

78: 5–7 (2016) 117–122 | www.jurnalteknologi.utm.my | eISSN 2180–3722 |

Jurnal

Teknologi

Full Paper

HARDWARE DESIGN AND IMPLEMENTATION OF

GENETIC ALGORITHM FOR THE CONTROLLER OF A DC

TO DC BOOST CONVERTER

Roderick Yap*, Kevin Lam, Rovi Bugayong, Edward Hernandez,

Joey De Guzman

De La Salle University, Manila, Philippines

Article history

Received

02 June 2015

Received in revised form

16 October 2015

Accepted

03 January 2016

*roderick.yap@dlsu.edu.ph

Graphical abstract

Abstract

Controllers for DC to DC Boost Converters have evolved from simple control

method to those that involve the use of fuzzy logic controllers. In many

implementations, Proportional Integral Derivative (PID) controllers are

commonly employed. In this paper, a genetic algorithm for tuning the PID

controller of a DC to DC Boost Converter is hardware modelled and

implemented on a Field Programmable Gate Array (FPGA) using Verilog as

tool for the design entry. The goal of embedding genetic algorithm into the

controller is to search for the best PID parameters that will yield fast settling

time of the booster at an output of 6V. The hardware implementation allows

the controller to tune itself by searching for the best Kp, Ki and Kd values that

will give the best settling time. Significantly, this eliminates the need for a

separate computer to do the searching routine. Test results of the circuit

implemented yielded promising results. When compared to previous

researches, the genetic algorithm employed yielded good PID parameters

that resulted to a settling time as low as less than 60msec.

Keywords: Genetic Algorithm, Booster PID

© 2016 Penerbit UTM Press. All rights reserved

1.0 INTRODUCTION

A lot of controllers have been implemented for DC to

DC converters. Many of these are implemented using

full custom Integrated Circuit Design Approach [1][2].

This type of design approach normally made use of

both analog and digital components. Analog designs

can be more complicated as a lot of issues such as

amplifier gains and phase margins to name a few have

to be addressed to guarantee a working hardware

implementation. Another approach to designing the

controller is to use programmable digital components

such as Field Programmable Gate Arrays (FPGA)

[3][4][11]. The advantage of using this type of

approach is lesser components to deal with since the

designer only needs the programming language and

the programmable device. Genetic Algorithm has

been popularly used for optimization techniques. It

basically starts with a random population with each

member of the population called Chromosome. The

chromosomes evolve through several stages of

iterations called generation. The ultimate goal is to

search for the best fit chromosome that will serve as the

best solution to a problem [6]. In [7], it is used for

optimizing in the design of a neural network intended

for handwritten numerical recognition. In [8], genetic

algorithm was used for solving Job Shop Scheduling

problem. In [5], a genetic algorithm was employed for

the controller implementation of a DC to DC Boost

converter using MATLAB. Instead of dealing heavily on

the math, this research focused more on the actual

hardware realization and data obtained from the

hardware testing.

118 Roderick Yap et al. / Jurnal Teknologi (Sciences & Engineering) 78: 5–7 (2016) 117–122

2.0 SIGNIFICANCE OF THE STUDY

Normally, when implementing genetic algorithm, a

computer is used for the heuristic searching operation.

In this research, the genetic searching algorithm

inclusive of all calculations involved is hardware

modelled to implement a standalone system that

does not necessitate the use of the computer. The

genetic algorithm is applied to a PID controller of a DC

to DC Boost converter to allow the system to self-tune

during the actual operation. The controller has an

output that asserts high to signal the end of the

searching operation. It also reveals the best value

obtained for the Kp, Ki and Kd of the PID controller

intended for the boost converter.

3.0 DESIGN CONSIDERATION

3.1 The Mathematical Algorithm

The goal of the design is to modify an existing PID

controller that was successfully implemented in [9]

and in [10] to drive a DC-DC Boost converter. In this

research, selective design features from these two

sources are combined to build a DC-DC Boost

converter controller that is tuned using genetic

algorithm.

From the controller mathematical equations

borrowed in [9] and [10], these equations were edited

and expanded to insert Genetic Algorithm for tuning

of the PID controller. These equations are presented

in the next paragraph. The goal is to search for the

best PID parameters i.e. Kp, Ki, Kd values that can give

as low as possible settling time at the desired booster

output voltage of 6V which is intended to drive 2 white

LEDs. The booster input is placed at 3V. Since the

booster is controlled using Pulse Width Modulation

(PWM), the output voltage is then based on the duty

cycle of the signal driving the power transistor of the

booster circuit. In general, the higher the duty cycle

of the signal, the higher will be the booster output. Let

Ton [9] be the duty cycle value of the PWM signal and

Δpulse be the PID controller output.

