SA, when the stochastic search iteration increases, it gives lower objective 
function (ITAE) as shown above in Figure 12. These results prove that the SA 
worked well to minimize the objective function in order to find near optimum 
values for both Kp and Ki. Table 4 shows the Tank 2 performance results of the 
system.  
=

=
cáÖìêÉ=NO Reduction of ITAE during SA 

 
 

Table 4 Tank 2 performance results using SA 
 

q~åâ=O= qêá~ä=N= qêá~ä=O= qêá~ä=P=

Kp = 
Ki = 

14.2439 
0.9264 

15.2318 
0.9607 

16.0806 
0.9859 

Rise Time 7.62 sec 7.21 sec 6.92 sec 

Peak Amplitude 1.1 1.11 1.12 

Setting Time 24.4 sec 31.4 sec 32.4 sec 

Steady State Error 0 0 0 

φ 415.7655 413.0642 415.8450 

=
=
=
=
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QKO= dÉåÉíáÅ=^äÖçêáíÜã=oÉëìäíë=
=
GA program has worked successfully to minimize the objective function in order 
to control the Tank 2 level of the system as shown in Figure 13 and Figure 14. GA 
use initial random numbers for each solution (chromosome) therefore each time 
the program run this algorithm may obtain slightly different results; therefore we 
take three sample runs to analyze.  Table 5 shows the Tank 2 performance results 
of the system.  
 

 
=

cáÖìêÉ=NP Tank 1 response obtained during GA tuning 

=
=
=
=
=
=
=
=
=
=
=
=
=
=

cáÖìêÉ=NQ Tank 2 response obtained during GA tuning=
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Kp=16.1905, Ki=1.0317
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Kp=16.1905, Ki=1.0317
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q~ÄäÉ=R Tank 2 performance results using GA 
 

q~åâ=O= qêá~ä=N= qêá~ä=O= qêá~ä=P=

Kp = 
Ki = 

16.1905 
1.0317 

17.619 
1.1111 

15.2381 
0.9524 

Rise Time 6.82 sec 6.34 sec 7.23 sec 

Peak Amplitude 1.13 1.15 1.11 

Setting Time 31.8 sec 31.6 sec 31.8 sec 

Steady State Error 0 0 0 

Φ 413.9913 417.8844 414.2084 

 
=
The trajectory of the stochastic search using GA shows the randomly generated 
numbers in two dimensions of Kp and Ki.  The search area and the final value 
obtained using GA is shown as in Figure 15 and Figure 16.  
  The GA initializes a random number of chromosomes inside the population 
and these are decoded to be in the same limit of proportional and integral 
constrains as SA, then the chromosomes will be changed during generation 
process depending on crossover and mutation operation.  The results show that 
the objective function (ITAE) reduced during the procedure of new generation 
(stochastic search) but settled on constant value for many generation and requires 
more iteration than SA before it reduced again. 
 

=
cáÖìêÉ=NR The trajectory of the search using GA 

=
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=
=

cáÖìêÉ=NS The controller gain,Kp and Ki using GA 
=
The reduction of objective function during each success for GA can be seen in 
Figure 17.  
=

=
=

cáÖìêÉ=NT ITAE reduction using GA 
=
These results demonstrate that the GA worked as well as SA to minimize the 
objective function in order to find near optimum values for both Kp and Ki but 
with longer computational time. 
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QKP= `çãé~êáëçå= _ÉíïÉÉå= páãìä~íÉÇ= ^ååÉ~äáåÖ= ~åÇ= dÉåÉíáÅ=
^äÖçêáíÜã=qìåáåÖ=jÉíÜçÇë=

=
For SA, it is clear that the PI controller parameter for each alteration will be 
assumed randomly inside the limit of proportional and integral constraints. On the 
other hand , GA initializes a random number of chromosomes inside the 
population and these are decoded to be in the same limit of proportional and 
integral constraints as SA, then the chromosomes will be changed during 
generation process depending on crossover and mutation operation. In summary, 
Figure 18 show Tank 2 response for PI controller parameters obtained from SA 
and GA and the result is tabulated as in Table 6.  
=

=
cáÖìêÉ=NU Tank 2 response of using SA and GA 

=
=
From the result presented, it is shown that both SA and GA capable of providing 
good Kp and Ki value for the controller. The gain tuned by SA however gives 
better results in terms of settling time and rise time. SA used shorter iteration time 
and therefore reduces the overall simulation time. Although the ITAE provided 
by SA tuning is only slight different with GA, it gives better response in the time 
response performance.  
=
=
=
=
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=
q~ÄäÉ=S Comparison result using SA and GA  

