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1.0  INTRODUCTION 
 

Subdivision scheme is a technique in the field of 

Computer Aided Geometric Design (CAGD) to create 

smooth curves and surfaces. In the process of 

subdivision, we take the control polygon and apply the 

subdivision schemes in which series of successive 

iterations are performed in order to find the points on 

curve. It has found many applications in CAGD 

because of its efficiency, simplicity and flexibility of 

algorithms. Lane-Riesenfeld [10] and Hormann and 

Sabin [9] presented subdivision schemes based on B-

spline. Cashman et al. [2] presented generalization of 

Lane Riesenfeld scheme to generate a family of 

schemes. Ashraf et al. [1] introduced variation on Lane-

Riesenfeld method to generate schemes. Dubuc [8] 

generalized the schemes of de Rham [12] and Chaikin 

[3]. Conti and Romani [5] used de Rham transform to 

introduce a class of dual m-ary schemes. Mustafa et al. 

[11] introduced a class of dual and primal schemes. In 

our framework, we develop a well-designed algorithm 

that generates a class of binary approximating 

schemes. The proposed class of schemes is categorized 

by a parameter. Greater values of parameter give 

schemes with wider mask and support. Degree of 

polynomial generation of proposed schemes goes up 

as value of parameter is increased while proposed 

schemes have linear polynomial reproduction for each 

value of parameter. We find out that continuity and H

o lder regularity of proposed schemes increase 

gradually as we increase value of parameter. Moreover 

we also determine that artifact magnitude decreases 

as we increase value of parameter. In Section 2, we 

present an algorithm to design a class of subdivision 

schemes which depends on a parameter. In Section 3, 

degree of polynomial generation and reproduction of 

proposed schemes are analyzed. In Section 4, 

continuity and H o lder regularity of some of proposed 

schemes are discussed. In Section 5, artifact analysis 

and limit stencil analysis are carried out. Applications 

and summary are included in last section. 

 

 

2.0  GENERATION OF SUBDIVISION SCHEMES 

 
In this section we present the algorithm for the 

generation of binary approximating subdivision 

schemes. Now consider two subdivision schemes, 3-

point binary approximating subdivision scheme [16] is 

given by 
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and 4-point binary interpolating subdivision scheme [6] 

is given by 
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Laurent polynomial of subdivision scheme (1) is 

 

2 3 4 51
( ) (1 9 22 22 9 ),

32
z z z z z z              (3)  

 

and Laurent polynomial of subdivision scheme (2) is  

 

2 3 4 61
( ) ( 1 9 16 9 ).

32
z z z z z             (4)  

 

General Laurent polynomial can be written as  

        
2 2( ) ( ) ( ).even oddz z z z     

 

From (4), we have  

 

21 1 10
( ) .

2 8
even

z z z
z

     
   
  

             (5)  

 

Also (3) can be factorized as 

 

 

3 21 1 6
( ) .

2 4

z z z
z

    
   
   

                (6) 

 

Now we introduced the family of schemes named:

( : 0,1,2...)lH H l  ,where general member lH  

has the Laurent polynomial of the form 

 

 ( ) ( ) ( ).
l

l evenP z z z                 (7)  

 

By substituting (5) and (6) in (7), we get 

 
3 2 21 1 10 1 6

( ) .
2 8 4

ll

l

z z z z z
P z


         

     
     

     (8) 

 

We can easily derive the subdivision schemes lH  and 

their masks by substituting 0,1,2....,l  in (8). 

 

2.1  Derivation Of Subdivision Schemes 

 
Here, we derive 3-point, 5-point, 6-point and 8-point 

binary approximating subdivision schemes by 

substituting 0,1,2,3l  in (8) respectively. 

