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Abstract 
 

The Lane-Emden type equations are employed in the modeling of several phenomena in the areas of mathematical physics 

and astrophysics. These equations are categorized as non-linear singular ordinary differential equations on the semi-infinite 

domain. In this paper, the generalized fractional order of the Chebyshev orthogonal functions (GFCFs) of the first kind have been 

introduced as a new basis for Spectral methods, and also presented an effective numerical method based on the GFCFs and 

the collocation method for solving the nonlinear singular Lane-Emden type equations of various orders. Obtained results have 

compared with other results to verify the accuracy and efficiency of the presented method. 
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1.0  INTRODUCTION 
 

In this section, some basic definitions and theorems 

which are useful for our method have been 

introduced [1]. 

 

Definition 1. For any real function 𝑓(𝑡), 𝑡 > 0, if there 

exists a real number 𝑝 > 𝜇, such that 𝑓(𝑡) = 𝑡𝑝𝑓1(𝑡), 
where 𝑓1(𝑡) ∈ 𝐶(0,∞), is said to be in space 𝐶𝜇, 𝜇 ∈ ℜ, 

and it is in the space 𝐶𝜇
𝑛 if and only if 𝑓𝑛 ∈ 𝐶𝜇, 𝑛 ∈ 𝑁. 

 

Definition 2. The fractional derivative of 𝑓(𝑡) in the 

Caputo sense by the Riemann-Liouville fractional 

integral operator of order 𝛼 > 0 is defined as [2, 3, 54]:  

 

𝐷𝛼𝑓(𝑡) =
1

Γ(𝑚 − 𝛼)
∫
𝑡

0

(𝑡 − 𝑠)𝑚−𝛼−1𝐷𝑚𝑓(𝑠)𝑑𝑠,     𝛼 > 0, 

 

for 𝑚 − 1 < 𝛼 ≤ 𝑚,𝑚 ∈ 𝑁, 𝑡 > 0 and 𝑓 ∈ 𝐶−1
𝑚 . 

 

Some properties of the operator 𝐷𝛼 are as follows. For 

𝑓 ∈ 𝐶𝜇, 𝜇 ≥ −1, 𝛼, 𝛽 ≥ 0, 𝛾 ≥ −1, 𝑁0 = {0,1,2, … } and 

constant 𝐶: 

(𝑖)𝐷𝛼𝐶 = 0,  

(𝑖𝑖)𝐷𝛼𝐷𝛽𝑓(𝑡) = 𝐷𝛼+𝛽𝑓(𝑡),  

 

(𝑖𝑖𝑖) 𝐷𝛼𝑡𝛾 =

{
 

 
0                              𝛾 ∈ 𝑁0  𝑎𝑛𝑑 𝛾 < ⌈𝛼⌉,

Γ(𝛾 + 1)

Γ(𝛾 − 𝛼 + 1)
𝑡𝛾−𝛼 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

(𝑖𝑣) 𝐷𝛼 (∑

𝑛

𝑖=1

𝑐𝑖𝑓𝑖(𝑡)) =∑

𝑛

𝑖=1

𝑐𝑖𝐷
𝛼𝑓𝑖(𝑡), 𝑤ℎ𝑒𝑟𝑒  𝑐𝑖 ∈ 𝑅. 

 

Definition 3. Suppose that 𝑓(𝑡) ∈ 𝐶(0, 𝜂] and 𝑤(𝑡) is a 

weight function, then we define: 

 

∥ 𝑓(𝑡) ∥𝑤
2 = ∫

𝜂

0

𝑓2(𝑡)𝑤(𝑡)𝑑𝑡. 

 

Theorem 1. (Generalized Taylor’s formula) Suppose that 

𝑓(𝑡) ∈ 𝐶[0, 𝜂] and 𝐷𝑘𝛼𝑓(𝑡) ∈ 𝐶[0, 𝜂], where 𝑘 = 0,1, . . . , 𝑚, 

0 < 𝛼 ≤ 1 and 𝜂 > 0. Then we have  

 

𝑓(𝑡) = ∑𝑚−1𝑖=0
𝑡𝑖𝛼

Γ(𝑖𝛼+1)
𝐷𝑖𝛼𝑓(0+) +

𝑡𝑚𝛼

Γ(𝑚𝛼+1)
𝐷𝑚𝛼𝑓(𝜉), (1) 
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with 0 < 𝜉 ≤ 𝑡, ∀𝑡 ∈ [0, 𝜂]. And thus  

 

|𝑓(𝑡) − ∑𝑚−1𝑖=0
𝑡𝑖𝛼

Γ(𝑖𝛼+1)
𝐷𝑖𝛼𝑓(0+)| ≤ 𝑀𝛼

𝑡𝑚𝛼

Γ(𝑚𝛼+1)
,  (2) 

 

where 𝑀𝛼 ≥ |𝐷
𝑚𝛼𝑓(𝜉)|. 

 

Proof: See Ref. [4]. 

 

In case of 𝛼 = 1, the generalized Taylor’s formula in the 

Eq. (1) reduces to the classical Taylor’s formula. 

The organization of the paper is expressed as 

follows: in section 2, the methodology used is 

expressed. In section 3, the proposed method is 

applied to some types of Lane-Emden equations and 

then the obtained results are considered. Finally, a 

conclusion is provided. 

