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INTEGRAL TIME ABSOLUTE ERROR MINIMIZATION FOR PI
CONTROLLER ON COUPLED-TANK LIQUID LEVEL CONTROL
SYSTEM BASED ON STOCHASTIC SEARCH ECHNIQUES

AMMAR HUSSAM YOUSIF YACOUB', SALINDA BUYAMIN®,
& NORHALIZA ABDUL WAHAB®

Abstract. This paper introduces the application of a stochastic search technique, known as
Simulated Annealing to the problem of tuning the proportional-integral controller for a linearized
coupled tank liquid level control. After describing the basic principles of the Simulated
Annealing, the proposed method concentrates on finding the optimal solution of PI controller by
optimizing the performance index, the Integral Time Absolute Error, ITAE. The efficiency of
Simulated Annealing algorithm for tuning the controller is compared with an evolutionary
method, Genetic Algorithm. The comparison is based on the time response performance. The
results shows the effectiveness and the capability of the SA to tune the proportional-integral (PI)
controller for the coupled tank liquid level control. The proposed method does not depend on
the system order and has the ability to tune the controller even there is unknown process
parameters. In addition, the technique avoids the requirement for mathematical modeling of the
system and the overall results have shown that SA yields better performance as compared to GA,
hence, it is recommended for an alternative for optimizing the PI controller.

Keywords:  Proportional integral tuning; simulated annealing; genetic algorithm

Abstrak. Kertas ini membincangkan tentang aplikasi teknik pencarian stochastic yang dikenali
sebagai Stmulated Annealing bagi mengatasi masalah menala (tuning) alat pengawal Proportional
plus Integral (PI) bagi pengawalan takat cecair di dalam sistem tangki berkembar. Setelah
penerangan tentang prinsipal asas kepada Simulated Annealing diberikan , kertas i
mencadangkan tentang pencarian penyelesaian yang optimal bagi alat kawalan PI dengan
mengoptimumkan prestasi  indek, ITAE. Keberkesanan menggunakan kaedah Simulated
Annealing telah dibandingkan dengan satu lagi kaedah iaitu Genetic Algorithm. Perbandingan
adalah berdasarkan prestasi #me response. Hasil keputusan menunjukkan perbandingan antara
kaedah Simulated Annealing dan Genetic Algorithm. Kaedah yang di cadangkan tidak bergantung
kepada tahap sesuatu sistem dan berupaya untuk menala walaupun tanpa diketahui parameter
sesuatu proses . Di samping itu, kaedah yang di cadangkan tidak memerlukan sistem tersebut di
modelkan dalam bentuk matematik dan keseluruhan keputusan menunjukkan Simulated
Annealing menghasilkan keputusan yang lebih baik dart Genetik Algorithm. Oleh itu, Simulated
Annealing bolehlah dicadangkan sebagai salah satu cara bagi mengoptimumkan alat kawalan PI.
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1.0 INTRODUCTION

Many industrial applications are concerned with level control, may it be a single
loop level control or sometimes multi-loop level control. Interacting tanks is an
example of such applications. Hence, level control 1s one of the control system
variables which are very important in process industries [1]. There are various
numbers of control strategy and methods in controlling the liquid level i the
coupled-tank system and some of these researches are: Hybrid control system that
consisting of a PID controller and a time optimal controller [2], Nonlinear back
stepping liquid level controller [3], Multivariable MIMO controller strategy [4],
Sliding mode controller [5], Neuro fuzzy controller and ANFIS controller [6, 7].
Among these methods, there are one method that 1s widely used which 1s
Proportional plus Integral (PI) controllers which offer for the functionality of liquid
level control systems with moderate performance specifications [3].

There are a lot of works related about stochastic search techniques in control
systems in particular the Simulated Annealing (SA). SA has been widely used n
large combinatorial optimization problems due to its ability of finding the global
optimum with a high probability even for ill conditioned functions with numerous
local optima [8] such as parameter optimisation [9], controller optimisation [10,
11] and filter tuning [12] although it usually requires a large number of function
evaluations to find the optimum solution [8].

In [13], SA is used for the optimal tuning of a Proportional plus Integral plus
Derivative (PID) controller to deal with time-varying delay. The PID control
system adjusts the command feed to regulate the drilling force through a
multipoint interface network using the computational resources of computerized
numerical control. The author claimed that the controller parameters obtained on
the basis of SA provide better transient response and a better performance than
any other methods.

