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Graphical abstract 

 

Abstract 
 

In this research article, the non-linear shooting method is modified (MNLSM) and is 

considered to simulate Troesch’s sensitive problem (TSP) numerically. TSP is a 2nd order 

non-linear BVP with Dirichlet boundary conditions. In MNLSM, classical 4th order Runge-

Kutta method is replaced by Adams-Bashforth-Moulton method, both for systems of 

ODEs. MNLSM showed to be efficient and is easy for implementation. Numerical results 

are given to show the performance of MNLSM, compared to the exact solution and to 

the results by He’s polynomials. Also, discussion of results and the comparison with other 

applied techniques from the literature are given for TSP.   
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1.0  INTRODUCTION 
 

Nowadays, Real life applications in mathematics are 

dealing with either an ordinary differential equations 

(ODE) or Partial differentials Equations (PDE). ODE is a 

differential equation containing a derivatives of 

dependent variables with respect to one independent 

variable. The term "ordinary" is used in contrast with the 

term PDE which must be with respect to more than one 

independent variables. Many real problems are 

handled with mathematical model of PDE such as 

Blood Flow, Solver for Breasts’ Cancerous Cell, Drying 

Process and laser glass cutting [1-4]. In this paper we 

highlight the application of ODE which focus on 

Troesch’s sensitive problem (TSP). 

TSP [5] is a two point 2nd order non-linear boundary-

value problem (TP2NLBVP) with Dirichlet boundary 

conditions (DBCs). TSP is defined by 

 

 sinh ( ) [0,1]; 0

with DBCs (1)

(0) 0 (1) 1

y y x and x

y and y

      


  

 

     

TSP derived from a nonlinear system of ODEs which 

occurs in the confinement analysis of the plasma 

column via radiation pressure and also arises in the 

Modification of nonlinear 

Shooting method 

Replacement of RK 

with ABMM for system 

Troesch’s problem 

Implementation of 

MNLSM on TSP 

Simulation by Matlab 

Comparison of MNLSM 

results with other methods 
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theory of gas porous electrodes [6]. TSP has a wide 

range of applications in the field of applied physics. 

TSP has been discussed by several researchers. 

Troesch [5] found solution of this sensitive problem 

numerically by using shooting method, while [6] used 

the Lie-group shooting method. Meanwhile, the authors 

[7] used grouping of multipoint shooting method 

through the assistance of continuation and 

perturbation technique. Besides [8] applied the 

quasilinearization method. In addition, other 

researchers applied diverse numerical techniques such 

as transformation groups method, invariant imbedding, 

and decomposition technique [9-14] for solving TSP. 

Meanwhile, the authors [15] discussed the solution of 

TSP by the inverse shooting method, [16] used the B-

spline method, [17] by the sinc-Galerkin method and 

[18] with the He’s Polynomials. Also, authors [19] applied 

the modified homotopy perturbation method, [20] used 

the differential transform method, [21] discussed with 

the chebychev collocation method and in [22] applied 

the sinc-collocation method. This study mainly focuses 

on the results of [18] obtained by using the He’s 

polynomials. 

In this research paper, a modification of the 

nonlinear shooting method [23] is discussed, which is 

termed as a MNLSM, by substituting classical Runge-

Kutta method of order four (CRKM4) by Adams-

Bashforth-Moulton method (ABMM), both for systems, 

and is applied to find the numerical solution of TSP. 

MNLSM results show the complete reliability of its 

performance for TSP. 

 
Table 1 List of abbreviations 

 

Notation Description 

MNLSM Modified non-linear shooting method. 

BVPs Boundary-value problems 

TSP Troesch’s sensitive problem 

ODEs Ordinary differential equations 

TP2NLBVP Two point 2nd order non-linear BVP 

IVPs Initial-value problems 

CRKM4 Classical Runge-Kutta method of 4th order 

PCM Predictor corrector method 

ABMM Adams-Bashforth-Moulton method 

 

 

2.0  MATERIALS AND METHODS 
 

Consider the general form of a TP2NLBVP   

 

( , , )y g x y y   with DBCs ( )y a  , ( )y b             (2) 

 

Here  ,x   while ,a b are constants. 

