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Graphical abstract 
 

 

Abstract 
 

The application of human identification and verification has widely been used for over the 

past few decades.  Drawbacks of such system however, are inevitable as forgery 

sophisticatedly developed alongside the technology advancement.  Thus, this study 

proposed a research on the possibility of using heart sound as biometric. The main aim is to 

find an optimal auscultation point of heart sounds from either aortic, pulmonic, tricuspid or 

mitral that will most suitable to be used as the sound pattern for personal identification.  In 

this study, the heart sound was recorded from 92 participants using a Welch Allyn Meditron 

electronic stethoscope whereas Meditron Analyzer software was used to capture the 

signal of heart sounds and ECG simultaneously for duration of 1 minute.  The system is 

developed by a combination Mel Frequency Cepstrum Coefficients (MFCC) and Hidden 

Markov Model (HMM).  The highest recognition rate is obtained at aortic area with 98.7% 

when HMM has 1 state and 32 mixtures, the lowest Equal Error Rate (EER) achieved was 

0.9% which is also at aortic area.  In contrast, the best average performance of HMM for 

every location is obtained at mitral area with 99.1% accuracy and 17.7% accuracy of EER 

at tricuspid area. 
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Abstrak 
 

Aplikasi pengenalan dan pengesahan manusia telah digunakan secara meluas sejak 

beberapa dekad yang lalu. Walaubagaimanapun, pemalsuan biometrik sukar ditangani 

kerana bergerak siring dengan kemajuan teknologi. Oleh itu, kajian ini dijalankan bagi 

mengkaji kemungkinan menggunakan bunyi jantung sebagai biometrik. Tujuan utama 

kajian adalah untuk mencari satu tempat optimum merakam bunyi jantung sama ada 

daripada aorta, pulmonik, tricuspid atau mitral untuk digunakan sebagai corak bunyi 

dalam aplikasi pengenalan diri. Dalam kajian ini, bunyi jantung direkodkan daripada 92 

peserta menggunakan stetoskop elektronik Welch Allyn Meditron manakala perisian 

Meditron Analyzer telah digunakan untuk menangkap isyarat bunyi jantung dan EKG 

secara serentak untuk tempoh 1 minit. Sistem ini dibangunkan oleh gabungan Mel 

Frequency Cepstrum Coefficients (MFCC) dan Hidden Markov Model (HMM). Kadar 

pengiktirafan tertinggi diperolehi di kawasan aortic dengan 98.7% apabila HMM 

mempunyai 1 state dan 32 mixtures, Equal Error Rate (EER) yang paling rendah dicapai 

adalah 0.9% yang juga di kawasan aorta. Sebaliknya, prestasi purata yang terbaik dalam 

HMM untuk setiap lokasi diperolehi di kawasan mitral dengan ketepatan 99.1% dan 17.7% 

ketepatan EER di kawasan tricuspid. 

 

Kata kunci: Pengenalan, pengesahan, bunyi jantung, MFCC, HMM 
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1.0 INTRODUCTION 
 

Recently, many development of biometrics research 

were discovered, such as iris pattern, face 

recognition, signature recognition, hand geometry 

and speech recognition [1, 2, 3]. Most of the 

common biometric technologies that are used 

behavioral biometrics.  Behavioral biometrics are 

traits that an individual exhibits, which can determine 

identity, like handwriting, speech, gait, gesture and 

typing patterns. Meanwhile, physical biometrics is 

biological aspects of a person that can determine 

identity, such as DNA, fingerprint, hand geometry 

and retina [4]. Heart sound too, can be classified as 

behavioral biometric, where it can be easily 

obtained, altered and copied by one unknowingly 

[5, 6]. 

For example, the intruder might obtain voice easily 

from a hidden recorder to access the system. In this 

research, heart sound is expected to overcome the 

issue. Heart sound is the result of the mechanical 

process of the contraction and relaxation of the 

heart [10]. The sound passes through the thorax and 

eventually reaches the chest surface, where an 

electronic stethoscope can be used in to acquire the 

sound and save it in a digital format. Each sequence 

of heart sound acquired can be divided into a few 

cardiac cycles, whereas each cycle represents one 

complete working cycle (systole and diastole). The 

two main components of each cycle are called S1 

and S2 sounds. S1 is associated with the closure of 

the mitral and tricuspid valves during the contraction 

of ventricles and usually lasts about 150 ms, whereas 

S2 is associated with the closure of the aortic and 

pulmonary valve during the relaxation phase and 

lasts about 120 ms. Each acquired signal lasts 

between 20 and 70 seconds, the average duration is 

43.7 seconds [9]. 

