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Graphical abstract 
 

 

Abstract 
 

Prediction of future mortality rate is of significant priority in the insurance industry 

today as insurers face challenging tasks in providing retirement benefits to a 

population with increasing life expectancy. A time series model based on 

multivariate power-normal distribution has been used in the literature on the United 

States (US) mortality data in the years 1933 to 2000 to predict the future mortality 

rates in the years 2001 to 2010. To improve the predictive ability, the US mortality 

data is augmented to include more variables such as death rates by gender and 

death rates of other countries with similar demographics. Apart from having good 

ability to cover the observed future mortality rate, the prediction intervals based on 

the augmented data performed better because they also tend to have shorter 

interval lengths.   
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1.0  INTRODUCTION 
 

Mortality improvement as reflected by lower mortality 

rates is viewed as a positive change for individuals 

because they are living healthier and longer. 

Nevertheless, as lifespan increases, personal savings 

may end up being insufficient to support their 

retirement. 

From the perspective of insurance providers, 

longevity improvement presents a challenge for the 

planning of public retirement systems, life annuities 

and other longevity-related insurance products of 

private insurance companies. Prolonged life 

expectancies lead to the possible risk of 

underestimating product premiums due to initial 

assumptions of higher mortality rates, especially in life 

annuities. Therefore, it has become more crucial for 

insurers and pension funds to find an appropriate 

and efficient way to model mortality rates.  

In 1992, Lee and Carter pioneered a time series 

model to make long-run forecasts of age-specific 

mortality rates [1]. Firstly, logs of central death rates 

are fitted as a sum of an age-specific constant and 

the product of a time-varying mortality level index 

and another age-specific constant. Fitting this model 

to historical data, singular value decomposition is 

used to obtain the age-specific constants while the 

mortality index is modeled as a stochastic time series 

which in turn is used to forecast future index. Finally, 

future age-specific central death rates can be 

forecasted using the forecasted mortality index and 

age-specific constants.  

There have been extensions of the Lee-Carter 

method that vary according to a number of 

elements. The more recent extensions are as follows. 

In [2], the proposed modified Lee-Carter model 

applied the Lee-Carter model on the difference of 

log mortality rates, resulting in better performance 

than the original Lee-Carter model. In this model, a 

Levy process and the Normal Inverse Gaussian 

distribution were applied on the mortality index. [3] 

argued that the Cairns-Blake-Dowd (CBD) model [4] 

uses the most suitable time-varying model 

parameters as indexes to indicate longevity risk levels 
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at different time points. These indexes are jointly 

modeled with a more general class of multivariate 

time-series models, instead of a simple random walk 

that ignore cross-correlations. In [5], the proposed 

algorithm Multiple Lee-Carter Panel Sieve (MLCPS) 

combines the Lee-Carter model-based predictions 

with a bootstrap procedure for dependent data, in 

order to preserve historical parametric structure and 

the intra-group error correlation structure. Applying it 

to estimate the relationship between populations 

with similar socioeconomic conditions, the empirical 

results show that it works well in the presence of the 

dependence structures considered.  

In order to reduce problems of model over-

parameterization and unjustifiable adding of terms in 

the model, [6] used a toolkit of functions and expert 

judgment to design a general procedure to 

construct mortality models, which can identify 

sequentially each significant demographic feature in 

the data and give them a parametric structural form. 

It produced a relatively parsimonious model with a 

good fit to the U.K. mortality data. [7] introduced a 

general framework to model the dynamics of 

mortality rates of two related populations 

simultaneously. It prevents forecasts from diverging in 

the long run by modeling the difference in the 

stochastic factors between the two populations with 

a mean-reverting autoregressive process. In [8], 

improvement on the modeling of the stochastic 

factors is investigated using a vector error correction 

model, whose key benefits include eliminating the 

need to make assumption of which population is 

dominant.  

The method based on multivariate power-normal 

distribution [9] was used to find prediction intervals for 

future age-specific mortality rates of United States 

(US). The US mortality data (1933 to 2000) was used to 

find a multivariate power-normal distribution from 

which prediction intervals were found for future 

mortality rates of the years 2001 to 2010. The resulting 

prediction intervals were found to have good ability 

of covering the observed future mortality rates.  

In this paper, we augment the data used in [9] to 

include more variables which are female death rates 

and death rates of Canada and United Kingdom 

which would have similar demographics to US. 

Prediction intervals based on the augmented data 

for US mortality rates are found to have shorter 

interval lengths while still having good ability of 

covering the observed future mortality rates. 

The paper layout is as follows. In Section 2, we 

introduce briefly the multivariate time series given in 

[10] and highlight some results on mortality rate 

prediction given in [9]. Section 3 gives the results of 

prediction based on the augmented data. Finally, 

Section 4 concludes the paper. 
 

 

 

 

 

 

2.0  A MULTIVARIATE TIME SERIES MODEL 
 

The multivariate time series model given in [10] makes 

use of a non-normal distribution called the power-

normal distribution given in [11].       

The random variable ε  is said to have a power-

normal distribution with parameters +λ  and 
-λ  if  
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where z has the standard normal distribution. 