 
p^ d^

Kp = 

Ki = 

15.2318 

0.9607 

16.1905 

1.0317 

Rise Time 7.21 sec 6.82 sec 

Peak Amplitude 1.11 1.13 

Settling Time 31.4 sec 31.8 sec 

Steady state error 0 0 

Iteration 685 1000 

φ (ITAE) 413.0642 413.9913 

Simulation Time  46.19 sec 69.98 sec 

 
=
RKM= `lk`irpflk=
=
SA provides near optimum values and might give different values at each program 
run due to the algorithm structure of SA depends on generation of random values.  
The technique avoids the requirement for mathematical modeling of the system.  
For this approach, the Simulated Annealing has maintained the same values for its 
parameter for each test run. In dealing with the searching space, the bigger the 
search area for SA, the longer time is required for the algorithm to converge to 
optimum solution. The offline tuning done by simulation also gives the possibility 
of smaller area need to be identified which contribute to reduce computation time.  
The result obtained during offline tuning can be used for a set guide in searching 
space for the online tuning. 
  The paper has demonstrated the effectiveness of the SA to tune the 
proportional-integral (PI) controller for the coupled tank liquid level control.  
Since GA is one of the powerful tools in optimization, it is chosen for comparison 
purposes to verify the effectiveness of the proposed method.  SA and GA, exhibit 
the capability to tune the system successfully. Both methods have the ability to 
deal with time delay systems, because its objective is to minimize the objective 
function, Integral Time Absolute Error (ITAE). Another advantage of SA and GA 
is that the tuning does not depend on the system order and has the ability to tune 
the controller even there is unknown process parameters.  
  In contrast, GA is more complex to construct than the SA.  In addition, GA 
convergence depends on initial population and will require more generation in 
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order to find the optimum value.  The overall results shown that SA yields better 
performance as compared to GA, hence, it is recommended for an alternative for 
optimizing the PI controller. The hybrid algorithm of SA and GA can be applied 
to the system in order to overcome the drawbacks of these two methods. Another 
suggestion is to used the simplified SA which has claimed to performed a lot better 
and of reducing the computational complexity. 
 
 

obcbobk`bp=
 

[1] U. Centre for Artificial Intelligence and Robotics (CAIRO). `çìéäÉÇ�í~åâ=iáèìáÇ=iÉîÉä=`çãéìíÉê�
`çåíêçääÉÇI= i~Äçê~íçêó= qÉ~ÅÜáåÖ= m~Åâ~ÖÉI= bñéÉêáãÉåí~ä= ~åÇ= léÉê~íáçåë= pÉêîáÅÉ= j~åì~äK 
Augmented Innovation Sdn. Bhd. 

[2] J. Malmborg and J. Eker. 1997. Hybrid Control of a Double Tank System. In Control Applications. 
Proceedings of the 1997 IEEE International Conference. 133-138. 

[3] H. Pan, H. Wong, V. Kapila, and M. S. de Queiroz.  2005. Experimental Validation of a Nonlinear 
Backstepping Liquid Level Controller for a State Coupled Two Tank System. `çåíêçä=båÖáåÉÉêáåÖ=
mê~ÅíáÅÉK=13: 27-40. 

[4] B. Stenlund and A. Medvedev. 2002.  Level Control of Cascade Coupled Flotation Tanks. `çåíêçä=
båÖáåÉÉêáåÖ=mê~ÅíáÅÉ. 10: 443-448.  

[5] N. B. Almutairi and M. Zribi. 2006. Sliding Mode Control of Coupled Tanks. jÉÅÜ~íêçåáÅëK 16: 
427-441. 

[6] S. T. Lian, K. Marzuki, and Y. Rubiyah. 1998. Tuning of a Neuro-Fuzzy Controller by Genetic 
Algorithms with an Application to a Coupled-Tank Liquid-Level Control System. båÖáåÉÉêáåÖ=
^ééäáÅ~íáçåë=çÑ=^êíáÑáÅá~ä=fåíÉääáÖÉåÅÉK 11: 517-529. 

[7] S. N. Engin, J. Kuvulmaz, and V. E. Ömürlü. 2004. Modeling of a Coupled Industrial Tank System 
with ANFIS. In MICAI 2004: Advances in Artificial Intelligenc. 804-812. 

[8] R. Bhuvaneswari and S. Subramanian. 2005. Optimization of Three-Phase Induction Motor Design 
Using Simulated Annealing Algorithm. bäÉÅíêáÅ=mçïÉê=`çãéçåÉåíë=~åÇ=póëíÉãë. 33: 947-956. 

[9] F. Ares, S. R. Rengarajan, E. Villanueva, E. Skochinski, and E. Moreno. 1996.  Application of 
Genetic Algorithms and Simulated Annealing Technique in Optimising the Aperture Distributions 
of Antenna Array Patterns. bäÉÅíêçåáÅë=iÉííÉêëK 32: 148-149. 

[10] A. H. Mantawy and M. M. Negm. 2002. A simulated Annealing-Based Optimal Controller for a 
Three Phase Induction Moto. In Power System Technology. Proceedings. PowerCon 2002. 
International Conference. 2: 50-755. 