Also 1n [11], SA is claimed to be an effective way to determining the
appropriate parameters of electric drive speed controllers. This stochastic search
technique avoids the requirement for mathematical modeling of the drive and its
load and 1s able to deal with the inherent non-linearity of the system. In [14], SA
has been used to tune the observer for the induction motor drives and have shown
that the SA have the potential to be an alternative method for optimizing the
Extended Kalman Filter as compared to GA [15]. While in [16], the GA-based
and SA-based optimal tuning techniques are used to optimize the parameter
settings of the robot arm PID controllers. The results have shown that the GA-
based and SA-based optimal-tuning techniques can work effectively and efficiently
and have a great potential to become an optimal-tuning approaches for the robot
arm controllers.
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This paper is organized i five sections. Following this introduction, a brief
overview of the coupled tank system used i this work 1s provided. Then the
stochastic method and the methodology of using SA and GA are discussed. Next,
the performance of the proposed method and the comparison with another
method 1s llustrated and summarized and followed by the conclusion of the work.

2.0 COUPLED-TANK SYSTEM

In this work, the KRi Coupled-Tank Control Apparatus PP-100 1s used as a low-
cost pilot plant. It 1s designed for laboratory teaching of both introductory and
advanced control systems theory. A schematic diagram of the coupled-tank
apparatus is shown in Figure 1.

Baffle

Tank #2

Figure 1 The schematic diagram of coupled tank apparatus

H, H. = Height of iquid in tank 1 and tank

A, A: = Cross-sectional area of the tanks.

Qi, Q: = Pump flow rate into tank 1 and tank 2.

Q.;, Qe = Flow rate of liquid out of tank 1 and tank 2
Qs = Flow rate of liquid between tanks.

For each tank 1 and tank 2, the dynamic equation 1s developed as follows [1]:

dH
Ald_tl = Qi1 — a;\/Hy —as\/H; — H, €Y
dH,

AZW = Qiz — a\H, + as\/Hy — H, (2)
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Where parameters ai, o, as are proportionality constants which depend on the
coefhicients of discharge.

For a set of inflows Qu and Q., the hiquid level in the tanks is at some steady
state levels Hi and Hs. Consider small variations in each inflow, ¢ in Qi and . in
Q. The resulting perturbation in levels 1s hi and h. respectively. From equations
(1) and (2), the linearized perturbations equations can be derived [1]:

dh a

Al——=q1—qor ————=(1—hy) (3)
dt 2\/H, — H,
dh, as

(b1 —hz) (4)

Ap—2 =g, — Gy + ———
Zdt q; qo2 Zm

The valve/pump actuator can be modeled using the following differential equation
describes the valve/pump actuator’s dynamics [17], [18].

dq,(t)
ta™ 0t

+qi(t) = Qc(t) ()

Where, 1. 1s the time constant of the valve/pump actuator, ¢ : (t) is the time-
varying mput flow rate and Q . (t) 1s the computed or the commanded flow rate.
The objective of the system 1s to control the liquid level mn Tank 2 by controlling
the flow rate of the liquid into Tank 1. For simplification, assuming q:and Qs to be
Z€To.

3.0 STOCHASTIC SEARCH TECHNIQUE

Stochastic search 1s a method of solving many hard combinatorial problems.
Stochastic search can be defined as “a method that makes use of random numbers
and 1s able to find good solutions within reasonable time without guaranteeing the
optimum” [19] where near optimal solutions are sufficient for most engineering

tasks [20].

3.1 Simulated Annealing

Simulated Annealing (SA) which chooses their path randomly through the design
space has been successfully applied to many system optimization problems. SA 1s
viable approaches to finding optimal, or near optimal solutions for large scale
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problems. The attractive feature of SA 1s that it is very easy to program and the
algorithm typically has few parameters that require tuning.

Simulated Annealing (SA), which has much in common with evolutionary
computation, 1s a derivative-free stochastic search method for determining the
optimum solution i an optimization problem. The method was proposed earlier
[21] and has since been used extensively to solve large-scale problems of
combinatorial optimization, such as the well-known traveling salesman problem
(T'SP), the design of very large scale integration (VLSI) circuitry and in the design
of optimum controllers. The main difference between evolutionary computation
and SA 1s that the latter 1s inspired by the annealing process for metals during
cooling, while the former 1s based on evolutionary processes.

