A NEW CLASS OF BINARY APPROXIMATING SUBDIVISION SCHEMES

Ghulam Mustafa*, Pakeeza Ashraf, Noreen Saba
Department of Mathematics, The Islamia University of Bahawalpur, Pakistan

Article history
Received
25 October 2015
Received in revised form
14 December 2015
Accepted
9 February 2016
*Corresponding author ghulam.mustafa@iub.edu.pk

Graphical abstract

Abstract

In this article, we present a general algorithm to generate a new class of binary approximating subdivision schemes and give derivation of some family members. We discuss important properties of derived schemes such as: convergence, continuity, $\mathrm{H} \ddot{O}$ Ider regularity, degree of polynomial generation and reproduction, support, limit stencils and artifacts. Furthermore, visual performance of proposed schemes has also been presented.

Keywords: Approximating scheme; continuity; polynomial reproduction; artifacts © 2016 Penerbit UTM Press. All rights reserved

1.0 INTRODUCTION

Subdivision scheme is a technique in the field of Computer Aided Geometric Design (CAGD) to create smooth curves and surfaces. In the process of subdivision, we take the control polygon and apply the subdivision schemes in which series of successive iterations are performed in order to find the points on curve. It has found many applications in CAGD because of its efficiency, simplicity and flexibility of algorithms. Lane-Riesenfeld [10] and Hormann and Sabin [9] presented subdivision schemes based on Bspline. Cashman et al. [2] presented generalization of Lane Riesenfeld scheme to generate a family of schemes. Ashraf et al. [1] introduced variation on LaneRiesenfeld method to generate schemes. Dubuc [8] generalized the schemes of de Rham [12] and Chaikin [3]. Conti and Romani [5] used de Rham transform to introduce a class of dual m-ary schemes. Mustafa et al. [11] introduced a class of dual and primal schemes. In our framework, we develop a well-designed algorithm that generates a class of binary approximating schemes. The proposed class of schemes is categorized by a parameter. Greater values of parameter give schemes with wider mask and support. Degree of polynomial generation of proposed schemes goes up
as value of parameter is increased while proposed schemes have linear polynomial reproduction for each value of parameter. We find out that continuity and H \ddot{O} Ider regularity of proposed schemes increase gradually as we increase value of parameter. Moreover we also determine that artifact magnitude decreases as we increase value of parameter. In Section 2, we present an algorithm to design a class of subdivision schemes which depends on a parameter. In Section 3, degree of polynomial generation and reproduction of proposed schemes are analyzed. In Section 4, continuity and $\mathrm{H} \ddot{o}$ Ider regularity of some of proposed schemes are discussed. In Section 5, artifact analysis and limit stencil analysis are carried out. Applications and summary are included in last section.

2.0 GENERATION OF SUBDIVISION SCHEMES

In this section we present the algorithm for the generation of binary approximating subdivision schemes. Now consider two subdivision schemes, 3point binary approximating subdivision scheme [16] is given by
$f_{2 i}^{k+1}=\frac{9}{32} f_{i-1}^{k}+\frac{22}{32} f_{i}^{k}+\frac{1}{32} f_{i+1}^{k}$,
$f_{2 i+1}^{k+1}=\frac{1}{32} f_{i-1}^{k}+\frac{22}{32} f_{i}^{k}+\frac{9}{32} f_{i+1}^{k}$,
and 4-point binary interpolating subdivision scheme [6] is given by

$$
\begin{align*}
& f_{2 i}^{k+1}=f_{i}^{k}, \\
& f_{2 i+1}^{k+1}=-\frac{1}{16} f_{i-1}^{k}+\frac{9}{16} f_{i}^{k}+\frac{9}{16} f_{i+1}^{k}-\frac{9}{16} f_{i+2}^{k}, \tag{2}
\end{align*}
$$

Laurent polynomial of subdivision scheme (1) is

$$
\begin{equation*}
\beta(z)=\frac{1}{32}\left(1+9 z+22 z^{2}+22 z^{3}+9 z^{4}+z^{5}\right) \tag{3}
\end{equation*}
$$

and Laurent polynomial of subdivision scheme (2) is

$$
\begin{equation*}
\alpha(z)=\frac{1}{32}\left(-1+9 z^{2}+16 z^{3}+9 z^{4}-z^{6}\right) \tag{4}
\end{equation*}
$$

