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^Äëíê~ÅíK= This paper presents the application of computer algebra to modelling and vibration 
control of a flexible manipulator system. A symbolic-based model characterising the behaviour of 
the manipulator is developed using a symbolic language based on finite element and Lagrange 
methods. In this approach, the system transfer function is obtained in symbolic form. Analyses 
are carried out to investigate the significance and relations of the physical parameters of the 
flexible manipulator with the system characteristics including poles, zeros, stability, vibration 
frequencies and non-minimum phase characteristics of the system. The symbolic results are then 
used to design an effective input shaping vibration control scheme. Simulation results of the 
response of the manipulator are presented to demonstrate the application of the symbolic 
algorithm in modelling and control of a flexible manipulator. The symbolic results are then used 
to design an effective input shaping vibration control scheme. Simulation results of the response 
of the manipulator are presented to demonstrate the application of the symbolic algorithm in 
modelling and control of a flexible manipulator.  
 
hÉóïçêÇëW= Computer algebra; flexible manipulator; modelling; vibration control 

=

^Äëíê~âK  Kertas kerja ini membentangkan aplikasi algebra computer utk pemodelan dan 
kawalan getaran sistem ã~åáéìä~íçê boleh ubah EÑäÉñáÄäÉ= ã~åáéìä~íçêFK Sebuah model 
berasaskan simbol menspesifikasikan sifat ã~åáéìä~íçê telah dibina menggunakan bahasa 
simbolik berasaskan ÑáåáíÉ= ÉäÉãÉåí dan i~Öê~åÖÉ. Menggunakan pendekatan ini, íê~åëÑÉê=
ÑìåÅíáçå=diperoleh dalam bentuk simbolik. Analisis dilaksanakan untuk mengkaji signifikan dan 
relasi pemboleh ubah fizikal ã~åáéìä~íçê boleh ubah tersebut dengan sistem tertentu termasuk 
éçäÉëI=òÉêçëI=kestabilan, frekuensi getaran dan tertentu fasa åçå�ãáåáãìã=sistem tersebut. Hasil 
akhir simbolik tersebut kemudian digunakan untuk mereka cipta áåéìí= ëÜ~éáåÖ getaran skema 
kawalan. Hasil akhir simulasi dari respons manipulator dibentangkan untuk mendemontrasi 
aplikasi algorithm dalam pemodelan dan kawalan sesebuah ã~åáéìä~íçê boleh ubah.  
 