 

A sequence of solution in the form of IVP is obtained 

by choosing   as a parameter and 

  

( , , )y g x y y  ;   ( )y a   and ( )y                    (3) 

 

x   , is used to find a solution of BVP (2). 

Selecting 
l  as a parameters such that 

 

  lim ( , ) ( )k
l

y y b  


                          (4) 

 

Here ( , )ly x   is a solution of IVP (ii) with
l  while y(x) 

is solution of BVP (2). This technique is called a shooting 

method. 

Take 
0 as initial elevation through which object is 

excited from, such that 

 

( , , )y g x y y  ;  ( )y a   and 
0( )y            (5) 

If
0( , )y    is not nearer to b, tried to a new elevation 1

and so on, up to ( , )ly    is perfectly close to hit b.  

Select parameter 
l  and assume that TP2NLBVP (4) 

has only one solution. Let IVP (3) has a solution  ,y x 

, then we need to find so that  

 

( , ) 0y b                          (6) 

 

Newton’s method is used to find solution of this 

nonlinear equation. Take 0  as an initial 

approximation and then generate the sequence by 

 

     1
1

1

( , )

( , )

l
l l

l

y b

dy

d

 
 

 








 

                        (7) 

 

1( , )l

dy

d
 




 is needed, which is difficult to obtain 

because here only values

0 1 1( , ), ( , ), .........., ( , )ly y y      
are available. 

Hence IVP (3) has to be changed such that the 

solution depends both on   and x [23]. 

 

 ( , ) , ,y x g x y y  , x   , ( , )y a   , ( , )y       (8) 
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To determine ( , )
dy

d
 


, when

1l   , find the 

derivative of (8) w.r.t   partially. 

 

 , ( , ), ( , )
y g g x g y g y

x y x y x
x y y

 
    

        
   

       
 

 

Also,  and x are independent, so 0
x







, then 

  

            ( , ) (9)
y g y g y

x
y y


  

     
 

    
  

 

From initial conditions, 

 

( , ) 0
y
 







, and  ( , ) 1.

y
 







 

 

Take ( , )U x  to indicate ( , )
y

x 





 and let 

differentiation order of   and x is reversed. Equation 

(9) become IVP as  

 

( , )
g g

U x U U
y y


 

  
 

, x   ; 

 

( , ) 0U      and  ( , ) 1U                   

 

 

 

 

 

  (10) 

          

For every single iteration, two types of IVPs obtained in 

the form of equations (3) and (10). Then from equation 

(7), 

 

     1
1

1

( , )

( , )

l
l l

l

y b

U

 
 

 







                       (11) 

 

Hence, in the shooting method for TP2NLBVPs, CRKM4 

is applied to evaluate together the solutions essential 

by Newton’s method. Here ABMM as a PCM in the 

shooting technique for the solution of systems of IVPs is 

applied. PCMs also known as multistep methods, are 

not self-starting, and need four initial points

( , ); , 1,2,3i jx y i j  in order to find a new point
4 4( , )x y . 

Suppose the following two 1st order IVPs 

 

1 1 1 1( , , )j j j jn g x n m   
  , 

0 0( )n x n   

 

1 1 1 1( , , )j j j jm f x n m   
  , 

0 0( )m x m               

  (12) 

 

 

(13) 

 

Applied following as a predictor formulas, which is the 

four step Adams Bashforth method, and apply only 

one time in the iteration.  

 

 1 1 2 355 59 37 9
24

j j j j j j

h
n n g g g g   

                       (14) 

 1 1 2 355 59 37 9
24

j j j j j j

h
m m f f f f   

           (15) 

 

Applied following as a corrector formula, which is the  

three step Adams Moulton method, and apply this 

formula as many times as needed to attain the 

required accuracy level.  