General Laurent polynomial can be written as
$\alpha(z)=\alpha_{\text {even }}\left(z^{2}\right)+z \alpha_{\text {odd }}\left(z^{2}\right)$.
From (4), we have

$$
\begin{equation*}
\alpha_{\text {even }}(z)=\left(\frac{1+z}{2}\right)\left(\frac{-1+10 z-z^{2}}{8}\right) \tag{5}
\end{equation*}
$$

Also (3) can be factorized as

$$
\begin{equation*}
\beta(z)=\left(\frac{1+z}{2}\right)^{3}\left(\frac{1+6 z+z^{2}}{4}\right) \tag{6}
\end{equation*}
$$

Now we introduced the family of schemes named: $H=\left(H_{l}: l=0,1,2 \ldots\right)$, where general member H_{l} has the Laurent polynomial of the form

$$
\begin{equation*}
P_{l}(z)=\left(\alpha_{\text {even }}(z)\right)^{l} \beta(z) \tag{7}
\end{equation*}
$$

By substituting (5) and (6) in (7), we get

$$
\begin{equation*}
P_{l}(z)=\left(\frac{1+z}{2}\right)^{l+3}\left(\frac{-1+10 z-z^{2}}{8}\right)^{l}\left(\frac{1+6 z+z^{2}}{4}\right) \tag{8}
\end{equation*}
$$

We can easily derive the subdivision schemes H_{l} and their masks by substituting $l=0,1,2 \ldots$, in (8).

2.1 Derivation Of Subdivision Schemes

Here, we derive 3-point, 5-point, 6-point and 8-point binary approximating subdivision schemes by substituting $l=0,1,2,3$ in (8) respectively.

2.1.1 3-Point Binary Approximating Subdivision Scheme H_{0}

By substituting $l=0$ in (2.8), we get the Laurent polynomial of scheme H_{0} as follows
$P_{0}(z)=\frac{1}{32}\left(1+9 z+22 z^{2}+22 z^{3}+9 z^{4}+z^{5}\right)$,
whose mask is given by
$\alpha_{0}=\frac{1}{32}\{1,9,22,22,9,1\}$,
and we obtain the scheme H_{0} as

$$
\begin{align*}
& f_{2 i}^{k+1}=\frac{9}{32} f_{i-1}^{k}+\frac{22}{32} f_{i}^{k}+\frac{1}{32} f_{i+1}^{k} \\
& f_{2 i+1}^{k+1}=\frac{1}{32} f_{i-1}^{k}+\frac{22}{32} f_{i}^{k}+\frac{9}{32} f_{i+1}^{k} \tag{10}
\end{align*}
$$

2.1.2 5-Point Binary Approximating Subdivision Scheme H_{1}

By substituting $l=1$ in (2.8), we get the Laurent polynomial of scheme H_{1} as follows

$$
\begin{align*}
& P_{1}(z)=\frac{1}{512}\left(-1+68 z^{2}+256 z^{3}+378 z^{4}\right. \tag{11}\\
& \left.+256 z^{5}+68 z^{6}-z^{8}\right)
\end{align*}
$$

whose mask is given by

$$
\alpha_{1}=\frac{1}{32}\{-1,0,68,256,378,256,68,0,-1\}
$$

and we obtain the following scheme H_{1}

$$
\begin{align*}
& f_{2 i}^{k+1}=\frac{1}{512}\left(0 f_{i-2}^{k}+256 f_{i-1}^{k}+256 f_{i}^{k}\right. \\
&\left.+0 f_{i+1}^{k}+0 f_{i+2}^{k}\right) \\
& f_{2 i+1}^{k+1}= \frac{1}{512}\left(-1 f_{i-2}^{k}+68 f_{i-1}^{k}+378 f_{i}^{k}\right. \tag{12}\\
&\left.+68 f_{i+1}^{k}-1 f_{i+2}^{k}\right)
\end{align*}
$$