h~í~=âìåÅáW= Algebra computer, ã~åáéìä~íçê=boleh ubah, pemodelan, kawalan getaran  
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Flexible robot manipulators exhibit several advantages over rigid robots. They are 
lighter in weight, consume less power, require smaller actuators, are more 
manoeuvrable and transportable, have less overall cost and higher payload to 
robot weight ratio. Due to such advantages, flexible robot manipulators are used in 
various applications including space exploration and hazardous environments. 
However, control of flexible manipulators to maintain accurate positioning is a 
challenging problem. Problems arise due to precise positioning requirement, 
vibration due to system flexibility and the difficulty in obtaining accurate model for 
the system.  The complexity of this problem increases dramatically when a flexible 
manipulator carries a payload. Previous investigations have shown that the 
dynamic behaviour of the manipulator is significantly affected by payload 
variations [1]. If the advantages associated with lightness are not to be sacrificed, 
accurate models and efficient controllers have to be developed. 
  Various approaches have previously been developed for modelling of flexible 
manipulators. These include assumed modes method, finite difference and finite 
element (FE) methods to solve the partial differential equation characterising the 
dynamic behaviour of a flexible manipulator system. Previous simulation and 
experimental investigations on two flexible manipulator systems have shown that 
the methods can be utilised to obtain a good representation of the actual systems 
[2]. Moreover, using the FE method, a single element is sufficient to describe the 
dynamic behaviour of a flexible manipulator reasonably well [3]. However, most 
of the developments are numerical-based. Dynamic characteristics of the 
manipulator both in time and frequency domains are investigated on the basis of a 
single particular case, with no provision for any generality [3]. Moreover, 
numerical systems must operate using numeric approximations, whose precision is 
limited by the computer hardware. Alternatively, exact quantities can be obtained 
by retaining the computations in a symbolic form using computer algebra. A 
distinguishing feature of symbolic-based methods is the mathematically 
comprehensive output they generate, so that the significance of individual terms, 
or group of terms, may be identified. Whenever possible, closed-form solutions 
are obtained. This brings with it the opportunity to gain insights into the model 
that would otherwise not be available. Computer algebra will open up the 
possibility of analysing a flexible manipulator system in an effective way [4]. 
  Symbolic algebra for modelling and simulation of flexible manipulators has 
previously been investigated. Most of these investigations have developed 
automated symbolic derivations of dynamic equations of motion of rigid and 
flexible manipulators utilising Lagrangian formulation and assumed mode 
methods [5, 6]. In [5], a symbolic dynamic model for robotic manipulators with 
flexible link is obtained by writing the system lagrangian and then using the Euler-
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Lagrange equation to obtain the model. This process can be automated as 
evidenced by the REDUCE script. In [7], an infinite-dimensional model is 
developed using symbolic manipulation. From this model, the effect of link 
parameters and different boundary conditions can be explicitly seen. Alternative 
approaches to symbolic modelling include the use of Hamilton’s principle and 
non-linear integro-differential equations [8] and finite difference approximations 
[9]. These have demonstrated that the approach has some advantages, such as 
allowing independent variation of flexure parameters. On the other hand, not 
much work has been reported on the application of symbolic algebra for control 
of flexible manipulators. 
  This paper presents the application of computer algebra to modelling and 
vibration control of a flexible robot manipulator system. Although, computer 
algebra has been utilised for modelling of the system, not much work has been 
done on the development of controllers. A constrained planar single-link flexible 
robot manipulator is considered. As the FE method has been demonstrated to 
provide a satisfactory dynamic model of the system, it is desirable to derive a 
symbolic-based model based on the method. In this work, Macsyma, a language 
based on computer algebra is utilised for development of an automated symbolic 
derivation of the dynamic model of the system using the FE and Lagrange 
methods with different number of elements. Using computer algebra, an error-free 
and good approximation of the transfer function representing the actual flexible 
manipulator in terms of system parameters such as length, weight, flexural rigidity 
and payload is obtained. Analyses are then carried out to investigate the 
significance and relations of the physical parameters of the flexible manipulator 
with the system characteristics including poles, zeros, stability, vibration 
frequencies and non-minimum phase characteristics. In particular, the effects of 
payload on the manipulator is important for modelling and control purposes, as 
successful implementation of a flexible manipulator control is contingent upon 
achieving acceptable uniform performance in the presence of payload variations. 
In control, an input shaping control is developed based on symbolic algebra to 
suppress the vibration of the system with varying payloads. As payload changes, 
the input shaper can be updated automatically using closed form equations 
derived from symbolic algebra to achieve a similar level of vibration reduction. 
Simulation results of the response of the manipulator are presented to 
demonstrate the application of the symbolic algorithm in control of a flexible 
manipulator. Finally, several advantages of using computer algebra for modelling 
and vibration control of flexible manipulators are highlighted and discussed. 
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A mechanical model of the single-link flexible manipulator system considered in 

this work is shown in Fig. 1, where ooOYX  and XOY  represent the stationary and 
moving co-ordinate frames respectively. The axis OX  coincides with the neutral 
line of the link in its undeformed configuration, and is tangent to it at the clamped 
end in a deformed configuration. τ  represents the applied torque at the hub. E , 

