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Graphical abstract 
 

 

Abstract 
 

Controllers for DC to DC Boost Converters have evolved from simple control 

method to those that involve the use of fuzzy logic controllers.   In many 

implementations, Proportional Integral Derivative (PID) controllers are 

commonly employed.  In this paper, a genetic algorithm for tuning the PID 

controller of a DC to DC Boost Converter is hardware modelled and 

implemented on a Field Programmable Gate Array (FPGA) using Verilog as 

tool for the design entry.  The goal of embedding genetic algorithm into the 

controller is to search for the best PID parameters that will yield fast settling 

time of the booster at an output of 6V.  The hardware implementation allows 

the controller to tune itself by searching for the best Kp, Ki and Kd values that 

will give the best settling time.  Significantly, this eliminates the need for a 

separate computer to do the searching routine.   Test results of the circuit 

implemented yielded promising results.   When compared to previous 

researches, the genetic algorithm employed yielded good PID parameters 

that resulted to a settling time as low as less than 60msec. 
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1.0  INTRODUCTION 
 

A lot of controllers have been implemented for DC to 

DC converters.  Many of these are implemented using 

full custom Integrated Circuit Design Approach [1][2].  

This type of design approach normally made use of 

both analog and digital components. Analog designs 

can be more complicated as a lot of issues such as 

amplifier gains and phase margins to name a few have 

to be addressed to guarantee a working hardware 

implementation.   Another approach to designing the 

controller is to use programmable digital components 

such as Field Programmable Gate Arrays (FPGA) 

[3][4][11].     The advantage of using this type of 

approach is lesser components to deal with since the 

designer only needs the programming language and 

the programmable device.   Genetic Algorithm has 

been popularly used for optimization techniques.  It 

basically starts with a random population with each 

member of the population called Chromosome.   The 

chromosomes evolve through several stages of 

iterations called generation.  The ultimate goal is to 

search for the best fit chromosome that will serve as the 

best solution to a problem [6].     In [7], it is used for 

optimizing in the design of a neural network intended 

for handwritten numerical recognition.   In [8], genetic 

algorithm was used for solving Job Shop Scheduling 

problem.  In [5], a genetic algorithm was employed for 

the controller implementation of a DC to DC Boost 

converter using MATLAB.  Instead of dealing heavily on 

the math, this research focused more on the actual 

hardware realization and data obtained from the 

hardware testing.  
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2.0  SIGNIFICANCE OF THE STUDY 
 

Normally, when implementing genetic algorithm, a 

computer is used for the heuristic searching operation.  

In this research, the genetic searching algorithm 

inclusive of all calculations involved is hardware 

modelled to implement a standalone system that 

does not necessitate the use of the computer.   The 

genetic algorithm is applied to a PID controller of a DC 

to DC Boost converter to allow the system to self-tune 

during the actual operation.  The controller has an 

output that asserts high to signal the end of the 

searching operation.  It also reveals the best value 

obtained for the Kp, Ki and Kd of the PID controller 

intended for the boost converter.   

 

 

3.0  DESIGN CONSIDERATION 

 
3.1  The Mathematical Algorithm 

 

The goal of the design is to modify an existing PID 

controller that was successfully implemented in [9] 

and in [10] to drive a DC-DC Boost converter.  In this 

research, selective design features from these two 

sources are combined to build a DC-DC Boost 

converter controller that is tuned using genetic 

algorithm.       

From the controller mathematical equations 

borrowed in [9] and [10], these equations were edited 

and expanded to insert Genetic Algorithm for tuning 

of the PID controller.  These equations are presented 

in the next paragraph.  The goal is to search for the 

best PID parameters i.e. Kp, Ki, Kd values that can give 

as low as possible settling time at the desired booster 

output voltage of 6V which is intended to drive 2 white 

LEDs.   The booster input is placed at 3V.   Since the 

booster is controlled using Pulse Width Modulation 

(PWM), the output voltage is then based on the duty 

cycle of the signal driving the power transistor of the 

booster circuit.   In general, the higher the duty cycle 

of the signal, the higher will be the booster output.  Let 

Ton [9] be the duty cycle value of the PWM signal and 

Δpulse be the PID controller output.   