 
 
2.1.1  3-Point Binary Approximating Subdivision Scheme 

H0 

 

By substituting 0l   in (2.8), we get the Laurent 

polynomial of scheme H0 as follows 

2 3 4 5

0

1
( ) (1 9 22 22 9 ),

32
P z z z z z z                   (9) 

whose mask is given by 

 

 0

1
1,9,22,22,9,1 ,

32
   

 
and we obtain the scheme H0 as 

 

1

2 1 1

1

2 1 1 1
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,
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.
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    (10) 

 

 

2.1.2  5-Point Binary Approximating Subdivision Scheme 

H1 

 

By substituting 1l   in (2.8), we get the Laurent 

polynomial of scheme H1 as follows 

 

2 3 4

1

5 6 8

1
( ) ( 1 68 256 378

512

256 68 ),

P z z z z

z z z

    

  

   (11) 

 
whose mask is given by 

 1

1
1,0,68,256,378,256,68,0, 1 ,

32
   

  

and we obtain the following scheme H1 

 

1

2 2 1

1 2

1
(0 256 256
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0 0 ),

k k k k
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k k

i i
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
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1
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2.1.3  6-Point Binary Approximating Subdivision Scheme 

H2 

 

By substituting 2l   in (2.8), we get the Laurent 

polynomial of scheme H2 as follows 

 

2 3 4

2

5 6 7

8 9 10 11

1
( ) (1 9 77 357 2538

8192

5382 5382 2538

357 77 9 ),

P z z z z z

z z z

z z z z

    

  

   

      (13) 

whose mask is given by 

2

1
{1, 9, 77,357,2538,5382,

8192

5382,2538,357, 77, 9,1},

   

 

  

 

and we obtain the following scheme H2 

 

1

2 2 1

1 2 3

1
( 9 357 5382

8192

2538 77 ),

k k k k

i i i i

k k k

i i i
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1

2 1 2 1

1 2 3

1
( 77 2538

8192

5382 357 9 ).(2.14)
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i i i

f f f f

f f f



  

  

  

  

 

(14) 

 

 

2.1.4   8-Point Binary Approximating Subdivision Scheme 

H3 

 

By substituting 3l   in (2.8), we get the Laurent 

polynomial of scheme H2 as follows 

 

2 3 4

3

5 6 7

8 9 10

11 12 13 14

1
( ) ( 1 18 5 1132 9

131072

20750 65541 91800

65541 20750 9

1132 5 18 ), (2.15)

P z z z z z

z z z

z z z

z z z z

     

  

  

   

 

(15) 

whose mask is given by 

 

3

1
{ 1,18,5, 1132, 9,20750,

131072

65541,91800,65541,20750,

9, 1132,5,18, 1},

    

  

  

and we obtain the following scheme H3 

1

2 4 3 2
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1

2 1 4 3 2 1

1 2 3

1
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1
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            (16) 

 

Remark 2.1. Support of basic limit function:  

If be the initial data such that 
0 1  for 0i   and 

1i  for 0i   so by applying the convergent 

subdivision scheme 
lH  on this data, we get basic limit 

function l lH   of 
lH  scheme. 

Since the number of non-zero coefficients in the Laurent 

polynomials of ( )z and ( )even z are 6 and 4 

respectively then the support of basic limit functions of 

the schemes corresponding to the polynomial ( )z  

and ( )even z  are 5 and 3 respectively. As we know that 

the Laurent polynomial of the scheme can be obtain 

by applying ( )even z , l  times on ( )z  therefore the 

support of basic limit function of the scheme with 

Laurent polynomial ( ) 5 3lP z is l  . 

 

 

3.0  POLYNOMIAL GENERATION 

ANDREPRODUCTION OFSCHEMES 
 
Here we discuss degree of polynomial generation and 

reproduction of lH  schemes. 

 

3.1 Polynomial Generation Of lH Schemes 

 

Polynomial generation of degree n is the ability of 

subdivision scheme to generate the full space of 

polynomials of up to n. 

 

Theorem 3.1. Degree of polynomial generation of

lH schemes is l + 2.  

 

Proof.  Since Laurent polynomial of general 

member lH  is given by 

3 2 21 1 10 1 6
( )

2 8 4

ll

l

z z z z z
P z


         

     
     

Since number of common factors is 3l  , 

so by [4], degree of polynomial 

generation of lH  schemes is 2l  .  
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3.2  Polynomial Reproduction Of
lH Schemes 

 
Here we use the algebraic condition (14) and Lemma 

4.2 of [4] on the symbol of H-schemes to find the degree 

of polynomial generation and reproduction. 