L , I , ρ , A , hI  and pM
 represent the Young modulus, length, area moment of 

inertia, mass density per unit volume, cross sectional area, hub inertia and payload 
of the manipulator respectively. )(tθ denotes an angular displacement (hub-angle) 
of the manipulator and ),( txw  denotes an elastic deflection of a point along the 
manipulator at a distance x  from the hub of the manipulator. In this work, the 
motion of the manipulator is confined to the ooOYX  plane. The manipulator is 
assumed to be stiff in vertical bending and torsion, allowing it to vibrate 
dominantly in the horizontal direction and thus, the gravity effects are neglected. 
Moreover, the manipulator is considered to have constant cross section and 
uniform material properties throughout 
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cáÖìêÉ=N Mechanical model of the flexible manipulator system. 
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This section focuses on the development of the symbolic-based model in 
characterising the dynamic behaviour of the flexible manipulator system. The 
dynamic equations of motion of the system are derived using the FE and Lagrange 
methods. A flow chart of the overall modelling approach for the general case of n 
elements is shown in Figure 2.  In this approach, all the manipulations are carried 
out symbolically using Macsyma. The overall approach involves treating the 
flexible manipulator as an assemblage of n elements of length l. For each of these 
elements, mass and stiffness matrices are computed based on kinetic and potential 
energies of the system. The matrices are then assembled to form system mass and 
stiffness matrices. Subsequently, the Lagrange equation is utilised to obtain the 
dynamic equation of motion of the flexible manipulator. In this work, a transfer 
function from torque input to end-point residual output of the manipulator is 
considered. The modelling approach utilised in this work has previously been 
developed based on numerical simulation and has been validated with 
experimental exercises [2]. 
 
 
PKN= aóå~ãáÅ=bèì~íáçå=çÑ=jçíáçå=

Another consideration also should be taken into account is about the feedback 
signal from the sensor jig itself.  As mention above aluminium and PVC are two 
types of material that are used for the sensor jig. Figure 7 shows the different value 
of adjacent voltage when using different material of sensor jig. 
  The total displacement ),( txy  of a point along the manipulator at a distance 
x  from the hub can be obtained as  
 

),()(),( txwtxtxy += θ                                                                            (1) 
 
Using the FE method to solve dynamic problems leads to the well-known equation 
 

( ) ( ) ( )tQxNtxw aa=,                                                                                                 (2) 
 

where ( )xNa  and ( )tQa  represent the shape function and nodal displacement 
respectively. Hence, the displacement can be obtained as 

 
( ) )()(, tQxNtxy =                                                                                   (3)  
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Figure 2 Flow chart of the symbolic model development approach 
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where  
 

 [ ])()( xNxxN a=  and [ ] T
a tQttQ )()()( θ=  

 
The shape function )(xN  and nodal displacement vector )(tQ  in Eq. (3) 
incorporate local and global variables. Among these, the angle )(tθ  and the 

distance x  are global variables while )(xNa  and )(tQa  are local variables. 
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length of the thi  element and utilising Macsyma, the shape function can be 
expressed in symbolic form as 
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Defining  
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Eqs. (5) and (6) for n elements, the elemental mass and stiffness matrices can be 
obtained as 
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  The matrices from above are assembled to obtain mass and stiffness matrices 
of the system, M  and K , and used in the Lagrange equation to obtain the 
dynamic equation of the flexible manipulator as 
 

)()()( tFtKQtQM =+                                                                              (8)  
 

where F t( )  is the vector of torques and [ ]TwwtQ αα θθθ ...)( 00= .  

αw  and αθ  are end-point residual and rotation of the manipulator respectively. 
Using a single element, 1=n , the dynamic equation of motion of the flexible 
manipulator can be obtained as in Eq. (8) with 
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[ ]TwwtQ αα θθθ 00)( =  and [ ]TtF 0000)( τ= . 
 
  By incorporating the payload, hub inertia and initial conditions into the 
dynamic model of the system, a new dynamic equation of motion can be obtained 
as 
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 [ ]TwtQ αα θθ=)(  and  [ ] TtF 00)( τ= . 
 

For control purposes, the matrix differential equation in Eq. (8) is 
represented in a state-space form as 
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[ ]τ=u  and the state, [ ]T
wwv αααα θθθθ=  that is the angular, end-

point residual and rotational displacements and velocities. 30  is a 33×  null 

matrix, 3I  is a 33×  identity matrix, 130 ×  is a 13×  null vector and 1
1
−M  is the first 