The principle of annealing 1s simple: at high temperatures the molecules in a
metal move freely but as the metal 1s cooled gradually this movement 1s reduced
and atoms align to form crystals. This crystal-line form actually constitutes a state
of minimum energy. Metals that are cooled gradually reach a state of minimum
energy naturally, while 1f they are forcibly cooled they reach a polycrystalline or
amorphous state whose energy level 1s significantly higher. Metals that are
annealed are pliable while the latter are brittle.

However, even at low temperatures there exists a small, but finite probability
that the metal will enter a state of higher energy. This implies that it 1s possible that
the metal will leave the state of minimum energy for a new state where the energy
1s increased. During the cooling process, the intrinsic energy may rise or drop but
as the temperature is lowered the probability that the energy level will increase
suddenly is reduced.

The probability that a change in the state of the metal at some temperature T
and 1nitial energy level i to some other state with energy level E. 1s given by:

_(Ezk—TE1) fE, > E

e i

P — 2 1 (6)
1 otherwise

Where k 1s Boltzmann’s constant.

This thermodynamic principle was adapted to numerical analysis by Metropolis
et al. in 1953 giving rise to the terms SA. SA attempts to minimize energy. This 1s
similar to mimmizing a Lyapunov function m modern control theory. In
implementing the Metropolis algorithm the following must be known:
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. The objective function ¢ (by analogy with the energy E of the metal)
whose minimum is sought and,

. A control parameter T (the simulated temperature) whose temporal
strategy defines the changes in the simulated temperature at every iteration
of the algorithm.

Although the analogy between the physical annealing process and SA 1s far
from perfect, there is clearly much in common. In all the stochastic algorithms of
optimization, an attempt 1s made to guide the solution from an initial random
point to an optimum solution as rapidly as possible. This can lead to entrapment
m some local optimum from which it may be difficult if not mmpossible to
extricate. SA does not suffer this problem, since the technique 1s stochastic and
searches the solution space randomly.

The flow chart of the SA 1s shown in Figure 2. For the solution of an
optimization problem with SA, the following steps are required:

(1) An mitial random solution vector X, in the bounded parameter space is
selected and its objective function @(x) is computed,

Q) An initial temperature T(0)= T,;,,,is specified,

3) Using some stochastic or heuristic strategy, a new solution vector x is
selected and the corresponding objective function value is evaluated
px),

(4) The difference of the objective function A :<p(x2)-<p(xl) 1s computed,

) If Ap< 0, then the solution vector X, 1s accepted, otherwise if Agp> 0
accept the solution vector according to the probability of acceptance:

A
p(k) = B
otherwise go to step 7,
(6) Set X=X and d)(x1)=cb(x2) and weight the current simulated temperature

with the coefficient A, where 0 <A<1, decreasing the simulated temperature
successively at every iteration, so that at the (k+1)s¢ iteration:
T(k + 1) = AT (k)
where £ is the iteration index,
(7) If the current simulated temperature is lower or equal to the final
temperature, 1.e., T(k) < TW, then accept the current solution vector as

being optimum, otherwise return to Step 3 and repeat the process.

If the SA algorithm 1s to succeed, it 1s important that the temporal annealing
strategy that 1s followed, 1.e., the simulated temperature profile, be suitable. The
rate at which the simulated temperature 1s decreased depends on the weighting
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coefficient A. If it 1s too high a simulated cooling rate leads to non-mmimum
energy solutions, while 1f it is too low a cooling rate leads to excessively long
computation times. The closer the value of A 1s to unity, the slower simulated
temperature decreases. In order to achieve effective exploration of the search
space, it 1s advisable to use 0.95<A<0.98. Finally, as in Evolutionary Computation,
the trajectory of an optimization problem 1s critically dependent on the initial
estimates of the optimum solutions that are heuristic or the result of statistical

analysis [20], [22], [23], [24], [25].