2.1.3 6-Point Binary Approximating Subdivision Scheme H_{2}

By substituting $l=2$ in (2.8), we get the Laurent polynomial of scheme H_{2} as follows

$$
\begin{align*}
P_{2}(z)= & \frac{1}{8192}\left(1-9 z-77 z^{2}+357 z^{3}+2538 z^{4}\right. \\
& +5382 z^{5}+5382 z^{6}+2538 z^{7} \tag{13}\\
& \left.+357 z^{8}-77 z^{9}-9 z^{10}+z^{11}\right),
\end{align*}
$$

whose mask is given by

$$
\begin{aligned}
& \alpha_{2}=\frac{1}{8192}\{1,-9,-77,357,2538,5382, \\
& 5382,2538,357,-77,-9,1\},
\end{aligned}
$$

and we obtain the following scheme H_{2}

$$
\begin{align*}
f_{2 i}^{k+1}= & \frac{1}{8192}\left(-9 f_{i-2}^{k}+357 f_{i-1}^{k}+5382 f_{i}^{k}\right. \tag{14}\\
& \left.+2538 f_{i+1}^{k}-77 f_{i+2}^{k}+f_{i+3}^{k}\right), \\
f_{2 i+1}^{k+1}= & \frac{1}{8192}\left(f_{i-2}^{k}-77 f_{i-1}^{k}+2538 f_{i}^{k}\right. \\
& \left.+5382 f_{i+1}^{k}+357 f_{i+2}^{k}-9 f_{i+3}^{k}\right) .
\end{align*}
$$

2.1.4 8-Point Binary Approximating Subdivision Scheme H_{3}

By substituting $l=3$ in (2.8), we get the Laurent polynomial of scheme H_{2} as follows

$$
\begin{align*}
P_{3}(z)=\frac{1}{131072} & \left(-1+18 z+5 z^{2}-1132 z^{3}-9 z^{4}\right. \tag{15}\\
& +20750 z^{5}+65541 z^{6}+91800 z^{7} \\
& +65541 z^{8}+20750 z^{9}-9 z^{10} \\
& \left.-1132 z^{11}+5 z^{12}+18 z^{13}-z^{14}\right),
\end{align*}
$$

whose mask is given by

$$
\begin{gathered}
\alpha_{3}=\frac{1}{131072}\{-1,18,5,-1132,-9,20750, \\
65541,91800,65541,20750, \\
-9,-1132,5,18,-1\}
\end{gathered}
$$

and we obtain the following scheme H_{3}

$$
\begin{align*}
f_{2 i}^{k+1}=\frac{1}{131072} & \left(18 f_{i-4}^{k}-1132 f_{i-3}^{k}+20750 f_{i-2}^{k}\right. \\
& +91800 f_{i-1}^{k}+20750 f_{i}^{k}-1132 f_{i+1}^{k} \tag{16}\\
& \left.+18 f_{i+2}^{k}+0 f_{i+3}^{k}\right), \tag{2.16}\\
f_{2 i+1}^{k+1}=\frac{1}{131072} & \left(-1 f_{i-4}^{k}+5 f_{i-3}^{k}-9 f_{i-2}^{k}+65541 f_{i-1}^{k}\right. \\
& \left.+65541 f_{i}^{k}-9 f_{i+1}^{k}+5 f_{i+2}^{k}-f_{i+3}^{k}\right) .
\end{align*}
$$

Remark 2.1. Support of basic limit function:

If δ be the initial data such that $\delta_{0}=1$ for $i=0$ and $\delta_{i}=1$ for $i \neq 0$ so by applying the convergent subdivision scheme H_{l} on this data, we get basic limit function $\phi_{l}=H_{l}^{\infty} \delta$ of H_{l} scheme.
Since the number of non-zero coefficients in the Laurent polynomials of $\beta(z)$ and $\alpha_{\text {even }}(z)$ are 6 and 4 respectively then the support of basic limit functions of the schemes corresponding to the polynomial $\beta(z)$ and $\alpha_{\text {even }}(z)$ are 5 and 3 respectively. As we know that the Laurent polynomial of the scheme can be obtain by applying $\alpha_{\text {even }}(z), l$ times on $\beta(z)$ therefore the support of basic limit function of the scheme with Laurent polynomial $P_{l}(z)$ is $5 l+3$.

3.0 POLYNOMIAL ANDREPRODUCTION OFSCHEMES

Here we discuss degree of polynomial generation and reproduction of H_{l} schemes.

3.1 Polynomial Generation Of H_{l} Schemes

Polynomial generation of degree n is the ability of subdivision scheme to generate the full space of polynomials of up to n.

Theorem 3.1. Degree of polynomial generation of H_{l} schemes is $1+2$.