column of 1−M . As the desired transfer function is from torque input to end-point 
residual output, the output matrix C  is chosen as [ ]000010=C . 
  With lAρα =  representing the weight and EI=β  representing the flexural 
rigidity of the manipulator, the state-space matrices can be calculated. Thus, the 
system transfer function can be obtained as  
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Note that the transfer function is a closed form solution in terms of the system 
parameters. 
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In this section, the transfer function obtained in the previous section is analysed 
and assessed in the dynamic characterisation of the flexible manipulator system. 
This involves obtaining and investigating the system characteristics including poles, 
zeros, stability and vibration frequency. Relationships between the physical 
parameters and the system characteristics are then investigated. Note that in this 
work, the effect of damping is ignored. Therefore, the system is expected to be 
marginally stable, exhibiting a response of oscillatory nature. 
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For a flexible manipulator without payload and hub inertia, the system transfer 
function can be obtained by solving Eq. (12) with 0=pM  and 0=hI . Thus, the 

transfer function from torque input to end-point residual can be obtained as 
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Factoring the denominator and numerator polynomials of the transfer function 
yields system poles as 
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and the system zeros as  
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Eqs. (14) and (15) demonstrate the relationship between system poles and zeros 
with the physical parameters of the manipulator. Thus the effects of each 
parameter on the system behaviour can be investigated. It is noted that all the 
poles lie on the imaginary axis of the s-plane whereas all the zeros lie on the real 
axis. Fig. 3 shows the effects of β  on the system pole and zero. In this case, a 
constant  15.0=α kg is considered. The result shows that the poles and zeros 
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move farther from the origin as β  increases. Practically, changing the value of β  
implies changing the manipulator material.  
 

 
 
=

cáÖìêÉ=P Effects of flexural rigidity on the poles and zeros of the manipulator 
 
 
The poles on the imaginary axis give the system natural frequencies. These, in 
turn, determine vibration modes of the system. Evaluating Eq. (14) yields vibration 

frequencies at modes 1 and 2 as 
32
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π
 Hz and 

32
087.70
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Hz 

respectively. Fig. 4 shows the effect of flexural rigidity, β   of a manipulator on the 
vibration frequencies of modes 1 and 2 with a constant weight of the manipulator. 
Similarly, the inter-relation between α  and the poles, zeros and vibration 
frequencies of the system with a constant flexural rigidity can be investigated. The 
result with  69.3=β Nm2 is shown in Fig. 5. It is also important to investigate, for 
the same material, the effect of changing the manipulator length on vibration 
frequency. Fig. 6 shows the result with two different materials, 2.1=β  Nm2 and 
3.6 Nm2. The results show that the poles/vibration frequencies reduce as the 
manipulator length increases. However, for the different materials, as length 
increases, the differences of the poles/vibration frequencies become insignificant.  
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=
cáÖìêÉ=Q Effect of flexural rigidity on vibration frequency ( 15.0=α  kg) 
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cáÖìêÉ=R Effect of the weight of a manipulator on vibration frequency ( 69.3=β  Nm2) 
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=

=
cáÖìêÉ=S= Effect of length of a manipulator on vibration frequency with two types of material 

 
 

The zeros will determine whether the system exhibits minimum-phase or non-
minimum phase behaviour and will determine the magnitude of response of the 
system. It is noted from Eq. (15) that, with any values of βα,  and l , two zeros lie 
on the right half of s-plane (rhp) and the others on the left half of s-plane (lhp). 
Thus, the system is non-minimum phase and undershoot is expected at the start in 
the end-point residual response. This agrees, with the result reported earlier in 
respect of a system incorporating non-collocated sensors and actuators. By 
obtaining the relationships between poles, zeros and vibration frequencies with the 
physical parameters of the manipulator, the dynamic behaviour of an actual system 
could be predicted prior to the actual design. Moreover, in design, important 
information that can be used to achieve several objectives is available.  
 