The heart sound cannot easily be obtained, 

altered and copied as it is based on intrinsic dynamic 

signal obtained from the body. The study of heart 

sound as biometric was previously done by a few 

researchers for human verification and identification 

[4, 7, 8, 9]. However, no researchers focused on the 

four areas of auscultation points for biometrics 

application. The aim of this research is to investigate 

the optimal auscultation points based on cepstral 

analysis, combined with Markov modeling. 
 

 

2.0  METHODOLOGY 
 

The process of heart sound recognition is similar to 

speech recognition. Like speech recognition, heart 

sound recognition can be divided into two parts, i.e. 

heart sound identification (HSI) and heart sound 

verification (HSV). In pattern recognition, a training 

phase is required. Valid users’ (known as client) data 

need to be enrolled in the system. The enrollment 

phase involved the process of creating templates 

that contained clients’ heart sound signals which 

stored in the database. The template refers to the 

digital representation of heart sound signal and it is 

normally consist of long string of alphanumeric 

characters. It is the output of the biometric algorithm, 

characteristics or features of the heart sound signal. 

In the recognition phase, the system will compare the 

recorded heart sound signal (known as the test data) 

with the preset template in the system. The desired 

output needed by the system is the name of one of 

the clients in the database. Figure 1 shows the work 

flow of the heart sound recognition system.  

 

Figure 1 Flow of the heart sound recognition system 

 

 

The heart sound database is designed based on 

the data obtained from 92 random participants who 

were mostly students and staff from Universiti 

Teknologi Malaysia (UTM) which consist of 57 females 

and 35 males. These participants consist of 84 Malays, 

6 Chinese and 2 foreign students (Pakistan and 

Iranian). The heart sounds signal is recorded using a 

Welch Allyn Meditron electronic stethoscope and is 

captured using the Meditron Analyzer software 

application with Wave PCM signed 16 bit, 44100hz. A 

personal computer operated by Microsoft Windows 

XP was used for this study. In order to get the best 

heart sounds signal, the stethoscope is placed on the 

chest of the participant seated in relaxed position.  

Four locations of heart sounds readings are recorded 

for each participant (aortic, pulmonic, tricuspid and 

mitral). The electrocardiogram (ECG) and heart 

sound are recorded simultaneously within 1 minute 

for each participant to correlate the heart sounds 

with the phases of the heart cycle in the time 

relationship [11]. 

 

2.1  Pre-Processing 

 

The preprocessing signals are the pre-analysis process 

of heart sounds signals in order to gain the finest and 

useful information of the signals. The signal pre-

processing includes segmentation and feature 

extraction of the heart sounds signal.  Iwata A. (1980) 

has proposed the algorithm to detect the first (S1) 

and the second (S2) heart sounds by detection of R-

wave of electrocardiogram (ECG). The segmentation 

algorithm was based on the spectral analysis of the 

heart sounds that separated the heart sound into 

individual cycles (known as cardiac cycle) where 

each cycles representing the sound made by heart 

in one complete working cycle, systole (S1) and 

diastole (S2).  Most of the techniques used previously 
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depend on the reference of ECG signal [12, 13, 14]. 

The features of heart sound is then, extracted using 

Mel-Frequency Cepstral Coefficient (MFCC). A set of 

features extracted from one cardiac cycle is called a 

feature vector. The feature of vectors provides a 

more meaningful and compact representation of the 

heart sound than the raw signal themselves. 

 

2.2  Mel-Frequency Cepstral Coefficient (MFCC) 

 

The second part of the application is highlighting the 

regions, which have the same HSV value as the 

centre of the circle. In coding aspect, two thresholds 

are used for the filtering process. The low threshold is 

an array which contains the minimum of the HSV 

value whereas the high threshold holds the maxima 

of HSV value. Figure 1 shows the color benchmark, 

which consists of 10 different colours such as black, 

yellow, orange, green, purple, pink, cyan, blue, grey 

and red. It also have different shapes according to 

the color and have different sizes of sphere for red 

color. The prototype color detection assistive device, 

for experimental purposes only detects 4 base 

colours and HSV within its range. Besides the HSV 

range, the result will display unknown or not 

detected. MFCC is one of the most popular 

parameter set used in the recognition system.  It is an 

efficient method used to extract any kind of features 

[15]. A “mel” is a unit of special measure or scale of 

perceived pitch of a tone.  It does not correspond 

linearly to the normal frequency, in fact it is 

approximately linear below 1 kHz and logarithmic at 

the frequency higher [16]. This approach is based on 

the psychophysical studies of human perception of 

the frequency content of sounds [16, 17]. MFCC 

coefficients were calculated by taking a discrete 

cosine transform (DCT) of the logarithm spectrum 

scale after it was warped to the Mel scale, as shown 

in equation 1: 