Proof. Since Laurent polynomial of general member H_{l} is given by

$$
P_{l}(z)=\left(\frac{1+z}{2}\right)^{l+3}\left(\frac{-1+10 z-z^{2}}{8}\right)^{l}\left(\frac{1+6 z+z^{2}}{4}\right)
$$

Since number of common factors is $l+3$, so by [4], degree of polynomial generation of H_{l} schemes is $l+2$.

3.2 Polynomial Reproduction Of H_{l} Schemes

Here we use the algebraic condition (14) and Lemma 4.2 of [4] on the symbol of H -schemes to find the degree of polynomial generation and reproduction.

Theorem 3.2. The binary scheme H_{l} reproduces linear polynomial if
$P_{l}^{k}(1)=2 \prod_{j=0}^{k-1}\left(\tau_{l}-j\right)$ and $P_{l}^{k}(-1)=0, k=0,1$, where
$\tau_{l}=\frac{P_{l}^{1}(1)}{2}$ is parametric shift.
Proof. By differentiating (8), we have

$$
P_{l}^{1}(1)=\frac{(1+z)^{l+2}\left(-(3 l+5) z^{4}+24 z^{3}+(114 l+246) z^{2}+(72 l+64) z+9 l-9\right)}{2^{4 l+5}\left(-1+10 z-z^{2}\right)^{1-l}}
$$

It is easy to see that

$$
\begin{aligned}
& P_{l}^{k}(-1)=0, k=0,1, \text {. Now from (8), we get } \\
& P_{l}^{0}(1)=P_{l}(1)=2, \quad \text { also } 2 \prod_{j=0}^{-1}\left(\tau_{l}-j\right)=2 \text { so } \\
& \text { this implies } P_{l}^{0}(1)=2 \prod_{j=0}^{-1}\left(\tau_{l}-j\right)
\end{aligned}
$$

Similarly for $k=1$, we have $P_{l}^{1}(1)=2 \prod_{j=0}^{0}\left(\tau_{l}-j\right)$, which completes the proof.

4.0 CONTINUITY AND HöLDER REGULARITY ANALYSIS OF SUBDIVISION SCHEMES

In this section, we present the continuity and
$\mathrm{H} \ddot{O}$ Ider regularity analysis of subdivision schemes H_{l}.

4.1 Continuity Analysis Of Subdivision Schemes

We present the continuity analysis of subdivision schemes H_{l} by using method of [7].

Theorem 4.1. The 3-point binary subdivision scheme H_{0} is C^{2} continuous.

Proof. Since Laurent polynomial (9) of the scheme H_{0} is given by

$$
P_{0}(z)=\left(\frac{1+z}{2}\right)^{3} b(z)
$$

where $b(z)=\frac{1}{4}\left(1+z+z^{2}\right)$.
Let S_{b} be the scheme corresponding to the symbol $b(z)$. Since
$\left\|\frac{1}{2} S_{b}\right\|_{\infty}=\frac{1}{2} \max \left\{\sum_{j \in \square}\left|b_{2 j}\right|, \sum_{j \in \square}\left|b_{2 j+1}\right|\right\}$,
then, we have

$$
\left\|\frac{1}{2} S_{b}\right\|_{\infty}=\frac{1}{2} \max \left\{\frac{2}{4}, \frac{6}{4}\right\}=\frac{3}{4}<1
$$

Therefore by ([7], Corollary 4.11), the scheme H_{0} is C^{2}.
Table 1 presents continuity of the scheme H_{0} and some other members of the family

4.2 H \ddot{O} Lder Regularityanalysis Of Subdivision Schemes

$\mathrm{H} \ddot{O}$ Ider regularity is an extension of convergence and continuity. H \ddot{o} Ider regularity analysis is done by using Rioul's [13] method.

Theorem 4.2. The lower bound and the upper bound on the $\mathrm{H} \ddot{o}$ Ider regularity of the scheme H_{0} is 2.4150 .