- Start with initial vector x1 and compute the objective function ¢(x1).
- Set initial temp T(0)=Tinit

-Set A
- Set Tfinal-
End
Yes
- Generate anew solution vector x2 .
- Compute the objective function ¢(x2).
- Calculate the probability of acceptance P
Yes
No
<«——Yes
No
v v
x1 =x2 _
P(x1) = o(x2) °(x2) = 9(x1)
Tinit = A-Tfinal

Figure 2 Flow chart of the SA algorithm
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3.2 Genetic Algorithm

Genetic algorithm (GA) 1s a direct random search technique to find a global
optimal solution m a complex search space. It was first invented in 1970’s by
Holland [26]. GA 1s modeled on the natural biological evolution process. It
operates on a population of potential solutions or individuals over several
generations to gradually improve on their fitness. At each generation, a new set of
approximations 1s created by the process of selecting individuals according to their
level of fitness in the problem domain, and breeding them together using genetic
operators.

The potential solution for a problem 1s an imdividual known as a chromosome.
The chromosomes can be represented by strings of numbers, normally but not
necessarily, binary numbers. After decided on the chromosome representation, it
1s possible to access the performance and filtering the individual members of a
population. The individuals are evaluated according to the objective and fitness
function. The best individuals are selected to mate and generate offspring. Then, a
new generation 1s created and the best fit individuals are selected to replace the
least fit individuals of the previous generation while keeping the same population
size. Through an iterative process, the population evolves towards better regions
of the search space. The algorithm then converges to the best chromosome which
represent the optimal or near optimal solution for the problem.

Given a clearly defined problem to be solved and a binary string representation
for candidate solutions, the pseudo code for a GA and the flowchart for the
algorithm are presented in a basic as in Figure 3 and 4. GA applies the following
major steps:

(1) Represent the problem variable domain as a chromosome of a fixed
length, choose the size of a chromosome population N, the crossover
probability p.and the mutation probability p..

Q) Define a fitness function to measure the performance, or fitness, of an
mdividual chromosome in the problem domain. The fitness function
establishes the basis for selecting chromosomes that will be mated during

reproduction.
3) Randomly generate an initial population of chromosomes of size N:
X, Xoy o0 0, XV
(4) Calculate the fitness of each individual chromosome:
), 1(x)e, . .., [{xy)
) Select a pair of chromosomes for mating from the current population.

Parent chromosomes are selected with a probability related to their
fitness. Highly fit chromosomes have a higher probability of being
selected for mating than less fit chromosomes.
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(6) Create a pair of offspring chromosomes by applying the genetic operators
-crossover and mutation.

(7) Place the created offspring chromosomes in the new population.

8) Repeat Step 5 until the size of the new chromosome population
becomes equal to the size of the initial population, N.

9) Replace the iitial (parent) chromosome population with the new

(offspring) population.
(10) Go to Step 4, and repeat the process until the termination criterion 1s

satishied.
bean
t=10
imnalze Pt
evaluate Pt

while (t Smax # of generations) do

bemn

Figure 3 Pscudo code of GA given by Chipperfield [27]

4.0 SIMULATION RESULTS

The PI controller of coupled tank liquid level control 1s simulated using SA so that
the I'TAE 1s minimized. The following parameters had been used for simulation
as shown i Table 1 which was tested experimentally in previous work [17].

Table 1 Coupled-Tank system parameters

Name Expression Value

Cross Sectional Area of the
coupled tank reservoir

Al&A2 32 cm’
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Continued Table 1

. . Ol Oz
Proportionality o constant
t‘hatﬁ(‘l ep e[tlds (.)fl_l_dls‘Chflrge subscript ¢ denotes
coclhicient, OIILICE Cross which tank it refers  14.80 14.30
sectional area and gravitational o o
e cm”?/ sec cm’’/ sec
constant
Maximum allowable
volumetric flow rate pumped Qi 300 em’/ s
by motor
Pump motor(valve) time .
! ( ) TC 1 sec (can be adjusted)

constant

Ols

20.00

cm”?/ sec

Generate a population of chromosomes of size N:
Xq, Xz, ooy Xy

v

Calculate the fitness of chromosomes:
fXa), 1(X2), ..., T(Xn)

Is the termenation
criterion satisfies?

Select a pair of chromosomes for mating

v

With the crossover probability Pc, exchange parts of the
two selected chromosomes and create two offspring

v

With the mutation probability Pm, randomly change the
gene values in the two offspring chromosomes

v

Place the resulting chromosomes in the new population

Is the number of the

No new population equal to
N7

Yes
v

Replace the current chromosome population with the
new population

Figure 4 Genetic algorithm architecture
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To carry out the simulation, the control system 1s implemented in Matlab software
ver. 2008a. The linearized model has been shown in Figure 5,6 respectively.

alphal

Bain Square raat of HY

Integrata?