 

Theorem 3.2. The binary scheme
lH reproduces linear 

polynomial if 

 

 
1

0

(1) 2 ( 1) 0, 0,1,
k

k k

l l l

j

P j and P k




     where

1(1)

2

l
l

P
   is parametric shift. 

 

Proof. By differentiating (8), we have 

 

        

 

2 4 3 2

1

1
4 5 2

1 3 5 24 114 246 72 64 9 9
(1) .

2 1 10

l

l l
l

z l z z l z l z l
P

z z






         


  

 It is easy to see that 

( 1) 0, 0,1,k

lP k   .Now from (8), we get

0(1) (1) 2l lP P  , also  
1

0

2 2l

j

j




  so 

this implies  
1

0

0

(1) 2 .l l

j

P j




   

Similarly for k = 1, we have 

 
0

1

0

(1) 2 ,l l

j

P j


   which completes the 

proof. 

 

 

4.0  CONTINUITY AND H o LDER REGULARITY 

ANALYSIS OF SUBDIVISION SCHEMES 
 
In this section, we present the continuity and  

H o lder regularity analysis of subdivision schemes lH . 

 

4.1 Continuity Analysis Of Subdivision Schemes 

 
We present the continuity analysis of subdivision 

schemes lH by using method of [7]. 

 

Theorem 4.1. The 3-point binary subdivision scheme H0 

is C2 continuous.  

 

Proof.  Since Laurent polynomial (9) of the 

scheme H0 is given by 
3

0

1
( ) ( ),

2

z
P z b z

 
  
 

 

where
21

( ) (1 ).
4

b z z z    

Let
bS be the scheme corresponding to the 

symbol ( )b z . Since 

2 2 1

1 1
max , ,

2 2
b j j

j j

S b b 

 

 
  

 
   

then, we have 

1 1 2 6 3
max , 1.

2 2 4 4 4
bS



 
   

   

. 

Therefore by ([7], Corollary 4.11), the scheme H0 

is C2.  

Table 1 presents continuity of the scheme H0 

and some other members of the family 

 

4.2 H o Lder Regularityanalysis Of Subdivision Schemes 

 

H o lder regularity is an extension of convergence and 

continuity. H o lder regularity analysis is done by using 

Rioul’s [13] method. 

 

Theorem 4.2. The lower bound and the upper bound on 

the H o lder regularity of the scheme H0 is 2.4150. 

 

Proof.  The Laurent polynomial (9) of the scheme H0 

can be written as 
3

0

1
( ) ( ),

2

z
P z b z

 
  
   

where
21

( ) (1 )
4

b z z z   . (4.1) 

From (4.1) 
0 1 2

1 6 1
, , ,

4 4 4
d d d    (i.e. non-

zero coefficients of z in ( )b z ], m = 3 

(i.e. number of factors in 0 ( )P z ), q = 2 (i.e. 

number of non-zero coefficients of z in ( )b z , 

start counting from 0). The matrices 0D and 1D

can be computed by using the relations 

 

 

0 2

1 2 1

,

, , 1,...,

q i jij

q i jij

D d and

D d for i j q

 

  



 
 

Thus D0 and D1 are given by 

 0 1

6 0 1 11 1
.

1 1 0 64 4
D and D

   
    

   
 

As     

       0 1 0 1,  , ,max D D µ max D D 
 

   

which implies 

   1.5,1.5   1.5,1.5 .max µ max   
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So lower bound on the H o lder regularity is 

given by 2 3 1.5)  2.147(log  and also 

upper bound on H o lder regularity is given by

2 3 1.5)  2.147(log  .  

Table 1  shows the continuity of other members 

of 
lH schemes. From this table we conclude 

that as we increase parameter l, level of 

continuity and H o lder continuity of
lH

schemes go up steadily. 