 

( ) 2595log10(1 )
700

f
Mel f                      (1) 

 

This is similar to perceptual linear predictive analysis 

of sound signals. In other words, the scaling mimics 

the human perception of distance in frequency. The 

overview of steps involved in Mel-Cepstral feature 

extraction is shown in Figure 2. 
 

 
Figure 2 Feature extraction – Mel-Cepstrum 

 

To place greater emphasis on the low frequencies, a 

special step called mel-scaling is inserted before the 

calculation of the inverse Discrete Fourier Transform 

(DFT). One useful way to create mel-spectrum is to 

use a filter bank with one filter for each desired mel-

frequency component. Every filter in this bank has 

triangular band-pass frequency response. Such filters 

compute the average spectrum around each centre 

frequency with increasing bandwidths, as displayed 

in Figure 3. 
 

 
Figure 3 Mel-filters 

 

 

This filter bank is applied in the frequency domain 

and therefore, it simply amounts to take these 

triangular filters on the spectrum.  In practice, the last 

step of taking inverse DFT is replaced by taking 

discrete cosine transform (DCT) for computational 

efficiency. The number of resulting MFCC is relatively 

low, normally in the order of 12 to 20 coefficients. 

However, in many cases of MFCC analysis, the 0th 

coefficient of the 7 MFCC cepstrum is ignored 

because of its unreliability [18]. In this study, 12 

coefficients of MFCC per frame are used for 

classification stage as it has been proven to be a 

relatively successful method in pattern recognition 

[16, 17]. The 12 coefficients were selected because 

the energy of S1 and S2 signals are essentially 

concentrated around frequencies below 200Hz [9]. 
 

2.3  Hidden Markov Model (HMM) 

 

The HMM can be seen as a double stochastic 

process based on the Markov chains. It is a well-

structured mathematical model hence it can easily 

support different input sources [19]. There are several 

variants of HMM.  It can be ergodic, which any state 

is reachable from any other state, or it can be left to 

right, i.e. it cannot transit to a lower state from a 

higher state. In the speech recognition, the speech 

signal is usually modeled by the left-right HMM in 

which the state transitions are only allowed from left 

to right including self-transitions. This is quite 

reasonable because the left-right HMM can model 

the signals whose properties change with time in a 

sequential manner [20]. In this viewpoint, the heart 

sound signal may be modeled by the left-right HMM.  

A four state of left-right HMM for a cycle of the heart 

sound signal shown in Figure 4, correlates with the 

four components of heart sound signal, i.e. S1, 
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Systolic, S2 and Diastolic [21, 22], which is denoted by 

N. Noted that the number of states in the HMM is 

usually determined based on the nature of how the 

signal being modeled. 

 

 
 

Figure 4 HMM for cycle of the heart sound signal 

 

 

The 4 state of left-right HMM was sufficient to model 

a cycle of the heart sound signal [22]. The spectral 

variability in each state is modeled using multiple 

mixtures of multivariate Gaussian distributions. Given 

the observation O(t), the output probability 

distribution in the state j is given by the equation 2: 

 

 
1

( ) ( ( ); , )
M

j jm jm jm

m

b o t c N o t 


               (2) 

 

where N(o(t);µjm ,∑jm ) is a multivariate Gaussian 

distribution, with mean vector µjm and covariance 

matrix ∑jm, each mixture component having an 

associated weight Cjm.  M is the number of Gaussian 

mixture. The transition from the state i to j is also 

controlled by the transition probability as follows: 

 

 ( | )ija P j i                                   (3) 

 

The left-right HMM assumes that the first 

component in the heart sound signal is S1, so the 

continuous heart sound is segmented into isolated 

cycles, which is used as the input to the left-right 

HMM. 