 

 1 1 1 29 19 5
24

p

j j j j j j

h
n n g g g g   

                       (16) 

 1 1 1 29 19 5
24

p

j j j j j j

h
m m f f f f   

                       (17) 

 

where p stands for the predicted value.  

 

This complete procedure is known as MNLSM for the 

solutions of TP2NLBVPs. 
 

 

3.0  RESULTS AND DISCUSSION 

 
In this research the simulations are carried out by using 

Matlab and implemented on Core I7 window 8.1 

system. The step size h=0.1 and error bound 10-4 are 

taken for the solution of TSP (1). 

 

 
Table 2 Numerical results for TSP with   = 0.5 

 

X Exact Solution MNLSM VIM [18] 

0.00000000 0.00000000 0.00000000 0.00000000 

0.10000000 0.09517690 0.09597247 0.10004200 

0.20000000 0.19063387 0.19218506 0.20033400 

0.30000000 0.28665340 0.28887905 0.30112800 

0.40000000 0.38352293 0.38629807 0.40267700 

0.50000000 0.48153739 0.48441684 0.50524100 

0.60000000 0.58100198 0.58428140 0.60908200 

0.70000000 0.68223513 0.68525684 0.71447000 

0.80000000 0.78557179 0.78807945 0.82168200 

0.90000000 0.89136699 0.89292601 0.93100800 

1.00000000 1.00000000 1.00008064 1.04274000 
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Table 2 represents the results obtained from MNLSM 

when x varies from 0 to 1. The obtained results are 

compared with exact solution and VIM [18]. The MNLSM 

results are more precise than of VIM [18] for TSP with   

= 0.5. 

Figure 1 shows the comparison between numerical 

results of MNLSM and VIM [18] with the exact solution 

for TSP using   = 0.5. The curve of MNLSM coincides 

with the exact solution whereas curve of VIM [18] 

clearly show the difference from the exact solution. 

 

 
 

Figure 1 Numerical results for TSP with   = 0.5 

 
Table 3 Absolute errors for TSP with   = 0.5 

 

x Exact Solution MNLSM VIM [18] 

0.00000000 0.00000000 0.00000000 0.00000000 

0.10000000 0.09517690 0.00079557 0.00486510 

0.20000000 0.19063387 0.00155119 0.00970013 

0.30000000 0.28665340 0.00222565 0.01447460 

0.40000000 0.38352293 0.00277514 0.01915407 

0.50000000 0.48153739 0.00287945 0.02370361 

0.60000000 0.58100198 0.00327942 0.02808002 

0.70000000 0.68223513 0.00302171 0.03223487 

0.80000000 0.78557179 0.00250766 0.03611021 

0.90000000 0.89136699 0.00155902 0.03964101 

1.00000000 1.00000000 0.00008064 0.04274000 

 

 

Results of MNLSM in Table 3 indicates that as value 

of x varies from 0 to 1, the absolute errors of MNLSM is 

not increasing faster than the absolute errors of  VIM 

[18], when compared to the exact solution for TSP using 

  = 0.5. 

Results of MNLSM in Table 4 indicates that as value 

of x varies from 0 to 1, the obtained results are more 

precise than of VIM [18], when compared with exact 

solution of TSP using   =1. 
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Table 4 Numerical results for TSP with   = 1. 

 

X Exact Solution MNLSM VIM [18] 

0.00000000 0.00000000 0.00000000 0.00000000 

0.10000000 0.08179700 0.08473028 0.10016700 

0.20000000 0.16453087 0.17031010 0.20133900 

0.30000000 0.24916736 0.25760377 0.30454100 

0.40000000 0.33673221 0.34750635 0.41084100 

0.50000000 0.42834716 0.43993789 0.52137300 

0.60000000 0.52527403 0.53890544 0.63736200 

0.70000000 0.62897114 0.64209365 0.76016200 

0.80000000 0.74116838 0.75255849 0.89128700 

0.90000000 0.86397002 0.87131077 1.03246000 

1.00000000 1.00000000 0.99994210 1.18565000 

 

 

 
 

Figure 2 Numerical results for TSP with   = 1 

 

 

Figure 2 shows the comparison between numerical 

results of MNLSM and VIM [18] with the exact solution 

for TSP using   = 1. The curve of MNLSM coincides with 

the exact solution whereas curve of VIM [18] clearly 

show the difference from the exact solution. 