 Ton = Ton - Δpulse (1)

 Δpulse = -Kp * e1 -Ki * e2 -Kd (e1-e3) (2)

Where e1 is the current error also known as new error,

e2 represents the cumulative error and e3 is the

previous error. Error e1 here is defined as the

difference between the target booster output of 6V

and the current output voltage of the booster circuit.

Eq. 3 and 4 shows the formula for the error parameters.

 e1 =6-Vout (3)

 e2 = e2 + e1 (4)

Vout is the output voltage of the Booster. Elitism was

chosen for the genetic algorithm to be used. An initial

population of 20 randomly generated PID parameters

was generated randomly using MATLAB. The

population is collected in a matrix. Each member of

the population is a chromosome that represents a

combination of Kp, Ki, Kd values. This starting matrix

will be known as the initial parents. Likewise, an initial

set of error values e1, e2 and e3 are set at 3. The

operation starts with the fetching of the first

chromosome. Every chromosome is evaluated based

on its fitness. The chromosome is expressed in binary

format as shown by Eq. 5. The index values indicated

show 5 bits allotted for each Kp, Ki and Kd. Eq. 5

shows how the chromosome is used to regulate the

booster output in conjunction with Eq. 1. The

remaining Chormosome bits i.e. chromosome [9:0] are

allotted for the settling time values.

 Δpulse = −chromosome(i[24: 20]) ∗ e1
 −chromosome(i[19: 15]) ∗ e2
 −chromosome(i[14: 10]) ∗ (e1 − e3) (5)

Where i = 1 to N with N representing the number of

population

 A fixed time delay period is allotted by the

controller through a series of iterations. This fixed

delay period is only terminated if either

a) the booster output has settled at the target

value or

b) the maximum limit imposed by the time delay

has been reached.

In the case of b), the PID parameter is likely to be

considered the least fit for the booster. In the case of

a), the PID parameter values together with the settling

time in terms of number of iterations, is stored in a

memory unit after which the booster is once again

placed on a reset state. The fitness function is based

on the data provided by the hardware circuit. The

choice of the best value is based on the chromosome

that will give the fastest settling time at an output of

6V. In principle, if f(t) represents the fitness function

of the genetic algorithm, then

 f(t) =
1sec−settling time

1 sec
 (6)

where 1 sec is the manually set maximum waiting time

for the booster to settle. The settling time is acquired

from the hardware circuit.

The whole cycle is repeated with the next PID

parameters fed to Eq. 2. The cycle is continuously

repeated until all the 20 parent values are tested on

the booster controller model. The values stored in the

memory are subjected to a sorting operation. The

sorter ranks the data starting with the best value i.e.

the one with the shortest settling time which

corresponds to the highest fitness value. From the 20

ranked values, the first ten parent values are kept and

the remaining 10 are discarded. Out of the first ten,

based on random selection, the best 10 undergoes

crossover to generate 10 new sets of chromosome

values called the offspring. The offspring are

119 Roderick Yap et al. / Jurnal Teknologi (Sciences & Engineering) 78: 5–7 (2016) 117–122

subsequently mutated. The mutated offspring

together with the parents will form the new 20-

chromosome population which will be subjected to

the same procedure undergone by the initial

population.

3.2 The Hardware Design

Figure 1 shows the general block diagram of the

system. The PID controller represents the hardware

implementation of Equations 1 to 5 mentioned in the

mathematical algorithm section. It fetches the

chromosomes from the memory unit. The settling time

is tested using the settling time counter block while

settled voltage checker block checks if the output

voltage has settled. The obtained settling time and

the corresponding Kp, Ki, and Kd are stored back into

the memory unit. The whole process is repeated for

all subsequent chromosome values. The sorter’s task is

to rank the PID parameters based on the settling time

values. The crossover block, aided by the crossover

randomizer block, produces the 10 new offspring

values. These new offspring randomly undergo

mutation using the mutation block. The mutation

block is aided by the mutation randomizer block

which basically decide which offspring bit will

undergo mutation if any. The entire procedure

discussed to this point completes 1 generation. The

new set of population i.e. parents and offspring will

undergo the same procedure of having its settling

time on the PID controlled Booster tested and

recorded.

Figure 1 The hardware block diagram

Figures 2 and 3 shows the hardware realization of the

PID controller 1st half and 2nd half block respectively.

The behaviour is represented by Finite State Machines.