The procedure of classifying the heart sound signal 

is shown in Figure 5 and Figure 6, where the HMM 

parameters µjm, ∑jm, Cjm and aij in equation 2 and 3 

are used in training and testing.  The HMM model is 

trained for each person and then in testing, each 

heart signal is referred to by his/her model as the 

maximum of the likelihood measures (conditional 

probability). 

 

 

 

 
Figure 5 Training of HMM 

 

 

In the testing stage, the client must first claim 

his/her identity using identification tag. The system 

retrieved model λc based on the identity, given the 

client as c. Then, the system obtained the score from 

the model as the result of the heart sound x, which is 

the likelihood of x. After that, the score is compared 

with the specified threshold θ, as illustrated in Figure 

6. The system will only accept the client if the score is 

greater than threshold. 

 

 
 

Figure 6 Testing of HMM 

 

 

2.4  Experiment Set Up 

 

As mentioned earlier in section 2, heart sound 

recognition can be divided into two parts, i.e. heart 

sound identification (HSI) and heart sound verification 

(HSV). There are two types of experiments conducted 

in this study (see Figure 7). The first experiment is 

carried out to evaluate the performance of heart 

sound identification whereas the second experiment 

designed to test the characteristics of heart sound to 

verify each person claimed. The performance of 

heart sound was evaluated under different 

parameters of HMM which is different number of 

state and Gaussian mixture. Each participant has 1 

minute for heart sound recording which consist of a 

number of cardiac cycles. The cardiac cycles were 

separated into two which are 70 percent of them 
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were used for training phase, while the remaining 

cycles were used for testing phase.  The performance 

of HMM will be evaluated with different parameter 

setting, i.e. the number of state and the number of 

Gaussian mixture components. 

 

Figure 7 Arrangement of experiments in this work 

 

 

Noted that the number of states in the HMM is 

usually determined based on the nature of how the 

signal being modeled.  In this study, the heart sound 

signal may be modeled by four states of left-right 

HMM, as it is correlates with the four components of 

heart sound signal which is S1, Systolic, S2 and 

Diastolic.  Thus, an optimal choice of the state and 

Gaussian mixture for HMM were tested through 

experiments. 10 participants were randomly selected 

out of the 92 participants in the database to 

represent the client. The experiments were 

conducted for every auscultation point, i.e. Aortic, 

Pulmonic, Tricuspid and Mitral area which was 

assigned as V1, V2, V3 and V4 respectively. 

In identification stage, the same data set up is 

implemented, where 70 percent of cardiac cycles 

were used for training phase, while the remaining 

cycles were used for testing phase.  Meanwhile, in 

verification stage the performance is measured 

based on EER ratio. 20 participants out from 92 

participants were selected to be the client of the 

system.  While, remaining data of 72 participants will 

be known as the impostors in this study. 

 

 

3.0  RESULT AND DISCUSSION 
 
The performance of HMM-based system is evaluated 

for four locations of auscultation. The highest 

accuracy yield at aortic area (V1), pulmonic area 

(V2) and mitral area (V4) when HMM has 1 state, 

which is 98.7%, 97.1% and 92.7% respectively.  

Meanwhile, at tricuspid area (V3), the highest 

accuracy is 97.1% when HMM has 4 states. In this 

viewpoint, it can be assumed that the result does not 

agree on the concept based on four components of 

heart sound signal described earlier.  

  
(a) (b) 

  
(c) (d) 

Figure 8 The performance of HMM under different state for four locations of auscultation (a) Aortic area, (b) Pulmonic area, (c) 

Tricuspid area and (d) Mitral area 
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According to Figure 8, the overall performance of 

HMM shown the percentage accuracy of higher 

than 80%. When a single state was used and 

Gaussian mixture components increases, the 

performance of HMM shows satisfactory. Meanwhile, 

if the number of state was increased, 32 mixture 

densities provide the worst results (see Figure 9). 

Average performance of HMM was optimal when 

the number of state is 1. This is because the overall 

highest accuracy was when HMM has state 1, even 

with different Gaussian mixtures. For Gaussian mixture 

components, the average performance of HMM was 

optimal when number of Gaussian mixture is 4, 8, 16 

and 32. Based on Table 1, the highest accuracy 

achieved for every state, mostly was at four mixture 

densities (HMM-4). In this study, only 30% of the test 

data was evaluated. Further work should evaluate 

this system with more test data. 