Proof. The Laurent polynomial (9) of the scheme H_{0} can be written as

$$
\begin{equation*}
P_{0}(z)=\left(\frac{1+z}{2}\right)^{3} b(z) \tag{4.1}
\end{equation*}
$$

where $b(z)=\frac{1}{4}\left(1+z+z^{2}\right)$.
From (4.1) $d_{0}=\frac{1}{4}, d_{1}=\frac{6}{4}, d_{2}=\frac{1}{4}$, (i.e. nonzero coefficients of z in $b(z)$], $m=3$
(i.e. number of factors in $P_{0}(z)$), $q=2$ (i.e. number of non-zero coefficients of z in $b(z)$, start counting from 0$)$. The matrices D_{0} and D_{1} can be computed by using the relations
$\left(D_{0}\right)_{i j}=d_{q+i-2 j}$, and $\left(D_{1}\right)_{i j}=d_{q+i-2 j+1}$, for $i, j=1, \ldots, q$
Thus D_{0} and D_{1} are given by

$$
D_{0}=\frac{1}{4}\left(\begin{array}{ll}
6 & 0 \\
1 & 1
\end{array}\right) \quad \text { and } \quad D_{1}=\frac{1}{4}\left(\begin{array}{ll}
1 & 1 \\
0 & 6
\end{array}\right)
$$

As

$$
\max \left\{\rho\left(D_{0}\right), \rho\left(D_{1}\right)\right\} \leq \mu \leq \max \left\{\left\|D_{0}\right\|_{\infty},\left\|D_{1}\right\|_{\infty}\right\}
$$

which implies
$\max (1.5,1.5) \leq \mu \leq \max (1.5,1.5)$.

So lower bound on the $\mathrm{H} \ddot{O}$ Ider regularity is given by $3-\log _{2}(1.5)=2.147$ and also upper bound on $\mathrm{H} \ddot{o}$ Ider regularity is given by $3-\log _{2}(1.5)=2.147$.
Table 1 shows the continuity of other members of H_{l} schemes. From this table we conclude that as we increase parameter 1 , level of continuity and $\mathrm{H} \ddot{o}$ Ider continuity of H_{l} schemes go up steadily.

Table 1 Comparison of continuity analysis of the Hischemes.

1	Continuity	$\mathrm{H} \ddot{O}$ Ider continuity	
		Lower bound	Upper bound
0	2	2.4150	2.4150
1	3	3.0458	3.1457
2	3	3.7711	3.8381
3	4	4.4483	4.5026

5.0 LIMIT STENCIL AND ARTIFACT ANALYSIS OF SUBDIVISION SCHEMES

In this section, we present limit stencil and artifact analysis of some of the proposed schemes.

5.1 Limit Stencils Of Subdivision Schemes

A stencil which gives a point on the limit curve in the form of the original control points is called limit stencil. The limit stencil evaluate points on the limit curve itself with a relatively small number of calculations. We obtain limit stencil by using
$p^{\infty}=B\left(\lim _{j \rightarrow \infty} D^{j}\right) B^{-1} p^{0}$,
Where
$\lim _{j \rightarrow \infty} D^{j}=D^{\infty}$, so $p^{\infty}=B D^{\infty} B^{-1} p^{0}$,
Where B is the matrix of eigenvectors corresponding to eigenvalues and D is diagonal matrix of eigenvalues of subdivision matrix of the scheme.

Theorem 5.1. Limit stencil of 3-point binary approximating subdivision scheme H_{0} is $\mathrm{L}_{0}=$ (0.0209,0.4791, 0.4791, 0.0209).

Proof. By the Laurent polynomial (9), the subdivision matrix of scheme H_{0} is given by

$$
A_{0}=\left(\begin{array}{ccccc}
0.2813 & 0.6875 & 0.0313 & 0 & 0 \\
0.0313 & 0.6875 & 0.2813 & 0 & 0 \\
0 & 0.2813 & 0.6875 & 0.0313 & 0 \\
0 & 0.0313 & 0.6875 & 0.2813 & 0 \\
1 & 0 & 0.2813 & 0.6875 & 0.0313
\end{array}\right) .
$$

Eigenvalues of A_{0} are

$$
\begin{aligned}
& \lambda_{0}=1, \lambda_{1}=0.5001, \lambda_{2}=0.2500 \\
& \lambda_{3}=0.1874, \lambda_{4}=0.0313
\end{aligned}
$$

The matrix of eigenvectors corresponding to the above eigenvalues is

$$
B_{0}=\left(\begin{array}{ccccc}
0 & 0.4472 & 0.4472 & -0.2280 & 0.2944 \\
0 & 0.4472 & 0.1491 & 0.0326 & -0.0128 \\
0 & 0.4472 & -0.1491 & -0.0326 & -0.0128 \\
0 & 0.4472 & -0.4472 & 0.2280 & 0.2944 \\
1 & 0.4472 & -0.7453 & 0.9454 & 0.9090
\end{array}\right) .
$$