 
 

Table 1 Comparison of continuity analysis of the Hl schemes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.0 LIMIT STENCIL AND ARTIFACT ANALYSIS 

OF SUBDIVISION SCHEMES 
 
In this section, we present limit stencil and artifact 

analysis of some of the proposed schemes. 

 

5.1 Limit Stencils Of Subdivision Schemes 

 
A stencil which gives a point on the limit curve in the 

form of the original control points is called limit stencil. 

The limit stencil evaluate points on the limit curve itself 

with a relatively small number of calculations. We 

obtain limit stencil by using 

 

  1 0lim ,j

j
p B D B p 


  

Where 

 

lim ,j

j
D D


 so

1 0 ,p BD B p      (17) 

 

Where B is the matrix of eigenvectors corresponding to 

eigenvalues and D is diagonal matrix of eigenvalues of 

subdivision matrix of the scheme. 

 

Theorem 5.1. Limit stencil of 3-point binary 

approximating subdivision scheme H0 is L0 = 

(0.0209,0.4791,0.4791,0.0209). 

 

Proof.  By the Laurent polynomial (9), the subdivision 

matrix of scheme H0 is given by 

 

0

0.2813 0.0313

0.0313 0.2813

.0 0.2813 0.0313

0 0.0313 0.2813

1 0.

0.6875 0 0

0.6875 0 0

0.6875 0

0.6875 0

0 0.68752813 0.0313

A

 
 
 
 
 
 
 
   

. 

Eigenvalues of A0 are 

 

0 1 2

3 4

 1,   0.5001,   0.2500,  

 0.1874,   0.0313.

  

 

  

 
 

 

The matrix of eigenvectors corresponding to the above 

eigenvalues is  

 

0

0.4472 0.4472 0.2280 0.2944

0.4472 0.1491 0.0326 0.0128

0.4472 0.1491 0.0326 0.0128

0.4472 0.4472 0.2280 0.2944

0.4472 0.7453 0.945

0

0

.

4 0.901 90

0

0

B





  

 
 
 
 
 
 


 




 

We can define the diagonal matrix D0 as 

 

0

0 0 0 0

1.000 0 0 0

0 0.5001 0 0

0 0 0.1874 0

0 0 0 0

0.0313

0

.0

0

0

0 .250

D

 
 
 
 
 
 
 
 

 

By diagonalization of matrix 0A , we get 
1

0 0 0 0A B D B

where 

 

1

0

3.6019 -3.2010

0.0467 1.0714 1.0714 0.0467

.0.3357 2.3465 -2.3465 -0.3357

-1.5342 4.6017 -4.6017 1.5342

1.6274 -1.627

0.2005 1.6014 1

0

0

0

04 -1.6274 1.6274

B

 
 
 
 
 
 
 
 



 

By substituting values in (5.1), we have 

 
0

2 2

0

1 1

0

0 0

0

1 1

0

2 2

0.0209 0.4791 0.4791 0.0209 0

0.0209 0.4791 0.4791 0.0209

0.0209 0.4791 0.4791 0.0209

0.0209 0.4791 0.4791 0.0209

0.0209 0.4791 0.4791 0.0209

0

0

0

0

p p

p p

p p

p p

p p



 



 







   
   
   
   
   
   

   
   

.










 

l Continuity 
H o lder continuity 

Lower 

bound 

Upper bound 

0 2 2.4150           2.4150 

1 3 3.0458           3.1457 

2 3 3.7711           3.8381 

3 4 4.4483           4.5026 
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Thus the limit stencil of 3-point binary approximating 

subdivision scheme H0 is given by 

 

   0   0.0209,0.4791,0.4791,0.0209 .          5.2L 

 

(18) 

Similarly, we can find out limit stencil of other 
lH -

schemes for 1,2..l  . In Table 2, limit stencils of some 

Similarly, we can find out limit stencil of other lH -schemes for 1,2..l  . In Table 2, limit stencils of some of the 

proposed schemes are presented. 