[11] P. Acarnley and Y. Al-Sadiq. 2002. Tuning PI Speed Controllers for Electric Drives Using 
Simulated Annealing. In Industrial Electronics, 2002. ISIE 2002. Proceedings of the 2002 IEEE 
International Symposium. 4: 1131-1135. 

[12] M. Thompson and J. K. Fidler, 2001. Application of the Genetic Algorithm And Simulated 
Annealing to LC Filter Tuning. Circuits, Devices and Systems, IEE Proceedings [see also IEE 
Proceedings G- Circuits, Devices and Systems]. 148: 177-182. 

[13] R. Haber, R. Haber-Haber, R. del Toro, and J. Alique. 2007. Using Simulated Annealing for 
Optimal Tuning of a PID Controller for Time-Delay Systems. An Application to a High-
Performance Drilling Process.  In Computational and Ambient Intelligence. 1155-1162. 

[14] S. Buyamin, J. W., Finch, 2007.  Tuning Extended Kalman Filter for Induction Motor Drives using 
Simulated Annealing. In Proceedings of the 26th IASTED International Conference, Modelling, 
Identification and Control Innsbruck, Austria. 

[15] S. Buyamin and J. W. Finch. 2007. Comparative Study on Optimising the EKF for Speed 
Estimation of an Induction Motor using Simulated Annealing and Genetic Algorithm. In Electric 
Machines & Drives Conference. IEMDC '07. IEEE International.  1689-1694. 



QMO           ^jj^o=erpp^jI=p^ifka^=_rv^jfk=C=kloe^ifw^=^_ari=t^e^_=

[16] D. P. Kwok and F. Sheng. 1994. Genetic Algorithm and Simulated Annealing for Optimal Robot 
Arm PID Control. In Evolutionary Computation. IEEE World Congress on Computational 
Intelligence. Proceedings of the First IEEE Conference. 2: 707-713. 

[17] M. N. b. Mahyuddin. 2005. Direct Model Reference Adaptive Control Of Coupled Tank Liquid 
Level Control System. In Mechatronics and Automatic Control. Master of Electrical Engineering: 
Universiti Teknologi Malaysia.  

[18] P. C. Chau. 2002. mêçÅÉëë=`çåíêçäW=^=cáêëí=`çìêëÉ=ïáíÜ=j^qi^_W Cambridge University Press.  
[19] C. R. Reeves, and Beasly, J. E,  1995. fåíêçÇìÅíáçå= jçÇÉêå= eÉìêáëíáÅ= qÉÅÜåáèìÉë= Ñçê=

`çãÄáå~íçêá~ä=mêçÄäÉãë. C. Reeves, Ed. New York: McGraw-Hill. 
[20] B. R. Domer, B., Shea, K., Smith, I. F. C. 2003. A Study of Two Stochastic Search Methods for 

Structural Control. gçìêå~ä=çÑ=`çãéìíáåÖ=áå=`áîáä=båÖáåÉÉêáåÖ. 17(3:) 132-141.  
[21] S. Kirkpatrick, Gelatt, C.D., Jr., Vecchi, and M.P. 1983. Optimization by Simulated Annealing. 

pÅáÉåÅÉK=220: 671-680. 
[22] R. E. King. 1999. `çãéìí~íáçå~ä=fåíÉääáÖÉåÅÉ==áå=`çåíêçä=båÖáåÉÉêáåÖW NY:  Marcel Decker.  
[23] S. S. Rao. 1996. båÖáåÉÉêáåÖ= léíáãáò~íáçåW= qÜÉçêó= ~åÇ= mê~ÅíáÅÉ. 3rd Edition.  John Wiley & 

Sons, Inc,  
[24] K. Y. L. a. M. A. El-Sharkawi. 2008. jçÇÉêå= eÉìêáëíáÅ= léíáãáò~íáçå= qÉÅÜåáèìÉëW= qÜÉçêó= ~åÇ=

^ééäáÅ~íáçåë=íç=mçïÉê=póëíÉãëK Wiley-IEEE Press. 
[25] R. T. H. a. Z. Gürdal, 1992. bäÉãÉåíë=çÑ=píêìÅíìê~ä=léíáãáò~íáçåK Springer.  
[26] J. H. Holland. 1975.=^Ç~éí~íáçå=áå=k~íìê~ä=~åÇ=^êíáÑáÅá~ä=póëíÉãëW=University of Mitchigan Press. 
[27] A. J. Chipperfield and P. J. Fleming. 1995. The MATLAB Genetic Algorithm Toolbox. In Applied 

Control Techniques Using MATLAB, IEE Colloquium. 10/1-10/4. 
[28] MathWorks. 2008. dÉåÉíáÅ= ^äÖçêáíÜã= ~åÇ= aáêÉÅí= pÉ~êÅÜ= qççäÄçñ= O= rëÉê∞ë= dìáÇÉ. The 

MathWorks, Inc. 
 
 