We can define the diagonal matrix D_{0} as
$D_{0}=\left(\begin{array}{ccccc}0.0313 & 0 & 0 & 0 & 0 \\ 0 & 1.000 & 0 & 0 & 0 \\ 0 & 0 & 0.5001 & 0 & 0 \\ 0 & 0 & 0 & 0.1874 & 0 \\ 0 & 0 & 0 & 0 & 0.2500\end{array}\right)$.
By diagonalization of matrix A_{0}, we get $A_{0}=B_{0} D_{0} B_{0}^{-1}$ where

$$
B_{0}^{-1}=\left(\begin{array}{ccccc}
0.2005 & -1.6014 & 3.6019 & -3.2010 & 1 \\
0.0467 & 1.0714 & 1.0714 & 0.0467 & 0 \\
0.3357 & 2.3465 & -2.3465 & -0.3357 & 0 \\
-1.5342 & 4.6017 & -4.6017 & 1.5342 & 0 \\
1.6274 & -1.6274 & -1.6274 & 1.6274 & 0
\end{array}\right) .
$$

By substituting values in (5.1), we have

$$
\left(\begin{array}{l}
p_{-2}^{\infty} \\
p_{-1}^{\infty} \\
p_{0}^{\infty} \\
p_{1}^{\infty} \\
p_{2}^{\infty}
\end{array}\right)=\left(\begin{array}{lllll}
0.0209 & 0.4791 & 0.4791 & 0.0209 & 0 \\
0.0209 & 0.4791 & 0.4791 & 0.0209 & 0 \\
0.0209 & 0.4791 & 0.4791 & 0.0209 & 0 \\
0.0209 & 0.4791 & 0.4791 & 0.0209 & 0 \\
0.0209 & 0.4791 & 0.4791 & 0.0209 & 0
\end{array}\right)\left(\begin{array}{c}
p_{-2}^{0} \\
p_{-1}^{0} \\
p_{0}^{0} \\
p_{1}^{0} \\
p_{2}^{0}
\end{array}\right) .
$$

Thus the limit stencil of 3-point binary approximating subdivision scheme H_{0} is given by

$$
\begin{equation*}
L_{0}=(0.0209,0.4791,0.4791,0.0209) \tag{5.2}
\end{equation*}
$$

Similarly, we can find out limit stencil of other H_{l} schemes for $l=1,2 \ldots$ In Table 2, limit stencils of some

Similarly, we can find out limit stencil of other H_{l}-schemes for $l=1,2 \ldots$ In Table 2 , limit stencils of some of the proposed schemes are presented.

Table 2 Limit stencils of H_{l} schemes for $l=0,1,2$ and 3

L	Limit stencils
0	$\mathrm{~L}_{0}=(0.0209,0.4791,0.4791,0.0209)$
1	$\mathrm{~L}_{1}=(-0.0015,0.1726,0.6578,0.1726,-0.0015)$
2	$\mathrm{~L}_{2}=(-0.0045,0.1426,0.7237,0.1426,-0.0045)$
3	$\mathrm{~L}_{3}=(0.0001,-0.0064,0.1909,0.6306,0.1909,-0.0064,0.0001)$

5.2 Arlifact Analysis Of Subdivision Schemes

In this section, we discuss the unwanted features presented in the limit curve that cannot be removed by the movement of initial control points. These features are called artifact.

Theorem 5.2. The amount of artifact presented in the limit curve generated by the scheme denoted by H_{0} is
$M_{0}(v)=0.0832 \zeta^{8}+0.5 \zeta^{6}+0.4168 \zeta^{4}$,
where $\zeta=\sin \left(\frac{\pi v}{2}\right), v=\frac{1}{n}$ and n represents the initial number of control points of the polygon.
Proof. The Laurent polynomial of limit stencil L_{0} can be written as

$$
\begin{align*}
& L_{0}(z)=0.0208+0.4792 z+0.4792 z^{2} \tag{19}\\
& +0.0208 z^{3} .
\end{align*}
$$

After multiplying Laurent polynomial $P_{0}(z)$ of scheme H_{0} and (19), we get

$$
\begin{aligned}
P_{0}(z) L_{0}(z)=\frac{1}{2^{5}} & \left(0.0208+0.6664 z+5.2496 z^{2}\right. \\
& +15.3336 z^{3}+21.4592 z^{4} \\
& +15.3336 z^{5}+5.2496 z^{6} \\
& \left.+0.6664 z^{7}+0.0208\right)
\end{aligned}
$$