 

                      Ton = Ton - Δpulse                                   (1) 

  

               Δpulse = -Kp * e1  -Ki * e2 -Kd (e1-e3)          (2) 

 

Where e1 is the current error also known as new error, 

e2 represents the cumulative error and e3 is the 

previous error.  Error e1 here is defined as the 

difference between the target booster output of 6V 

and the current output voltage of the booster circuit.  

Eq. 3 and 4 shows the formula for the error parameters. 

          

                      e1 =6-Vout                                               (3) 

 

                      e2 = e2 + e1                                             (4) 

Vout is the output voltage of the Booster.  Elitism was 

chosen for the genetic algorithm to be used. An initial 

population of 20 randomly generated PID parameters 

was generated randomly using MATLAB.  The 

population is collected in a matrix.  Each member of 

the population is a chromosome that represents a 

combination of Kp, Ki, Kd values.  This starting matrix 

will be known as the initial parents.  Likewise, an initial 

set of error values e1, e2 and e3 are set at 3.    The 

operation starts with the fetching of the first 

chromosome.  Every chromosome is evaluated based 

on its fitness.  The chromosome is expressed in binary 

format as shown by Eq. 5.   The index values indicated 

show 5 bits allotted for each Kp, Ki and Kd.     Eq. 5 

shows how the chromosome is used to regulate the 

booster output in conjunction with Eq. 1. The 

remaining Chormosome bits i.e. chromosome [9:0] are 

allotted for the settling time values.  

 
              Δpulse =  −chromosome(i[24: 20]) ∗ e1  
                                  −chromosome(i[19: 15]) ∗ e2 
                                  −chromosome(i[14: 10]) ∗ (e1 − e3)     (5) 
 

Where i = 1 to N with N representing the number of 

population 

 A fixed time delay period is allotted by the 

controller through a series of iterations.   This fixed 

delay period is only terminated if either 

a)  the booster output has settled at the target 

value or  

b) the maximum limit imposed by the time delay 

has been reached.   

 

In the case of b), the PID parameter is likely to be 

considered the least fit for the booster.    In the case of 

a),  the PID parameter values together with the settling 

time in terms of number of iterations,  is stored in a 

memory unit after which the booster is once again 

placed on a reset state.   The fitness function is based 

on the data provided by the hardware circuit.  The 

choice of the best value is based on the chromosome 

that will give the fastest settling time at an output of 

6V.    In principle, if f(t) represents the fitness function 

of the genetic algorithm, then 

 

                        f(t)  =
1sec−settling time

1 sec
                              (6) 

 

where 1 sec is the manually set maximum waiting time 

for the booster to settle. The settling time is acquired 

from the hardware circuit. 

The whole cycle is repeated with the next PID 

parameters fed to Eq. 2.   The cycle is continuously 

repeated until all the 20 parent values are tested on 

the booster controller model.   The values stored in the 

memory are subjected to a sorting operation.  The 

sorter ranks the data starting with the best value i.e. 

the one with the shortest settling time which 

corresponds to the highest fitness value.  From the 20 

ranked values, the first ten parent values are kept and 

the remaining 10 are discarded.  Out of the first ten, 

based on random selection, the best 10 undergoes 

crossover to generate 10 new sets of chromosome 

values called the offspring. The offspring are 
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subsequently mutated. The mutated offspring 

together with the parents will form the new 20-

chromosome population which will be subjected to 

the same procedure undergone by the initial 

population.   