 
QKO= póëíÉã=ïáíÜ=m~óäç~Ç=
=
It is noted from the transfer function in Eq. (12) that the payload term is not in the 
numerator of the transfer function. Therefore, payload does not affect the system 
zeros and the behaviour of the system zero is similar as the case without payload. 
Furthermore, it is noted that the flexible manipulator is a type two system, which 
implies that zero steady-state error can only be achieved using step and ramp 
command inputs to the system. 
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  The system poles, on the other hand, are affected by the payload, see Eq. (12). 
To investigate the effects of payload on the dynamic behaviour of the system, the 
transfer function was solved with a system constituting an aluminium type flexible 
arm of dimensions 008.192004.3900 ××  mm, 91071×=E  N/m2, 

11101924.5 −×=I  m4, ρ  = 2710 kg/m3 and  4108598.5 −×=hI  kgm2. These 
parameters correspond to a physical flexible manipulator experimental rig 
designed for experimental verification of modelling and controller designs 
involving flexible manipulators [2]. Thus, the denominator of the system transfer 
function can be obtained as 
 

  2746 )25718601013.5()36.3402.15370()0035.03.0( sMsMsM ppp +×++++
    (16)  

 
Therefore, the poles in terms of payload can be obtained as 
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where 0.12.826.2161 2 ++= pp MMh . 

 
Note that for a single element, the system has six poles, two of which are at the 
origin. Since for 0≥pM , the terms under the square roots in Equation (17) are 

negative, the remaining poles are purely imaginary and lie on the imaginary axis of 
the s-plane. These result, as expected for a system without damping, a marginally 
stable system. The system poles give the system vibration frequencies. Thus, the 
effects of payload on the vibration frequency can also be investigated by solving 
Equation (17). Figure 7 demonstrates the relationship between payload and system 
vibration frequencies for modes 1 and 2. It is noted that with increasing payload, 
the vibration frequencies decrease significantly.  
=
=
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Figure 7 Effect of payload on the vibration frequency of the system 

 
 
Since control of a non-minimum phase system is rather involved, this aspect is 
further analysed in this section. For the transfer function from the torque input to 
end-point residual that exhibits a non-minimum phase characteristic, it is 
important to investigate whether the zeros can be relocated to the lhp by altering 
physical parameters of the system. If so, in designing an actual flexible 
manipulator, certain parameter values can be considered to make the system 
minimum phase. In this work, the analyses are carried out using the Routh-
Hurtwiz (RH) criterion. Accordingly, if there is no sign change in the first column 
of RH table, then all roots of the polynomial will be on the lhp. Utilising the RH 
criterion, the first column of RH table for numerator of transfer function is shown 
in Table 1. It is noted that there are two sign changes, that are from  3s  to 2s and 

1s  to 0s , indicating that two zeros exist on the rhp. It can be concluded that, since 
all terms are single, the zeros cannot be relocated by altering any physical 
parameter value. 
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This section presents a case study where symbolic algebra is used for the 
development of an effective vibration control algorithm for a flexible manipulator.  

q~ÄäÉ=N The first column of RH table for the numerator of the transfer function 

 
 
 
 
 
 
 
 
 
 
 
 
 
In this work, the symbolic results obtained in the previous section are utilised to 
design an input shaping control algorithm. Simulation results are presented to 
demonstrate the application of symbolic algebra in controller design and the 
performance of the controller in suppressing the system vibration.  
  Input shaping technique is a feedforward control and a practical technique to 
suppress vibration of flexible structures. Previous experimental exercises have 
shown that the method is effective in suppressing vibration of flexible manipulators 
[10]. The method involves convolving a desired command with a sequence of 
impulses known as input shaper. This yields a shaped input that drives the system 
to a desired location with reduced vibration. The input shaping process is 
illustrated in Fig. 8 where Ai and ti are the magnitudes and time locations at which 
the impulses occur. Design objectives are to determine the amplitude and time 
locations of the impulses, based on the vibration frequencies and damping ratios 
of the system.  
 

4s   7230 lα  

3s   72120 lα  

2s   424300 lβα−  

1s   474800 lβα−  

0s   l24536000β  
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Figure 8 Illustration of input shaping technique 
Utilising the input shaping technique, to achieve zero vibration and higher 
robustness for a single vibration mode, an input shaper with a four-impulse 
sequence can be designed with parameters as 
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where 
21 ζ