As shown in the figures, for the first part, the code starts

from the reset state where the 20 initialized

chromosomes (Kp, Ki and Kd) sets stored in the

memory unit are tested for their settling time. The

chromosomes are tested 1 set at a time. The code

starts with two solving states. State 00001 solves the

integral and the proportional part of the PID equation

while state 00010 solves the differential part. Delta

pulse calculate solves the change in PWM duty cycle

which will then be calculated in state 00100. Pulse Limit

state limits the duty cycle of the PWM within the

allowable range. PID idle is a waiting state for the

booster output to be at a certain voltage value after

2ms prior to sampling the output voltage. The latch

state is used to measure the value of the output

voltage. This is followed by the next state which solves

the error i.e. difference between the target voltage of

6V and the measured value. After getting the error,

state 01001 will check if the voltage output is already

in the desired 6V output. If not, then it will go back to

PID solve 1 state to compute for the new duty cycle

needed to bring the output voltage to 6V. If the

Voltage output is considered settled by the settled

voltage checker module, the code will then go to the

settled voltage state whether the previous state is in

any from 00000 to 01001. The settling time will then be

saved. The code will then go to the delay state to give

time for the booster to discharge and will go back to

the reset state. The settling times of one set of Kp, Ki,

and Kd values will be measured four times for

repeatability. Once the procedure is done where 4

settling times are recorded, the settling times will be

averaged and the memory will be updated. The

address will be incremented for the next chromosome

with the same procedures. When all 20 chromosomes

have their settling time recorded. What follows is the

choosing of the 10 best chromosomes from the 20

recorded values through a sorting block. The top 10

are subjected to crossover and mutation to produce

the 10 offspring values. These new sets of

chromosomes will undergo the same procedure until

a new top 10 is obtained.

Figure 2 Genetic algorithm based PID controller -1st Half

120 Roderick Yap et al. / Jurnal Teknologi (Sciences & Engineering) 78: 5–7 (2016) 117–122

Figure 3 Genetic algorithm based PID controller -2nd Half

Figure 4 shows the FSM for the crossover routine.

Starting from reset state that also serves as the wait

state, the Crossover code waits until the sorting is

finished. Once it receives a signal that sorting is done,

it is then directed to crossover routine. Next state is

the swap state where the first two inputs which are the

parents will crossover, meaning genes Kp or ki or Kd of

the chromosomes will swap to produce two new

children. After swapping, the address of the memory

unit will be incremented for the next two parents. The

state comes back to the swap state to crossover

again. This procedure will repeat until all parents are

swapped. It will then go to the swap finish state which

makes an output pin equal to 1 to tell the mutation

module to start. It will go back to the wait sorting state

and will proceed again only for the next generation.

Figure 4 FSM for the crossover routine

Figure 5 shows the FSM for the mutation routine.

Starting from reset state that also serves as the wait

state, the mutation routine waits until the crossover is

finished. Once it receives a signal that crossover is

done, it will then be routed to the mutation routine.

Next state is the mutation state where the first input

which is an offspring from the crossover will mutate.

After mutation, the address will be incremented for the

next offspring. The state comes back to mutation after

passing through mutation idle state to mutate again.

This procedure will repeat until all offspring are

mutated. It will then go to the mutation finish state to

tell the memory that the mutation is finished. The

memory will be updated with the parents from the

sorter and the children from this module It will go back

to the wait crossover state and will proceed again

only for the next generation.

Figure 5 FSM for the mutation routine

Figure 6 shows the circuit used for the randomizer. The

rectangular blocks represent D Flip flops. The random

numbers are obtained from the exclusive or gates.

The circuit shown is a modified version of the circuit

shown in [12]. Randomizer is used for the crossover and

mutation routine.

121 Roderick Yap et al. / Jurnal Teknologi (Sciences & Engineering) 78: 5–7 (2016) 117–122

Figure 6 Randomizer

4.0 RESULTS AND DISCUSSION

In order to verify the validity of the design, the genetic

algorithm together with the PID controller model was

subsequently implemented on a Field Programmable

Gate Array (FPGA). A booster circuit was likewise built

and interfaced to the FPGA. Figure 7 shows the

booster circuit to be controlled. The circuit will drive 2

white LEDs for a total of 6V output.

Figure 7 The booster circuit

Fig. 8 shows the picture of the prototype representing

the whole system. Three sets of twenty chromosome

values were randomly generated using MATLAB as the

initial parent values. Embedded in the Chromosome

values are the settling time which are all initially set to

0. The PWM frequency was set at 100kHz.

Figure 8 Prototype for hardware verification

The genetic algorithm was run and evaluated on the

hardware set up. For every chromosome value tested,

the PID controller inside the FPGA outputs the

corresponding PWM signal to the booster circuit of

Figure 7. The output voltage from the booster is fed

back to the FPGA in a digital format through an

analog to digital converter. An internal counter inside

the FPGA serves as timer in measuring the settling time

of the booster output. Figure 9, 10 and 11 show the

respective summary result of the 3 sets of 20 randomly

generated chromosome values. In order ensure

integrity of data, all settling time must be within a

period of 100msec. This means all values at the timer

column are in excess of 100. As for example, a timer

value of 145 means the settling time is 45msec. The top

5 chromosomes shown in each table are picked from

the 10 best values obtained during the searching

routine. The top 10 chromosomes of the last

generation are played again 8 times. The system will

then rank them based on the performance results to

yield the top 5 fittest chromosomes along with their

average settling time. The figure show the top 5 best

performing chromosome values for each set of test. In

order to ensure the repeatability of the values

obtained, each chromosome will undergo 4 repeated

trials using oscilloscope this time to measure the

settling time. Figure 12 shows a sample waveform

obtained from the oscilloscope. Experimental data

obtained show promising results since all the settling

time data obtained for every trial are close enough

and these data in terms of the best values agree with

the results obtained from the FPGA. This guarantees

repeatability.