Divided

H1
H2

Addz Abs Sgmate oot of (H1-HZ)

@&
2

Estegiatert

Baind  zguare roat of HZ

alphaz

Froducts

Figure 5 Linecarized Model of coupled tank

Linear Coupled-Tank Model

Figure 6 The mask of the model

4.1 Simulated Annealing Results

The SA program was done in Matlab as m-file. In order to run the program we
need to initialize some of the program parameters as shown in Table 3.



392 AMMAR HUSSAM, SALINDA BUYAMIN & NORHALIZA ABDUL WAHAB

) —

Pump Model

Desired Hight H2

PID Controller

Disturbance

Linear Coupled-Tank Model Te Werkspace

»  H2
To Workspace1
Tank 1 Tank 2
122 9z
Tank 1 Tank 2

Figure 7 A complete modeling of coupled tank

Table 3 Simulated Annealing initial parameters

Tmil l O
T 0.00001
A 0.98

K, max lmit 30

Kimax limit 5

The SA program used Integral Time Absolute Error ITAE as the objective
function ¢ in order to optimize the PI control parameters K, and K.

ITAE = @(t) = fxt. le(t)|dt (6)
0

Where:
e(t) = error signal at time t.
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SA program has work successfully to minimize the objective function in order to

control the Tank 2 level for the system as shown in Figure 8 and 9.
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Figure 8 Performance of Tank 1 using SA
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Figure 9 Performance of Tank 2 using SA



394 AMMAR HUSSAM, SALINDA BUYAMIN & NORHALIZA ABDUL WAHAB

SA use random number generators so each time the program run, this algorithm
may give different results [28]. The trajectory of the stochastic search as in Figure
10 shows the randomly generated numbers in two dimensions of K, and Ki.. The
value for the optimum PI controller parameter i1s shown as in Figure 11.
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Figure 11 Detail of controller gain, K, and Ki using SA
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For the SA, when the stochastic search iteration increases, it gives lower objective
function (ITAE) as shown above i Figure 12. These results prove that the SA
worked well to minimize the objective function mn order to find near optimum
values for both K, and K. Table 4 shows the Tank 2 performance results of the
system.

5505
500 R
£ |0
450} i
(O R & S Ot
......................... o)
400 L L L L L
0 100 200 300 400 500 600
The Number of Stochastic Search Iteration
Figure 12 Reduction of ITAE during SA
Table 4 Tank 2 performance results using SA
Tank 2 Triall Trial2  Trial 3
Kp = 14.2439 152318  16.0806
1= 0.9264 0.9607 0.9859
Rise Time 7.62sec  7.21sec  6.92 sec
Peak Amplitude 1.1 1.11 1.12
Setting Time 24.4sec  3l.dsec  32.4 sec
Steady State Error 0 0 0

o) 415.7655  413.0642  415.8450
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4.2 Genetic Algorithm Results

GA program has worked successfully to mmimize the objective function in order
to control the Tank 2 level of the system as shown in Figure 13 and Figure 14. GA
use 1mitial random numbers for each solution (chromosome) therefore each time
the program run this algorithm may obtain shightly different results; therefore we
take three sample runs to analyze. Table 5 shows the Tank 2 performance results

of the system.
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Figure 13 Tank 1 response obtained during GA tuning
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Figure 14

Tank 2 response obtained during GA tuning
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Table 5 Tank 2 performance results using GA

Tank 2 Trial1l Trial2  Trial 3
= 16.1905  17.619 15.2381
= 1.0317 1.1111 0.9524

Rise Time 6.82sec  6.34sec  7.238 sec

Peak Amplitude 1.18 1.15 1.11

Setting Time 31.8sec  3l.6sec  31.8sec

Steady State Error 0 0 0

O] 413.9913  417.8844  414.2084

397

The trajectory of the stochastic search using GA shows the randomly generated
numbers i two dimensions of K, and K. The search area and the final value
obtained using GA 1s shown as in Figure 15 and Figure 16.