Ths implies

$$
\begin{aligned}
P_{0}(z) L_{0}(z)= & \frac{1}{2^{5}}\left(0.0208(1+z)^{8}+0.5(1+z)^{6} z\right. \\
& \left.+1.6672(1+z)^{4} z^{2}\right)
\end{aligned}
$$

For symmetrized version of (20), we multiply (20) by z^{-4} and get

$$
\begin{aligned}
\hat{P}(z)= & \frac{1}{2^{5}}\left(0.0208 \frac{(1+z)^{8}}{z^{4}}+0.5 \frac{(1+z)^{6}}{z^{4}} z\right. \\
& \left.+1.6672 \frac{(1+z)^{4}}{z^{4}} z^{2}\right)
\end{aligned}
$$

The above expression can be written as
$\hat{P}(z)=\frac{1}{2^{5}}\left\{\begin{array}{c}0.0208\left(\frac{1+z}{z^{\frac{1}{2}}}\right)^{8}+0.5\left(\frac{1+z}{z^{\frac{1}{2}}}\right)^{6} \\ +1.6672\left(\frac{1+z}{z^{\frac{1}{2}}}\right)^{4}\end{array}\right\}$,
which implies that

$$
\begin{aligned}
\hat{P}(z) & =(2)^{3}(0.0208)\left(\frac{1+z}{2 z^{\frac{1}{2}}}\right)^{8}+(2) 0.5\left(\frac{1+z}{2 z^{\frac{1}{2}}}\right)^{6} \\
& +(2)^{-1}(1.6672)\left(\frac{1+z}{2 z^{\frac{1}{2}}}\right)^{4},
\end{aligned}
$$

By writing above expression as polynomial in $\gamma=\frac{1+z}{2 z^{1 / 2}}$,

$$
\begin{equation*}
G_{0}(\gamma)=0.1664 \gamma^{8}+\gamma^{6}+0.8336 \gamma^{4} \tag{21}
\end{equation*}
$$

Thus magnitude of artifact in the limit curve of scheme H_{0} is given by

$$
M_{0}(v)=0.0832 \zeta^{8}+0.5 \zeta^{6}+0.4168 \zeta^{4}
$$

where $\zeta=\sin \left(\frac{\pi v}{2}\right), v=\frac{1}{n}$.
In the same way we can prove the following theorems.
Theorem 5.3. The amount of artifact presented in the limit curve generated by the scheme denoted by H_{1} is

$$
\begin{aligned}
M_{1}(v)= & 0.0060 \zeta^{12}-0.1960 \zeta^{10}+0.2619 \zeta^{8} \\
& +0.6903 \zeta^{6}-0.2318 \zeta^{4}
\end{aligned}
$$

Theorem 5.4. The amount of artifact presented in the limit curve generated by the scheme denoted by H_{2} is

$$
\begin{aligned}
M_{2}(v)= & -0.0028 \zeta^{16}+0.0404 \zeta^{14}-0.3090 \zeta^{12} \\
& -0.4530 \zeta^{10}+0.5418 \zeta^{8}+0.9126 \zeta^{6}
\end{aligned}
$$

Theorem 5.5. The amount of artifact presented in the limit curve generated by the scheme denoted by H_{3} is

$$
\begin{aligned}
M_{3}(v)= & -0.0004 \zeta^{20}+0.0102 \zeta^{18}-0.1176 \zeta^{16} \\
& +0.4560 \zeta^{14}-0.8496 \zeta^{12}-0.4543 \zeta^{10} \\
& +1.4674 \zeta^{8}+0.3979 \zeta^{6} \\
& -0.0000019226 \zeta^{4} \\
& +0.00000016475 \zeta^{2} \\
& -0.0000000022885
\end{aligned}
$$

Similarly, we can compute artifact presented in the other members of family of schemes. In Figure 1(a), the magnitudes of artifact against the number of control pointsn in the limit curve of the schemes $\mathrm{H}_{0}, \mathrm{H}_{1}, \mathrm{H}_{2}$ and H_{3} are plotted. The graph of figure shows that the magnitude of artifact decreases by increasing the number of initial control points while it decreases for increasing l with fixed number of initial control points.