  
(a) (b) 

  
(c) (d) 

Figure 9 The performance of HMM under different state and mixture for four locations of auscultation (a) Aortic area, (b) Pulmonic 

area, (c) Tricuspid area and (d) Mitral area 

 

 

In this research, a single state and 32 mixture 

densities was decided to be used in the following 

experiments, because it provides the highest 

accuracy achieved for four locations of auscultation, 

i.e. when HMM has 1 state and 32 mixtures. 

 

Table 1 Determination of Gaussian mixture components at every state with the highest accuracy 

 

State 
Mixture Accuracy (%) 

V1 V2 V3 V4 V1 V2 V3 V4 

1 32 32 8 32 98.74 97.1 94.9 92.7 

2 16 4 8 8 98.73 94.9 95.9 89.5 

3 8 4 8 8 91.2 96.4 95.6 92.4 

4 4 8 4 4 90.2 96.7 97.1 89.5 

5 4 4 4 4 91.5 96.7 97.1 90.6 

 

 

For HSI, the overall accuracy for every locations of 

auscultation had more than 90% accuracy as shown 

in Figure 10. The poor performance by certain clients 

may be due to the interference of noise found in 

their training and testing samples. In order to 

overcome the above issue, de-noising method [23, 

24, 25] and the computational effort will be used in 

the future study. Based on Figure 10, there are 4 

clients who have an accuracy of less than 95% at V1, 

while 2 clients at V2 and 1 client at V3. Auscultation 

point at V4 shows that all of the clients have an 

accuracy of more than 95%. In fact, 13 of the clients 
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have an accuracy of 100%.  The highest average is 

at location V4 (mitral area) with 99.1%.  This might be 

due to all clients achieved accuracy above 95% and 

most of them get 100% recognition rate.

 

  
(a) (b) 

  
(c) (d) 

Figure 10 The result of heart sound identification for 20 clients at four locations of auscultation (a) Aortic area, (b) Pulmonic area, 

(c) Tricuspid area and (d) Mitral area 

 

 

The performance of HSV is shown in Figure 11, 

where there are considerable variations in 

performance across the clients.  It can be seen that 2 

clients at location V1 and V2 have an EER accuracy 

of less than 5%. V3 on the other hand has 3 clients 

with EER accuracy less than 5% and V4 is the worst as 

none of its clients has this accuracy. The figure also 

shows that the minimum EER ratio is obtained from 

client C19 with EER of 0.9%, which is at location V1 

(aortic area) and the maximum is 54.4% obtained 

from client C2 at location V2 (pulmonic area). This is 

might be due to the difference of data size, where 

C19 has a large size of data training compared to 

the client C2. In this point of view, it can be indicated 

that the best auscultation point is at location V1 

(aortic area). 

 

  

(a) (b) 



138                      Sh-Hussain Salleh et al. / Jurnal Teknologi (Sciences & Engineering) 79:7 (2017) 131–139 

 

 

  
(c) (d) 

Figure 11 Heart sound verification result at four locations of auscultation (a) Aortic area, (b) Pulmonic area, (c) Tricuspid area and 

(d) Mitral area 

 

 

The threshold of each client is different, which can 

be obtained when plotting the PDF or CDF graph. In 

this study, the threshold is set at the intersection point 

of the client and impostor scores. This point also 

known as EER. For example, Figure 12 shows the PDF 

and CDF graph for client C19, where the red line is 

impostor scores, while the blue line is represented 

client scores. 

 

 
 

Figure 12 PDF and CDF graph for client C19 

 

 

4.0  CONCLUSION 
 

Study have shown that none of the biometric 

research [4, 7, 8, 9, 20, 22, 26] have yet focuses on 

the four locations of auscultation. This study has 

therefore covered the idea mentioned previously. 

Four locations of heart sound are recorded where 

each location provides different values of sound in 

term of psychology. The study carried out in this thesis 

also investigates the optimal auscultation points that 

can be used in biometric. The combination of MFCC-

HMM method was implemented in this study. The 

performance of this method was evaluated using 

heart sound data which has been built over a period 

of 5 months. Several factors are obtained based on 

the performance of the system. First, the different 

auscultation point provides different performance of 

the system. Secondly, HMM with one state provide 

better performance at location V1, V2 and V4, 

exception for V3, the highest accuracy is from HMM 

with 4 states. Third factor that can be seen is that 

more test data are needed to evaluate the system 

performance. 
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