From the univariate power-normal distribution, we 

may construct a multivariate power-normal 

distribution for a vector y consisting of k-correlated 

random variables. The vector y is said to have a k-

dimensional power-normal distribution with 

parameters , , , , ,1i i k      H , if  y  Hε , 

where  E y , H is an orthogonal matrix consisting 

of the eigenvectors of the variance-covariance 

matrix of y, and 
1, , k   are uncorrelated, 

 

 

 

 

 
 

0i   is a constant and i  has a power-normal 

distribution with parameters 
i


 and 
i


. 

From the multivariate power-normal distribution, 

we may construct a multivariate time series model for 

a vector  tx  of 
cn  observations recorded at time t. 

Letting t  be a small time increment after t, an 

 1cn l  -dimensional power-normal distribution is 

found for the vector 
          1

1 , , , ,t l t t t t t t       x x x x x . 

An 
cn -dimensional conditional distribution of 

 t tx  is next found from the above  1cn l  -

dimensional power-normal distribution. This cn -

dimensional conditional distribution will then specify a 

lag(l-1) multivariate time series model for the vector 

of 
cn  time-dependent correlated observations. 

Assuming the multivariate time series is stationary, 

we may consider that, for 2d  , the vector 
         , , 1 ,
d

t d l t t d t t d t          x x x x  
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has the same distribution as vector 
 1

x . Thus, given 

the value of 

        ' , , ' 2 , ' 1t d l t t d t t d t          x x x , 

we may find a conditional distribution for  't d t x  

and later generate a value for  't d t x  for 

' 2,3, ,d d . In this way, a value of  t d t x  may 

be generated. The process of generating  t d t x  

may be repeated a large number of times. From the 

generated values of  t d t x , we may find the 

marginal distribution for the j-th component of 

 t d t x . The prediction intervals with end points 

given by the  100 / 2  and  100 1 / 2  

percentage points of the marginal distribution may 

be used to predict the value of the j-th component 

of  t d t x . 

Table 1 displays nominally 95% prediction intervals 

obtained in [9], based on constructed lag-0 model 

for total death rates of age group 60-64. A subset of 

three age groups (55-59, 60-64 and 65-69) was used. 

In the table, dL  and dU  are respectively the 

intervals’ lower and upper limits for the mortality rate 

d years after the year 2000.

Table 1 The nominally 95% prediction intervals for future total mortality rate of age group 60-64 

 

d dL  dU  Interval Length 

1 0.01120 0.01270 0.00150 

2 0.01060 0.01300 0.00240 

3 0.01020 0.01290 0.00270 

4 0.00990 0.01300 0.00310 

5 0.00954 0.01310 0.00356 

6 0.00922 0.01310 0.00388 

7 0.00894 0.01310 0.00416 

8 0.00870 0.01320 0.00450 

9 0.00850 0.01310 0.00460 

10 0.00821 0.01330 0.00509 

 

3.0  PREDICTION OF US MORTALITY RATES 

USING AUGMENTED DATA 
 

In this section, the methodology in [9] will be applied 

to augmented US mortality data. The mortality data 

of the years 1933 to 2000 will be used as training data 

(68 years) while the mortality data of the years 2001 

to 2010 will be used as testing data (10 years).  

The first augmentation is to combine the US 

training data of total death rates (female and male 

combined) with US female death rates. For a given 

year (say year t), the age-specific total mortality rates 

for a subset of N age groups from the 19 age groups 

15-19,20- 24,…,105-109  are initially used to form a 

vector 
 T

tm  of N components. The vector 
 T

tm  is next 

augmented to the vector     ,
F T

t t tm m m  by the 

inclusion of the US female age-specific mortality rates 

for the same subset of N age groups.  

The second augmentation is to combine the US 

training data from the first augmentation above with 

the female death rates and male death rates of 

Canada. The resulting vector of mortality rates may 

now be stated as         , , ,c cF M F T

t t t t tm m m m m  where 

 cF

tm  and 
 cM

tm are respectively the Canadian 

female and Canadian male age-specific mortality 

rates for the same subset of N age groups. 

The third augmentation is to combine the training 

data from the second augmentation with the female 

death rates and male death rates of the United 

Kingdom (UK). The resulting vector of mortality rates 

may now be stated as 
            , , , , ,u u c cF M F M F T

t t t t t t tm m m m m m m  where 
 uF

tm  

and 
 uM

tm  are respectively the United Kingdom 

female and United Kingdom male age-specific 

mortality rates for the same subset of N age groups.  

For the 
aI th  augmentation, we set 

2 , 1c an I N t    and   t kt k t   x m  and we use 

the values of 
tm  from 1933 to 2000 to estimate the 

 2 1aI N l  -dimensional power-normal distribution for 

  11
, , ,t tt l  

m m m . From the  2 1aI N l  -

dimensional power-normal distribution, a nominally 

 100 1 %  prediction interval is next obtained for 

the j-th component of 
t dm  where 1 j N   and 

1d  . 