Figure 1 (a) presents magnitudes of artifact in the limit curves of the schemes $\mathrm{H}_{0}, \mathrm{H}_{1}, \mathrm{H}_{2}$ and H_{3} and (b) presents limit curves generated by the schemes $\mathrm{H}_{0}, \mathrm{H}_{1}, \mathrm{H}_{2}$ and H_{3}.

6.0 APPLICATION AND SUMMARY

In this section, we present brief summary of work done so far. Comparison between limit curves produced by the schemes H_{l} for $l=0,1,2$ and 3 are shown in Figure 1 (b). Figure 2 ($a-c$) show the initial control polygon and Figure 2 ($d-f$) are the limit curves obtained by H_{0} and H_{1} schemes at third subdivision level.
In this paper a class of binary subdivision schemes is offered with the help of two binary schemes. A parameter " l " is used to classify members of the proposed family. It is proved that each member of the
proposed family has linear polynomial reproduction. It is also shown that continuity and $\mathrm{H} \ddot{o}$ Ider regularity of proposed schemes increase gradually as we increase parameter l while magnitude of artifacts presented in the limit curve decreases. Furthermore, limit stencil analysis is done. Applications of proposed schemes are shown through several example curves.

Figure $2(a-c)$ present initial control polygon and (α-f) are the limit curves obtained by H_{0} and H_{1} schemes at third subdivision level.

Acknowledgement

This work is supported by NRPU (P. No. 3183) Pakistan.

References

[1] Ashraf, P., Mustafa, G., \& Deng, J. 2014. A Six-Point Variant On The Lane-Riesenfeld Algorithm. Journal of Applied Mathematics. 1-7
[2] Cashman, T. J., Hormann, K., \& Reif, U. 2013. Generalized Lane-Riesenfeld Algorithms. Computer Aided Geometric Design. 30(4): 398-409.
[3] Chaikin, G. M. 1974. An Algorithm For High-Speed Curve Generation. Computer Graphics And Image Processing. 3(4): 346-349.
[4] Conti, C., \& Hormann, K. 2011. Polynomial Reproduction For Univariate Subdivision Schemes Of Any Arity. Journal of Approximation Theory. 163(4): 413-437.
[5] Conti, C., \& Romani, L. 2013. Dual Univariate M-Ary Subdivision Schemes Of De Rham-Type. Journal of Mathematical Analysis and Applications. 407(2): 443-456.
[6] Poret, S., Jony, R. D. and Gregory, S. 2009. Image Processing for Color Blindness Correction. IEEE Toronto International Conference. 1-6.
[7] Deslauriers, G., \& Dubuc, S. 1989. Symmetric Iterative Interpolation Processes. Constructive Approximation. 49-68.
[8] Dyn, N., \& Levin, D. 2002. Subdivision Schemes In Geometric Modelling. Acta Numerica. 11:73-144.
[9] Dubuc, S. 2011. De Rham Transforms For Subdivision Schemes. Journal of Approximation Theory. 163(8):966-987.
[10] Hormann, K., \& Sabin, M. A. 2008. A Family Of Subdivision Schemes With Cubic Precision. Computer Aided Geometric Design. 25(1): 41-52.
[11] Lane, J. M., \& Riesenfeld, R. F. 1980. A Theoretical Development For The Computer Generation And Display Of Piecewise Polynomial Surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2(1): 35-46.
[12] Mustafa, G., Ashraf, P., \& Aslam, M. 2014. Binary Univariate Dual And Primal Subdivision Schemes. SeMA Journal. 65(1): 23-35.
[13] De Rham, G. 1947. Un Peude Mathematiques A Proposed Une Courbe Plane. Revwe De Mathematiques Elementry II, Oevred Completes. 2: 678-689.
[14] Rioul, O. 1992. Simple Regularity Criteria For Subdivision Schemes. SIAM Journal on Mathematical Analysis. 23(6): 1544-1576.
[15] Shannon, C. and weaver, w. 1949. The Mathematical Theory Of Communication, University Of llinois Press.
[16] Sabin, M. A., Augsdörfer, U. H., \& Dodgson, N. A. 2005. Artifacts In Box-Spline Surfaces. In Mathematics Of Surfaces XI. 350-363. Springer Berlin Heidelberg.
[17] Siddiqi, S. S., \& Ahmad, N. 2007. A New Three-Point Approximating C2 Subdivision Scheme. Applied Mathematics Letters. $20(6): 707-711$.

