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Abstract 
 

This paper reviews various text independent writer identification techniques through offline documents. Different features extraction 

methods are discussed. Classification approaches that are mainly used for identification by the researchers and verification by 

different groups and individuals are presented.  Identification rates achieved by the reviewed papers are tabulated and analyzed. 

A survey of different databases used in the reviewed papers is performed. Application of writer identification in different language 

domains is also discussed. Future directions for the automated writer identification are presented in the end. 
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1.0  INTRODUCTION 

Writer recognition is a process to identify the writer of 

the questioned document. Writer recognition process 

comprises of writer identification and writer 

verification stages. Writer identification involves 

searching a handwritten samples of unidentified 

author with samples of N identified authors in a 

database. The writer identification process comprised 

of preprocessing, feature extraction and classification 

standard steps [1] as shown in Figure 1. 

 

 

   

Figure 1  Steps of Writer Identification process 

  

Writer identification classified into Offline and online 

based on the method of writing. In online writer 

identification detail information such as speed of 

writing, angle or pressure while in offline features 

associated with characters, words, lines or paragraphs 

are utilized. Over the past two decades, automatic 

offline writer identification has enjoyed renewed 

interest. [2] 
Writer identification task is performed through text 

dependent or text independent methods. In text-

dependent methods same content must be written by 

the writers to be compared however text-

independent methods do not require the content to 

be same. Text independent got a wider applicability 

but do not obtain the same high accuracy as text-

dependent methods do [3]. 

Writer recognition systems use global features such 

as texture, curvature and slant features [4], [5] and 

also local features such as graphemes, allographs 

and connected components to identify the writers. 

Extraction of local features require segmentation and 

this approach is applied in [6-10]. 
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2.0  WRITER IDENTIFICATION: STATE OF THE 
ART 

The work done in the field of writer recognition until 

1989 was presented in a survey paper [11]. Later, work 

till 1993 was published in [12]. 

Some feature extraction methods are applied to 

fixed length datasets in which writers are asked to 

copy a particular text to a given number of times to 

produce the samples as in [6] and [13]. This 

methodology is normally applied to characters or 

words. Others are variable in sample length. 
 

 
3.0  FEATURE EXTRACTION METHODS   

Global features are extracted at micro and macro 

level of resolution. As described by [2] at macro level, 

thirteen global feature measures are extracted which 

are pen pressure, writing movement, stroke formation, 

average line height and average slant per line, stroke 

width, and average word gap measures. On the other 

hand micro features extracted from the allograph, or 

character. Gradient, structural and concavity (GSC) 

features developed for character recognition were 

calculated at micro level [14]. 

Local features are calculated directly and provide 

adequate information about the basic composition 

and shape of a character. Extraction of local features 

require segmentation and this approach is applied in 

[6-10]. 

To exploit the information in the unlabeled data 

where the writer is unknown a semi supervised 

structural learning framework presented in [15] that 

used the multitask learning to provide low dimensional 

common sub structure. 

Textual features extracted from image or when 

signal applied to the document without using writing 

information [16] such as wavelets, filters and 

autocorrelation. Textural features can be obtained 

through the multi-channel Gabor filtering [17]and the 

grey scale co-occurrence matrix (GSCM) 

[18]methods. In [8] used textual based Information 

Retrieval model for the writer identification that allows 

the use of a specific feature space on the basis of 

feature frequencies. They used a segmentation 

procedure of handwritten components followed by a 

cluster analysis to derive a set of features. [19] utilized 

texture based features for writer verification  by using 

GLCM (Grey Level Co-occurrence Matrix) .They 

proved that by combining classifiers better results can 

be  achieved based likelihood analysis producing 

receiver operating characteristics (ROC) curves of the 

classifiers. 

HMM presented [20] that used sample data to train 

for every individual writing style at character and word 

level. Drawbacks of HMM are covered by Gaussian 

Mixture Models (GMMs) used in HMM training [21]that 

eliminated the training need and character/word 

model requirements by attaining almost 98% 

accuracy. 

In [22] they applied only vertical scaling. The text is 

provided to HMM to decide which writer has written 

an unknown text, result with maximum value is 

expected to be the writer and reported 97% accuracy 

for 100 writers. But its applicability is limited due to 

training requirements. 

 

 

4.0  FEATURE TYPES  

Graphemes introduced in [23] that are writer 

invariants based on redundant individual patterns of 

a writing. Samples did not analyze for writer 

verification. Extended work presented in [24] using the 

same features in addition an information retrieval 

paradigm is applied to describe ,compare the 

handwritten query to each sample in the database 

and grapheme concatenation. 

The grapheme codebooks used by [25]), and later 

[26] and [27]propose a sub-grapheme level of 

codebook and reference base is constructed of 

smaller stroke fragments. Authors in [27] proposed 

small low-level stroke fragment Codebooks by using 

the small windows on the ink trace and experimented 

with different window sizes. Another segmentation 

method using codebook was proposed by [28] 

performed better than the usual ink trace minima 

segmentation. 