Figure 9 Results for 1st batch of randomly generated

chromosomes

122 Roderick Yap et al. / Jurnal Teknologi (Sciences & Engineering) 78: 5–7 (2016) 117–122

Figure 10 Results for 2nd batch of randomly generated

chromosomes

Figure 11 Results for 3rd batch of randomly generated

chromosomes

Figure 12 Camera shot of the waveform settling time from

Oscilloscope

5.0 CONCLUSION

In this paper, a genetic algorithm was proposed for

the control of a DC to DC boost converter. the goal

was to investigate if the entire system can be

hardware modelled and subsequently implemented

as a standalone system without needing the use of a

separate computer to do the heuristic searching

operation. The system was successfully implemented

in hardware using an FPGA with Verilog as design

entry tool. The searching algorithm proved successful

because results show a settling time as low as less than

60msec. This is in contrast with [9] which obtained a

settling time of 108msec because the PID tuning

method was done manually. For further studies, we

recommend a bigger initial population for the

searching operation. This will mean bigger hardware

and memory requirement for the system. It is also

recommended that the ranking operation of the

genetic algorithm be inclusive of both settling time

and booster output value closest to 6V.

Acknowledgement

The author wishes to thank the University Research

Coordination Office (URCO) of De La Salle University

for funding this research. Special thanks also to Mr.

Gerard Ely Faelden for the help on Genetic Algorithm.

References

[1] Yeong-Tsair Lin, Wen-Yaw Chung. 2005. A Monolithic CMOS

Step-Down DC-DC Converter, Circuits and Systems, 2005.

48th Midwest Symposium on, Aug 2005

[2] Wan-Rone Liou et al. 2007. A High Efficiency Dual-Mode

Buck Converter IC For Portable Applications

Communications, Circuits and Systems, 2007. ICCCAS 2007.

International Conference on, July 2007

[3] Islam ,M. Murshidul, Allee , David R., Konasani , Siva, and

Rodriguez, Armando A. Rodriguez, 2004. A Low-Cost Digital

Controller for a Switching DC Converter with Improved

Voltage Regulation, IEEE Power Electronics Letters, 2(4):

121-124.

[4] Dumalag, Lawrence and Yap, Roderick. 2012 FPGA Based

Multi-Decision Level PID Controller for Boost Converter, 5th

AUN/SEEDNET Regional Conference on Information and

Communications Technology.

[5] K.Sundareswaran et. al. 2010. Robust Controller

Identification for a Boost Type DC-DC Converter Using

Genetic Algorithm. 2008 IEEE Region 10 Colloquium and the

Third ICIIS, Kharagpur.

[6] Pengfei Guo et al. 2010. The Enhanced Genetic Algorithms

for the Optimization Design, 2010 3rd International

Conference on Biomedical Engineering and Informatics

(BMEI 2010).

[7] Tai-Shan Yan et. al. 2007. Research on Handwritten

Numerical Recognition Method Based On Improved

Genetic Algorithm AND Neural Network, Proceedings of

the 2007 International Conference on Wavelet Analysis

and Pattern Recognition, Beijing, China.

[8] Hongze Qiu et. al. 2009. A Genetic Algorithm-based

Approach to Flexible Job-shop Scheduling Problem.

Natural Computation, 2009. ICNC '09. Fifth International

Conference.

[9] Dumalag, Lawrence. 2010. FPGA Based Multi-Decision

Level PID Controller for Boost Converter, A Thesis

Document, De La Salle University, Manila, Philippines,

August, 2010

[10] Dee, Robert Isaac et. al. 2010. Development of an FPGA-

based controller for the implementation of a DC-DC boost

converter, A Thesis Document, De La Salle University.

[11] Caldo, R. and Yap, R. 2013. Design, development and

implementation of a fuzzy logic controller for DC-DC Buck

and Boost converter in an FPGA, Control, Automation and

Information Sciences (ICCAIS), International Conference

on, November 2013.

[12] Pseudo-Random Number Generation Routine for the

MAX765x Microprocessor [available online:

https://www.maximintegrated.com/en/app-

notes/index.mvp/id/1743]

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10622
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10622
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4348116
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4348116
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5362492
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5362492
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6709839
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6709839
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6709839