 

3.2  The Hardware Design 

 

Figure 1 shows the general block diagram of the 

system.  The PID controller represents the hardware 

implementation of Equations 1 to 5 mentioned in the 

mathematical algorithm section.   It fetches the 

chromosomes from the memory unit.  The settling time 

is tested using the settling time counter block while 

settled voltage checker block checks if the output 

voltage has settled.  The obtained settling time and 

the corresponding Kp, Ki, and Kd are stored back into 

the memory unit.   The whole process is repeated for 

all subsequent chromosome values.  The sorter’s task is 

to rank the PID parameters based on the settling time 

values.   The crossover block, aided by the crossover 

randomizer block, produces the 10 new offspring 

values.  These new offspring randomly undergo 

mutation using the mutation block.  The mutation 

block is aided by the mutation randomizer block 

which basically decide which offspring bit will 

undergo mutation if any.  The entire procedure 

discussed to this point completes 1 generation.  The 

new set of population i.e. parents and offspring will 

undergo the same procedure of having its settling 

time on the PID controlled Booster tested and 

recorded.  

 

 

 
 

Figure 1 The hardware block diagram 

 

Figures 2 and 3 shows the hardware realization of the 

PID controller 1st half and 2nd half block respectively.  

The behaviour is represented by Finite State Machines. 

As shown in the figures, for the first part, the code starts 

from the reset state where the 20 initialized 

chromosomes (Kp, Ki and Kd) sets stored in the 

memory unit are tested for their settling time. The 

chromosomes are tested 1 set at a time.   The code 

starts with two solving states. State 00001 solves the 

integral and the proportional part of the PID equation 

while state 00010 solves the differential part.  Delta 

pulse calculate solves the change in PWM duty cycle 

which will then be calculated in state 00100. Pulse Limit 

state limits the duty cycle of the PWM within the 

allowable range.  PID idle is a waiting state for the 

booster output to be at a certain voltage value after 

2ms prior to sampling the output voltage.  The latch 

state is used to measure the value of the output 

voltage. This is followed by the next state which solves 

the error i.e. difference between the target voltage of 

6V and the measured value.  After getting the error, 

state 01001 will check if the voltage output is already 

in the desired 6V output. If not, then it will go back to 

PID solve 1 state to compute for the new duty cycle 

needed to bring the output voltage to 6V.  If the 

Voltage output is considered settled by the settled 

voltage checker module, the code will then go to the 

settled voltage state whether the previous state is in 

any from 00000 to 01001. The settling time will then be 

saved. The code will then go to the delay state to give 

time for the booster to discharge and will go back to 

the reset state. The settling times of one set of  Kp, Ki, 

and Kd values will be measured four times for 

repeatability. Once the procedure is done where 4 

settling times are recorded, the settling times will be 

averaged and the memory will be updated. The 

address will be incremented for the next chromosome 

with the same procedures. When all 20 chromosomes 

have their settling time recorded.   What follows is the 

choosing of the 10 best chromosomes from the 20 

recorded values through a sorting block. The top 10 

are subjected to crossover and mutation to produce 

the 10 offspring values.  These new sets of 

chromosomes will undergo the same procedure until 

a new top 10 is obtained. 

 

 
 

Figure 2 Genetic algorithm based PID controller -1st Half 
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Figure 3 Genetic algorithm based PID controller -2nd Half 

 

 

Figure 4 shows the FSM for the crossover routine. 

Starting from reset state that also serves as the wait 

state, the Crossover code waits until the sorting is 

finished. Once it receives a signal that sorting is done, 

it is then directed to crossover routine.   Next state is 

the swap state where the first two inputs which are the 

parents will crossover, meaning genes Kp or ki or Kd of 

the chromosomes will swap to produce two new 

children. After swapping, the address of the memory 

unit will be incremented for the next two parents. The 

state comes back to the swap state to crossover 

again. This procedure will repeat until all parents are 

swapped. It will then go to the swap finish state which 

makes an output pin equal to 1 to tell the mutation 

module to start. It will go back to the wait sorting state 

and will proceed again only for the next generation.  