 

Table 2 Limit stencils of 
lH schemes for 0,1,2 3l and  

 
L Limit stencils 

0 L0 = (0.0209,0.4791,0.4791,0.0209) 

1 L1 = (−0.0015,0.1726,0.6578,0.1726,−0.0015) 

2 L2 = (−0.0045,0.1426,0.7237,0.1426,−0.0045) 

3 L3 = (0.0001,−0.0064,0.1909,0.6306,0.1909,−0.0064,0.0001) 

 

 

5.2 Artifact Analysis Of Subdivision Schemes 

 
In this section, we discuss the unwanted features 

presented in the limit curve that cannot be removed by 

the movement of initial control points. These features 

are called artifact. 

 

Theorem 5.2. The amount of artifact presented in the 

limit curve generated by the scheme denoted by H0 is 
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where
1

sin ,
2 n


 

 
  

 
and n represents the 

initial number of control points of the polygon. 

Proof. The Laurent polynomial of limit stencil 0L can 

be written as 
2

0
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.
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After multiplying Laurent polynomial 0 ( )P z of 

scheme 0H  and (19), we get 

2

3

0 5

5 6

0

4

7

0.0208  0.6664   5.2496  

 15.3336  21.4592

 15.3336   5.2496

 0.6664 0.0208

1
( ) ( ) (

2

).

z z

z z

z z

z

P z L z  

 

 

 



Ths implies 

   

 

8 6

4 2

0 0 5
0.0208 1 0.5 1

 1.6672 

1
( ) ( ) (

1 .)

2
zP z L z z z

z z

  

 


  (20) 

 

 

For symmetrized version of (20), we multiply (20) by 
4z

and get  
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The above expression can be written as 
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which implies that 
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By writing above expression as polynomial in
1/2

1

2

z

z



 , 

8 6 4

0( ) 0.1664 0.8336 .G        (21) 
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Thus magnitude of artifact in the limit curve of scheme 

H0 is given by 

 
8 6 4

0( ) 0.0832 0.5 0.4168M       ,  

 

where
1

sin ,
2 n


 

 
  

 
. 

 

In the same way we can prove the following theorems. 

 

Theorem 5.3. The amount of artifact presented in the 

limit curve generated by the scheme denoted by H1 is 

 
12 10 8

1

6 4
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Theorem 5.4. The amount of artifact presented in the 

limit curve generated by the scheme denoted by H2 is 
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Theorem 5.5. The amount of artifact presented in the 

limit curve generated by the scheme denoted by H3 is 
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Similarly, we can compute artifact presented in the other members of family of schemes. In Figure 1(a), the 

magnitudes of artifact against the number of control pointsn in the limit curve of the schemes H0, H1, H2 and H3 are 

plotted. The graph of figure shows that the magnitude of artifact decreases by increasing the number of initial control 

points while it decreases for increasing l  with fixed number of initial control points. 

 
Figure 1 (a) presents magnitudes of artifact in the limit curves of the schemes H0, H1, H2 and H3 and (b) presents limit curves generated 

by the schemes H0, H1, H2 and H3 . 

 
 

6.0  APPLICATION AND SUMMARY 
 

In this section, we present brief summary of work done 

so far. Comparison between limit curves produced by 

the schemes lH  for 0,1,2 3l and  are shown in 

Figure 1 (b). Figure 2 (a-c) show the initial control 

polygon and Figure 2 (d-f) are the limit curves obtained 

by H0 and H1 schemes at third subdivision level. 

In this paper a class of binary subdivision schemes is 

offered with the help of two binary schemes. A 

parameter " "l  is used to classify members of the 

proposed family. It is proved that each member of the 

proposed family has linear polynomial reproduction. It is 

also shown that continuity and H o lder regularity of 

proposed schemes increase gradually as we increase 

parameter l  while magnitude of artifacts presented in 

the limit curve decreases. Furthermore, limit stencil 

analysis is done. Applications of proposed schemes are 

shown through several example curves. 
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(a) Initial Polygon   (b) Initial Polygon   (c) Initial Polygon 

 

     
 

(d) H0 scheme   (e) H1 scheme   (f) H0 scheme 

 

Figure 2 (a-c) present initial control polygon and (d-f) are the limit curves obtained by H0 and H1 schemes at third subdivision level. 
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