The GA inmitializes a random number of chromosomes inside the population
and these are decoded to be m the same it of proportional and mtegral
constrains as SA, then the chromosomes will be changed during generation
process depending on crossover and mutation operation. The results show that
the objective function (ITAE) reduced during the procedure of new generation
(stochastic search) but settled on constant value for many generation and requires
more iteration than SA before it reduced again.

5 T
. . .
451 . . . B
4+ . 7
] (1] o0 L]
351 o 83¢ .. o . o
3L i
g 25F o o ° ° ]
. o800 o o 00 oo o o3
2L . . .
. . ..,”:..‘ . o'o:’ . o 'o°.’§i
) Se o ®o o0cee’ ogo o, oo g'eesss
1.5r . . ecee oo _ ceeed 3¢ oo ge cees
o o o ®®eecece $00%0e8%°%0 o ° 3°% °F
1¢eee e o o 33 0e$8d $ogseegeces § 3 3°g 0ol oes
. g e e o -
L] L) ° LN ) L]
051 (1] * . ¢ :’ : . 0.1'
e o
0 | | | | |
0 5 10 15 20 25 30
Kp

Figure 15 The trajectory of the search using GA
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Figure 16 The controller gain,K, and Kiusing GA

The reduction of objective function during each success for GA can be seen in
Figure 17.
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Figure 17 ITAE reduction using GA

These results demonstrate that the GA worked as well as SA to minimize the
objective function in order to find near optimum values for both K, and Ki but
with longer computational time.
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4.3 Comparison Between Simulated Annealing and Genetic
Algorithm Tuning Methods

For SA, it 1s clear that the PI controller parameter for each alteration will be
assumed randomly inside the limit of proportional and integral constraints. On the
other hand , GA initializes a random number of chromosomes inside the
population and these are decoded to be i the same limit of proportional and
mtegral constraints as SA, then the chromosomes will be changed during
generation process depending on crossover and mutation operation. In summary,
Figure 18 show Tank 2 response for PI controller parameters obtained from SA
and GA and the result 1s tabulated as in Table 6.
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Figure 18 Tank 2 response of using SA and GA

From the result presented, it 1s shown that both SA and GA capable of providing
good K, and Ki value for the controller. The gain tuned by SA however gives
better results in terms of settling time and rise time. SA used shorter iteration time
and therefore reduces the overall simulation time. Although the I'TAE provided
by SA tuning is only slight different with GA, it gives better response in the time
response performance.
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Table 6 Comparison result using SA and GA

SA GA
K = 15.2318  16.1905
K= 0.9607 1.0317
Rise Time 721 sec  6.82 sec
Peak Amplitude  1.11 1.13
Settling Time 3l.4sec  31.8 sec
Steady state error () 0
Iteration 685 1000
¢ (ITAE) 413.0642  413.9913

Simulation Time  46.19 sec  69.98 sec

5.0 CONCLUSION

SA provides near optimum values and might give different values at each program
run due to the algorithm structure of SA depends on generation of random values.
The technique avoids the requirement for mathematical modeling of the system.
For this approach, the Simulated Annealing has maintained the same values for its
parameter for each test run. In dealing with the searching space, the bigger the
search area for SA, the longer time is required for the algorithm to converge to
optimum solution. The offline tuning done by simulation also gives the possibility
of smaller area need to be 1dentified which contribute to reduce computation time.
The result obtained during offline tuning can be used for a set guide mn searching
space for the online tuning,.

The paper has demonstrated the effectiveness of the SA to tune the
proportional-integral (PI) controller for the coupled tank liquid level control.
Since GA 1s one of the powerful tools in optimization, it 1s chosen for comparison
purposes to verify the effectiveness of the proposed method. SA and GA, exhibit
the capability to tune the system successfully. Both methods have the ability to
deal with time delay systems, because its objective 1s to minimize the objective
function, Integral Time Absolute Error (ITAE). Another advantage of SA and GA
1s that the tuning does not depend on the system order and has the ability to tune
the controller even there 1s unknown process parameters.

In contrast, GA 1s more complex to construct than the SA. In addition, GA
convergence depends on initial population and will require more generation in
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order to find the optimum value. The overall results shown that SA yields better
performance as compared to GA, hence, it 1s recommended for an alternative for
optimizing the PI controller. The hybrid algorithm of SA and GA can be applied
to the system in order to overcome the drawbacks of these two methods. Another
suggestion 1s to used the simplified SA which has claimed to performed a lot better
and of reducing the computational complexity.
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