 
Table 5 Absolute errors for TSP with   = 1 

 

X Exact Solution MNLSM VIM [18] 

0.00000000 0.00000000 0.00000000 0.00000000 

0.10000000 0.08179700 0.00293328 0.01837000 

0.20000000 0.16453087 0.00577923 0.03680813 

0.30000000 0.24916736 0.00843641 0.05537364 

0.40000000 0.33673221 0.01077414 0.07410879 

0.50000000 0.42834716 0.01159073 0.09302584 

0.60000000 0.52527403 0.01363141 0.11208797 

0.70000000 0.62897114 0.01312251 0.13119086 

0.80000000 0.74116838 0.01139011 0.15011862 

0.90000000 0.86397002 0.00734075 0.16848998 

1.00000000 1.00000000 0.00005790 0.18565000 

 

   Results of MNLSM in Table 5 indicates that as value of 

x varies from 0 to 1, the absolute errors of MNLSM is not  

increasing faster than the absolute errors of VIM [18], 

when compared to the exact solution for TSP using

1. 
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Table 6 Numerical solutions of TSP for   = 0.5 

 

x Exact 

Solution 

MNLSM Sinc collocation [22] Variational [14] MHP [19] Decomposition [11] 

0.1000000 0.0951769 0.0959725 0.0959443 0.1000416 0.0959395 0.0959477 

0.2000000 0.1906339 0.1921851 0.1921287 0.2003336 0.1921193 0.1921352 

0.3000000 0.2866534 0.2888791 0.2887944 0.3011275 0.2887806 0.2888034 

0.4000000 0.3835229 0.3862981 0.3861848 0.4026773 0.3861675 0.3861955 

0.5000000 0.4815374 0.4844168 0.4845471 0.5052411 0.4845274 0.4845585 

0.6000000 0.5810020 0.5842814 0.5841332 0.6090820 0.5841127 0.5841442 

0.7000000 0.6822351 0.6852568 0.6852011 0.7144698 0.6851822 0.6852105 

0.8000000 0.7855718 0.7880795 0.7880165 0.8216826 0.7880018 0.7880234 

0.9000000 0.8913670 0.8929260 0.8928542 0.9310084 0.8928462 0.8928578 

 

Table 6 and table 7 shows the numerical results and 

absolute errors of different methods from literature 

and their comparison with exact solution and with the 

MNLSM for TSP with   = 0.5. 

 

Figure 3 shows the comparison between numerical 

results of different methods from literature and their 

comparison with exact solution and with the MNLSM 

for TSP with   = 0.5. 

 

 
 

Figure 3 Numerical results for TSP with   = 0.5 

 

Table 7 Absolute errors of TSP with   = 0.5 

 

x Exact 

Solution 

MNLSM Sinc collocation [22] Variational [14] MHP [19] Decomposition [11] 

0.1000000 0.0951769 0.0007956 0.0007674 0.0048647 0.0007626 0.0007708 

0.2000000 0.1906339 0.0015512 0.0014948 0.0096997 0.0014854 0.0015013 

0.3000000 0.2866534 0.0022257 0.0021410 0.0144741 0.0021272 0.0021500 

0.4000000 0.3835229 0.0027752 0.0026619 0.0191544 0.0026446 0.0026726 

0.5000000 0.4815374 0.0028794 0.0030097 0.0237037 0.0029900 0.0030211 

0.6000000 0.5810020 0.0032794 0.0031312 0.0280800 0.0031107 0.0031422 

0.7000000 0.6822351 0.0030217 0.0029660 0.0322347 0.0029471 0.0029754 

0.8000000 0.7855718 0.0025077 0.0024447 0.0361108 0.0024300 0.0024516 

0.9000000 0.8913670 0.0015590 0.0014872 0.0396414 0.0014792 0.0014908 
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Table 8 Numerical solutions of TSP with   = 1 