After segmentation sequential clustering algorithm 

[29] is used to group morphologically similar ones 

where two graphemes are compared using a 

correlation similarity measure. Later the authors in [8, 

24, 30] used the cluster of all the graphemes of the 

database therefore created a common feature 

space and invariants collected are used as binary 

features. 

CS-UMD [31] methodology used K-adjacent 

segment (KAS) features to model a user’s handwriting 

in a bag-of features (BOF) framework. 

 

 

5.0  FEATURE GROUPING.  

Features can be combined in different combinations 

to achieve better results as in [9, 27, 32-34]. Authors in 

[9] extracted two visual attributes orientation and 

curvature had been utilized to distinguish 

handwritings. And then the effect of the combining 

both of the attributes had been observed in 

characterizing the writer. Chain code method and 

polygons are used to represent features. They got 97% 

identification rate for IAM and 93% identification rate 

for RIMES and 95% identification rate for both. 

6.0  FEATURE SELECTION. 
 

Feature selection that is to choose subsets of features 

from original dataset in order to improve performance 

and data reduction [33, 35-37]. In [38] proposed writer 

identification system optimization that reduces the 

identification process search space. They used edge-
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hinge and run-length texture based features. With 

their proposed methodology they reported accuracy 

92.5% and 99.5% for the IFN/ENIT database and GRDS 

database respectively and 93.3% for the union of 

databases. 

Authors got top-10 result of 95.4% for 250 writer 

database by applying data reduction algorithms such 

as principal component analysis [PCA], linear 

discriminant analysis [LDA], multiple discriminant 

analysis [MDA], multidimensional scaling [MDS], and 

forward=backward feature selection algorithm) [33].  

 

 

7.0  CLASSIFIERS 
 

Different techniques as shown in table 1 are available 

that proved to effectively measure the distances such 

as Euclidean distance or Hamming [16], and Chi-

square. Researchers [39] used techniques to define 

the distance between two points differently, 

weighting some dimensions more significantly than 

others [1]. Authors [25] finds that Hamming performs 

best, but uses the chi-square distance. 
After metric selection classification is the next step. 

In classification stage unknown object is assigned to 

an existing known group. There are several common 

classifiers available, such as Nearest Neighbor (NN), 

Neural Networks, Decision Trees and Support Vector 

Machines (SVMs). SVM is used for classification of 93 

writers [15]. Artificial neural networks is used in the 

study [6] for classification. NN applied in [9, 25, 37, 40] 

is a very simple and widely used. 

Authors in [42] presented a framework to utilize the 

sampling for classification. They used Bayesian 

classification to assign sample weights in accordance 

to the sample importance. 

 

 
Table 1 Various text independent writer identification techniques 

Authors Features Classifiers 
Accuracy 

(%) 
Data Set-Writers(sample) 

(Srihari, Cha, Arora, & Lee) [6] Macro and micro features Neural net. 94.0 CEDAR-100(3) 

(Schlapbach & Bunke) [22] Global and local features 
Hidden Markov 

Models(HMM) 
98.4 IAM-100(5) 

(BENSEFIA, PAQUET, & HEUTTE) [8] Graphemes Hypothesis Test 
86.0 

 
IAM-150(2) 

(M.Bulacu & L.Schomaker) [41] 
directional, grapheme, 

and PDFs 
Distances 

89.0 

83 

87 

IAM-650(2) 

Firemaker-250 

Large-900 

(Siddiqi & Vincent) [9] Global , local & Polygon Distances 

97 

93 

95 

IAM-650 

RIMES-375 

IAM+RIMES(1025) 

 

 

8.0   DATABASES 
 

Databases varies in text dependency, language, 

number of writers resolution, samples per writer 

available and type of sample such as paragraph ,lines 

or characters. There are several databases available 

which considered authentic among the research 

community. Some of them (text type) are listed in the 

Table 2. They are as IAM[43], CEDAR [6], RIMES[44], 

Firemaker [7], UniPen, or IFN/ENIT[45]. Usually, the 

authors have chosen different datasets from these 

databases as shown in table 2.  

Some of them i.e. IAM and RIMES are annotated 

databases about the writer identity, the ground truth 

text and the segmentation at a line, sentence, word 

and character levels. 

 

 

 

Table 2 Databases Used for Writer identification in Literature 

 

Data Set 
 

Language 
No. of 

writers 
Sample Size 

IAM [43]  English 650 Variable(1-59) 

RIMES[44]  French 1600 5 

CEDAR[46]  English 1000 3 

Firemaker( [7]  Dutch 252 4 

TriGraph 

Slant[47] 

 Dutch 47 4 pages/writer 

Unipen [48]  Various 215 2 pages/writer 

 

 

9.0   CONCLUSION 

 

In this paper we presented the state of the art in writer 

identification, types of features, the feature extraction 

approaches, the classifiers and the databases used. 

The literature was grouped by the research work 

publications based on similarities in used features and 

classifiers. That shows the improvement done by the 

researchers. To make the comparison of different 

research work features, the classifiers, the databases 
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used, the best identification rates of each publication, 

the number of writers and the year of publication are 

tabulated. Tabulation was included for the used 

databases, the number of writers, samples, etc. This 

specifies the large number of publications in this field 

and increasing number of researchers working in this 

area. 
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