ζπ

−
−

= eK , nω  is the natural frequency and ζ  is the damping ratio of the 
system. To handle other vibration modes, an input shaper for each vibration 
mode can be designed independently. Then the impulse sequences can be 
convoluted together to form a sequence of impulses that attenuate vibration at 
required modes.  
  However, as the vibration frequencies of the system is significantly affected by 
payload variations, locations of the impulses have to be re-calculated to achieve a 
similar  level of vibration reduction. In this case, a closed form solution that 
provides the relationship between payload, vibration frequencies and impulse 
locations can be utilised to automate the process of updating the input shaper. Fig. 
9 shows a block diagram of the input shaping vibration control scheme where the 
input shaper is updated according to the payload of the manipulator based on the 
symbolic model. The locations of the impulses in terms of payload can be 
obtained by substituting Eqs. (17) into (18). This yields the location of the second 
impulse for mode 1 as 
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and mode 2 as 
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where  h  as in Eq. (17). The other impulse locations can be determined based on 
the second impulse as shown in Eq. (18). 
=
=
=
=
=
=
=
=
=
=
=

cáÖìêÉ=V Block diagram of the input shaping control based on payload of the flexible 
manipulator 

=
=
To demonstrate the performance of the controller in suppressing the system 
vibration, simulated exercises are given in this section. To allow this, the system 
parameters given in  Section 3 are considered. In these exercises, a single switch 
bang-bang input of amplitude 0.3 Nm shown in Fig. 10 is used as input torque and 
applied at the hub of the manipulator. Fig. 11 shows the end-point residual 
response of the manipulator without payload and with 50 grams payload to the 
input torque. This is obtained by multiplying the system transfer function with the 
input torque and utilising the inverse Laplace transform. The results demonstrate 
that significant vibrations occur at the end-point during the movement of the 
manipulator.  

Input shaper The flexible 
manipulator 

Bang-bang 
input 

Shaped input 

Output 

Update time 
locations Payload 
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  In order to design the input shaper for control of vibration, the amplitudes and 
locations for the impulses have to be determined. Previous experimental results 
on the flexible manipulator have shown that the damping ratios of the system are 
0.026 and 0.038 for the first two modes of vibration [2]. Thus, the impulse 
magnitudes can be determined by solving Eq. (19). Moreover, for a particular 
system, the damping ratios are normally constants. For the impulse locations, the 
solutions in Eqs. (20) and (21) can be utilised to automate the calculation of the 
impulse locations based on payload to achieve a similar level of vibration 
reduction. By solving Eqs. (20) and (21) for the system without payload,  t2 is 
obtained as 0.0357 sec and 0.0106 sec for mode 1 and 2 respectively. Similarly, 
with 50 grams payload, t2  is obtained as 0.0434 sec and 0.014 sec.  
=
=
=

=
=

cáÖìêÉ=NM The bang-bang input torque 
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(a) no payload 

 
(b) 50 grams payload 

 
Figure 11 End-point residual response of the flexible manipulator without input shaping control 

=
=
Fig. 12 show the end-point residual responses of the system without payload and 
50 grams payload to the shaped inputs. It is noted that the system vibrations have 
significantly been reduced as compared to the response without input shaper (Fig. 
11). Further investigations show that vibration reductions of 24 dB were achieved 
in both cases. This demonstrates the advantage of using symbolic algebra in 
designing an effective vibration control algorithm for flexible manipulators with 
varying payloads. 
 
 

(a) no payload 

 

(b) 50 grams payload 
 

Figure 12 End-point residual response of the flexible manipulator with input shaping control 
=
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The application of computer algebra for modelling and vibration control of a 
flexible manipulator system has been presented. It has been demonstrated that the 
symbolic approach provides several advantages in characterising the dynamic 
behaviour of the manipulator, in assessing the stability, response and vibration 
frequency of the system and designing an effective vibration control algorithm. 
The system transfer function has been obtained in symbolic form and thus inter-
relations between physical parameters including payload of the manipulator and 
system characteristics have been investigated. The symbolic approach has also 
been utilised to develop an input shaping control algorithm to control a flexible 
manipulator with varying payloads. Simulation results have been presented 
demonstrating the performance of the symbolic approach in modelling and 
control of the flexible manipulator system. It can be concluded that the symbolic-
based results are very helpful in understanding the dynamic behaviour and 
controller design of a flexible manipulator. 
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