 

 

 
 

Figure 4 FSM for the crossover routine 

 

 

Figure 5 shows the FSM for the mutation routine.  

Starting from reset state that also serves as the wait 

state, the mutation routine waits until the crossover is 

finished. Once it receives a signal that crossover is 

done, it will then be routed to the mutation routine. 

Next state is the mutation state where the first input 

which is an offspring from the crossover will mutate. 

After mutation, the address will be incremented for the 

next offspring.  The state comes back to mutation after 

passing through mutation idle state to mutate again. 

This procedure will repeat until all offspring are 

mutated. It will then go to the mutation finish state to 

tell the memory that the mutation is finished. The 

memory will be updated with the parents from the 

sorter and the children from this module It will go back 

to the wait crossover state and will proceed again 

only for the next generation.  

 

 
 

Figure 5 FSM for the mutation routine 

 

 

Figure 6 shows the circuit used for the randomizer.  The 

rectangular blocks represent D Flip flops. The random 

numbers are obtained from the exclusive or gates.  

The circuit shown is a modified version of the circuit 

shown in [12]. Randomizer is used for the crossover and 

mutation routine. 
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Figure 6 Randomizer 

 

 

4.0  RESULTS AND DISCUSSION 
 

In order to verify the validity of the design, the genetic 

algorithm together with the PID controller model was 

subsequently implemented on a Field Programmable 

Gate Array (FPGA).  A booster circuit was likewise built 

and interfaced to the FPGA.  Figure 7 shows the 

booster circuit to be controlled.   The circuit will drive 2 

white LEDs for a total of 6V output. 

 
 

Figure 7 The booster circuit 

 

 

Fig. 8 shows the picture of the prototype representing 

the whole system. Three sets of twenty chromosome 

values were randomly generated using MATLAB as the 

initial parent values.  Embedded in the Chromosome 

values are the settling time which are all initially set to 

0.   The PWM frequency was set at 100kHz. 

 

 
 

Figure 8 Prototype for hardware verification 

 

The genetic algorithm was run and evaluated on the 

hardware set up. For every chromosome value tested, 

the PID controller inside the FPGA outputs the 

corresponding PWM signal to the booster circuit of 

Figure 7.  The output voltage from the booster is fed 

back to the FPGA in a digital format through an 

analog to digital converter.   An internal counter inside 

the FPGA serves as timer in measuring the settling time 

of the booster output.   Figure 9, 10 and 11 show the 

respective summary result of the 3 sets of 20 randomly 

generated chromosome values.  In order ensure 

integrity of data, all settling time must be within a 

period of 100msec.  This means all values at the timer 

column are in excess of 100. As for example, a timer 

value of 145 means the settling time is 45msec. The top 

5 chromosomes shown in each table are picked from 

the 10 best values obtained during the searching 

routine. The top 10 chromosomes of the last 

generation are played again 8 times.  The system will 

then rank them based on the performance results to 

yield the top 5 fittest chromosomes along with their 

average settling time.  The figure show the top 5 best 

performing chromosome values for each set of test.  In 

order to ensure the repeatability of the values 

obtained, each chromosome will undergo 4 repeated 

trials using oscilloscope this time to measure the 

settling time. Figure 12 shows a sample waveform 

obtained from the oscilloscope.   Experimental data 

obtained show promising results since all the settling 

time data obtained for every trial are close enough 

and these data in terms of the best values agree with 

the results obtained from the FPGA. This guarantees 

repeatability. 