 

x Exact 

Solution 

MNLSM Sinc collocation [22] Variational [14] MHP [19] Decomposition [11] 

0.1000000 0.08179700 0.08473028 0.08466125 0.10016683 0.08438170 0.08492528 

0.2000000 0.16453087 0.17031010 0.17017135 0.20133869 0.16962076 0.17067908 

0.3000000 0.24916736 0.25760377 0.25739390 0.30454102 0.25659292 0.25810502 

0.4000000 0.33673221 0.34750635 0.3472228 0.41084132 0.34621073 0.34807811 

0.5000000 0.42834716 0.43993789 0.44059983 0.52137347 0.43944227 0.44152329 

0.6000000 0.52527403 0.53890544 0.53853439 0.63736635 0.53733006 0.53943772 

0.7000000 0.62897114 0.64209365 0.64212860 0.76017896 0.64101046 0.64291809 

0.8000000 0.74116838 0.75255849 0.75260809 0.89134491 0.75173354 0.75319489 

0.9000000 0.86397002 0.87131077 0.87136251 1.03263022 0.87088353 0.87167571 

 

 

Table 8 and table 9 shows the numerical results and 

absolute errors of different methods from literature 

and their comparison with exact solution and with the 

MNLSM for TSP with   = 1. 

Figure 4 shows the comparison between numerical 

results of different methods from literature and their 

comparison with exact solution and with the MNLSM 

for TSP with   = 1. 

 

 
 

Figure 4 Numerical results for TSP with   = 1 

 

Table 9 Absolute errors for TSP with   = 1 

 

x Exact 

Solution 

MNLSM Sinc collocation [22] Variational [14] MHP [19] Decomposition [11] 

0.1000000 0.0817970 0.0029333 0.0028643 0.01836983 0.0025847 0.00312828 

0.2000000 0.1645309 0.0057792 0.0056405 0.03680779 0.00508986 0.00614818 

0.3000000 0.2491674 0.0084364 0.0082265 0.05537362 0.00742552 0.00893762 

0.4000000 0.3367322 0.0107742 0.0104906 0.07410912 0.00947853 0.01134591 

0.5000000 0.4283472 0.0115907 0.0122526 0.09302627 0.01109507 0.01317609 

0.6000000 0.5252740 0.0136314 0.0132604 0.11209235 0.01205606 0.01416372 

0.7000000 0.6289711 0.0131226 0.0131575 0.13120786 0.01203936 0.01394699 

0.8000000 0.7411684 0.0113901 0.0114397 0.15017651 0.01056514 0.01202649 

0.9000000 0.8639700 0.0073408 0.0073925 0.16866022 0.00691353 0.00770571 

     

 

Finally from results and discussion, it is concluded that 

MNLSM is superior to VIM [18] for solving Troesch’s 

sensitive problem. Meanwhile, MNLSM produces good 

results when compared with Sinc-collocation [22], 

0.1
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Variational [14], MHP [19] and Decomposition [11] 

results available in literature. Also, MNLSM is 

acceptable for solving others TP2NLBVPs. 

 

 

4.0  CONCLUSION 
 

The objective of this study is to modify the non-linear 

shooting method. The obtained MNLSM has been 

applied to solve TP2NLBVPs numerically with DBCs. 

Numerical simulations of TSP pointed out that the 

results attained by MNLSM are superior and close to the 

exact solution as compared with the results (He’s 

results are superior to the earlier ones. In future, higher 

order TSPs may be solved by using parallel computing 

techniques [24-26]. 
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