Let 3N   and consider the subset formed by the 

age groups 55-59, 60-64 and 65-69. For the first 

augmentation with US female death rates, Table 2 

displays the nominally 95% prediction intervals based 

on the constructed lag-0 model for the total death 

rates of the age group 60-64. 

 



22                          Chon Sern Tana & Ah Hin Pooi / Jurnal Teknologi (Sciences & Engineering) 78: 4–4 (2016) 19–23 

 

 

Table 2 The nominally 95% prediction intervals for total death rates of age group 60-64 – first augmentation with US female death 

rates 

d dL  dU  
Observed Future 

Death Rate, dO  

Prediction Interval Length 

US Table 1 

1 0.01143 0.01287 0.01205 0.00144 0.00150 

2 0.01117 0.01263 0.01188 0.00146 0.00240 

3 0.01052 0.01273 0.01177 0.00221 0.00270 

4 0.01012 0.01262 0.01132 0.00250 0.00310 

5 0.00966 0.01257 0.01126 0.00291 0.00356 

6 0.00914 0.01264 0.01081 0.00350 0.00388 

7 0.00876 0.01253 0.01063 0.00376 0.00416 

8 0.00808 0.01268 0.01051 0.00460 0.00450 

9 0.00765 0.01261 0.01026 0.00496 0.00460 

10 0.00689 0.01270 0.01006 0.00580 0.00509 

 

 

From Table 2, it can be observed that all the 

prediction intervals cover the observed future death 

rates. However, the lengths of prediction intervals are 

shorter than those in Table 1 for d=1,…,7  only, while 

the remaining three interval lengths are longer 

respectively. This indicates that the augmentation 

with US female death rates may not improve the 

prediction when d is large. 

Table 3 displays the corresponding prediction 

intervals for the second augmentation (Canada-US) 

while Table 4 shows the corresponding prediction 

intervals for the third augmentation (UK-Canada-US).

 

Table 3 The nominally 95% prediction intervals for total death rates of age group 60-64 – second augmentation (Canada-US) 

 

d dL  dU  
Observed Future 

Death Rate, dO  

Prediction Interval Length 

US Canada-US Table 1 

1 0.01126 0.01276 0.01205 0.00144 0.00149 0.00150 

2 0.01074 0.01218 0.01188 0.00146 0.00145 0.00240 

3 0.01012 0.01223 0.01177 0.00221 0.00211 0.00270 

4 0.00966 0.01221 0.01132 0.00250 0.00256 0.00310 

5 0.00927 0.01216 0.01126 0.00291 0.00289 0.00356 

6 0.00889 0.01208 0.01081 0.00350 0.00319 0.00388 

7 0.00893 0.01208 0.01063 0.00376 0.00315 0.00416 

8 0.00809 0.01183 0.01051 0.00460 0.00375 0.00450 

9 0.00801 0.01167 0.01026 0.00496 0.00366 0.00460 

10 0.00759 0.01149 0.01006 0.00580 0.00390 0.00509 
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Table 4 The nominally 95% prediction intervals for total death rates of age group 60-64 – third augmentation (UK-Canada-US) 

 

d dL  dU  
Observed Future 

Death Rate, dO  

Prediction Interval Length 

Canada-US UK-Canada-US Table 1 

1 0.01145 0.01282 0.01205 0.00149 0.00137 0.00150 

2 0.01106 0.01230 0.01188 0.00145 0.00124 0.00240 

3 0.01020 0.01204 0.01177 0.00211 0.00184 0.00270 

4 0.00981 0.01211 0.01132 0.00256 0.00230 0.00310 

5 0.00938 0.01192 0.01126 0.00289 0.00254 0.00356 

6 0.00894 0.01187 0.01081 0.00319 0.00293 0.00388 

7 0.00864 0.01170 0.01063 0.00315 0.00305 0.00416 

8 0.00850 0.01165 0.01051 0.00375 0.00315 0.00450 

9 0.00803 0.01160 0.01026 0.00366 0.00357 0.00460 

10 0.00768 0.01149 0.01006 0.00390 0.00380 0.00509 

 

 

It can be observed that all the prediction intervals in 

Table 3 and Table 4 cover the observed future death 

rates while the lengths of prediction intervals are also 

shorter than those in Table 1 for d=1,…,10 . This shows 

that both sets of augmented training data have 

improved the predictive ability through shorter 

lengths of prediction intervals. In addition, it can be 

observed that when the US data is augmented to the 

Canada-US data and later to the UK-Canada-US 

data, the interval length tends to decrease with 

each augmentation when d is large. 

 

 

4.0  CONCLUSION 

 
This paper presents a fairly promising application of a 

multivariate time series model on the mortality data 

of the United States. The results indicate improvement 

effected by augmentation of data on the model’s 

ability of covering the future observed mortality rates 

with shorter prediction intervals. This is consistent with 

our intuition that the predictive ability may be 

improved by enriching the existing data with other 

similar data from the countries with similar 

demographics. As a further work, the effect of 

combining more mortality data can be explored by 

adding death rates of a fourth country (such as 

Ireland) to the UK-Canada-US combination.  
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