 

 
 

Figure 9 Results for 1st  batch of randomly generated 

chromosomes 
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Figure 10 Results for 2nd batch of randomly generated 

chromosomes 

 

 
 

Figure 11 Results for 3rd batch of randomly generated 

chromosomes 

 

 
 
Figure 12 Camera shot of the waveform settling time from 

Oscilloscope 

 

 

5.0  CONCLUSION 
 

In this paper, a genetic algorithm was proposed for 

the control of a DC to DC boost converter. the goal 

was to investigate if the entire system can be 

hardware modelled and subsequently implemented 

as a standalone system without needing the use of a 

separate computer to do the heuristic searching 

operation.   The system was successfully implemented 

in hardware using an FPGA with Verilog as design 

entry tool.  The searching algorithm proved successful 

because results show a settling time as low as less than 

60msec.  This is in contrast with [9] which obtained a 

settling time of 108msec because the PID tuning 

method was done manually.  For further studies, we 

recommend a bigger initial population for the 

searching operation.  This will mean bigger hardware 

and memory requirement for the system. It is also 

recommended that the ranking operation of the 

genetic algorithm be inclusive of both settling time 

and booster output value closest to 6V. 

Acknowledgement 
 

The author wishes to thank the University Research 

Coordination Office (URCO) of De La Salle University 

for funding this research. Special thanks also to Mr. 

Gerard Ely Faelden for the help on Genetic Algorithm. 

 

 

References 

 
[1] Yeong-Tsair Lin, Wen-Yaw Chung. 2005. A Monolithic CMOS 

Step-Down DC-DC Converter, Circuits and Systems, 2005. 

48th Midwest Symposium on, Aug 2005 

[2] Wan-Rone Liou  et al. 2007. A High Efficiency Dual-Mode 

Buck Converter IC For Portable Applications 

Communications, Circuits and Systems, 2007. ICCCAS 2007. 

International Conference on, July 2007 

[3] Islam ,M. Murshidul, Allee , David R., Konasani , Siva, and 

Rodriguez, Armando A. Rodriguez, 2004. A Low-Cost Digital 

Controller for a Switching DC Converter with Improved 

Voltage Regulation, IEEE Power Electronics Letters, 2(4): 

121-124. 

[4] Dumalag, Lawrence and Yap, Roderick. 2012 FPGA Based 

Multi-Decision Level PID Controller for Boost Converter,  5th 

AUN/SEEDNET Regional Conference on Information and 

Communications Technology. 

[5] K.Sundareswaran et. al. 2010. Robust Controller 

Identification for a Boost Type DC-DC Converter Using 

Genetic Algorithm. 2008 IEEE Region 10 Colloquium and the 

Third ICIIS, Kharagpur. 

[6] Pengfei Guo et al. 2010. The Enhanced Genetic Algorithms 

for the Optimization Design, 2010 3rd International 

Conference on Biomedical Engineering and Informatics 

(BMEI 2010). 

[7] Tai-Shan Yan et. al. 2007. Research on Handwritten 

Numerical Recognition Method Based On Improved 

Genetic Algorithm AND Neural Network, Proceedings of 

the 2007 International Conference on Wavelet Analysis 

and Pattern Recognition, Beijing, China. 

[8] Hongze Qiu et. al. 2009. A Genetic Algorithm-based 

Approach to Flexible Job-shop Scheduling Problem. 

Natural Computation, 2009. ICNC '09. Fifth International 

Conference.  

[9] Dumalag, Lawrence. 2010. FPGA Based Multi-Decision 

Level PID Controller for Boost Converter,  A Thesis 

Document, De La Salle University, Manila, Philippines, 

August, 2010 

[10] Dee, Robert Isaac et. al. 2010. Development of an FPGA-

based controller for the implementation of a DC-DC boost 

converter, A Thesis Document, De La Salle University. 

[11] Caldo, R. and Yap, R. 2013. Design, development and 

implementation of a fuzzy logic controller for DC-DC Buck 

and Boost converter in an FPGA, Control, Automation and 

Information Sciences (ICCAIS), International Conference 

on, November 2013. 

[12] Pseudo-Random Number Generation Routine for the 

MAX765x Microprocessor [available online: 

https://www.maximintegrated.com/en/app-

notes/index.mvp/id/1743] 
 

 

 
 
 

 

 

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10622
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10622
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4348116
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4348116
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5362492
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5362492
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6709839
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6709839
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6709839