 

 

2.0  METHODOLOGY 
 

In this section, the mathematical Preliminaries for our 

method have been considered. 

 
2.1 Mathematical Preliminaries on Lane-Emden Type 

Equations 

 

In this section, the mathematical Preliminaries on 

Lane-Emden type equations of various orders have 

been expressed. 

 

2.1.1  The Lane-Emden Type Equations of Second 

Order 

 

The study of singular boundary value problems 

modeled by second-order nonlinear ordinary 

differential equations (ODEs) have attracted many 

mathematicians and physicists. One of the important 

equations in this category is the following Lane-Emden 

type equation:  

 

𝑦′′(𝑡) +
𝑘

𝑡
𝑦′(𝑡) + 𝑓(𝑡, 𝑦(𝑡)) = ℎ(𝑡),        𝑘, 𝑡 > 0,  (3) 

 

with the boundary conditions:  

 

 𝑦(0) = 𝑦0,     𝑦′(0) = 𝑦1,   (4) 

 

where 𝑘, 𝑦0 and 𝑦1 are real constants, 𝑓(𝑡, 𝑦) and 

ℎ(𝑡) are some given continuous real-valued functions. 

For special forms of 𝑓(𝑡, 𝑦), the well-known Lane-

Emden equations occur in several models of non-

Newtonian fluid mechanics, mathematical physics, 

astrophysics, etc. For example, when 𝑓(𝑡, 𝑦) = 𝑞(𝑦), the 

Lane-Emden equations occur in modeling several 

phenomena in mathematical physics and 

astrophysics, such as the theory of stellar structure, the 

thermal behavior of a spherical cloud of gas, 

isothermal gas sphere and theory of thermionic 

currents [5, 6]. 

 

The Eq. (3) can be written as follows [7]:  

𝑡−2
𝑑

𝑑𝑡
(𝑡2

𝑑𝑦

𝑑𝑡
) + 𝑓(𝑡, 𝑦(𝑡)) = ℎ(𝑡),        𝑘, 𝑡 > 0.  (5) 

 

2.1.2  The Lane-Emden Type Equations of Third and 

Fourth Orders 

 

According to Eq. (5), in general, we can achieve: 

𝑡−𝑘
𝑑

𝑑𝑡
(𝑡𝑘

𝑑

𝑑𝑡
) 𝑦 + 𝑓(𝑡, 𝑦(𝑡)) = ℎ(𝑡), 

 

𝑦(0) = 𝑦0, 𝑦′(0) = 𝑦1,    (6) 

 

where 𝑘 is called the shape factor. 

 

To consider the Lane-Emden type equations of higher 

orders, the Eq. (6) is used as follows [8, 9]:  

 

 𝑡−𝑘
𝑑𝑚

𝑑𝑡𝑚
(𝑡𝑘

𝑑𝑛

𝑑𝑛𝑡
)𝑦 + 𝑓(𝑡, 𝑦(𝑡)) = ℎ(𝑡).  (7) 

 

1.  To determine third-order equations, it is obvious 

that:  

 𝑚 + 𝑛 = 3,          𝑚, 𝑛 ≥ 1, 

 

namely {𝑚 = 2, 𝑛 = 1}, or {𝑚 = 1, 𝑛 = 2}. Therefore   

        (a) For m=2, n=1:  

 𝑦′′′ +
2𝑘

𝑡
𝑦′′ +

𝑘(𝑘−1)

𝑡2
𝑦′ + 𝑓(𝑡, 𝑦(𝑡)) = ℎ(𝑡), (8) 

 𝑦(0) = 𝑦0, 𝑦′(0) = 𝑦′′(0) = 0. 

  

        (b) For m=1, n=2:  

 𝑦′′′ +
𝑘

𝑡
𝑦′′ + 𝑓(𝑡, 𝑦(𝑡)) = ℎ(𝑡),  (9) 

 𝑦(0) = 𝑦0, 𝑦′(0) = 𝑦′′(0) = 0.  

 

2.  To determine fourth-order equations, it is obvious 

that:  

 𝑚 + 𝑛 = 4,        𝑚, 𝑛 ≥ 1, 

 

namely {𝑚 = 3, 𝑛 = 1}, {𝑚 = 2, 𝑛 = 2} or {𝑚 = 1, 𝑛 = 3}. 

Therefore   

        (a) For m=3, n=1:   

𝑦(4) +
3𝑘

𝑡
𝑦′′′ +

3𝑘(𝑘−1)

𝑡2
𝑦′′ +

𝑘(𝑘−1)(𝑘−2)

𝑡3
𝑦′ + 𝑓(𝑡, 𝑦(𝑡)) = ℎ(𝑡),

 (10) 

 𝑦(0) = 𝑦0, 𝑦′(0) = 𝑦′′(0) = 𝑦′′′(0) = 0, 

        (b) For m=2, n=2:  

 𝑦(4) +
2𝑘

𝑡
𝑦′′′ +

𝑘(𝑘−1)

𝑡2
𝑦′′ + 𝑓(𝑡, 𝑦(𝑡)) = ℎ(𝑡), (11) 

 𝑦(0) = 𝑦0, 𝑦′(0) = 𝑦1, 𝑦′′(0) = 𝑦′′′(0) = 0, 

        (c) For m=1, n=3:  

 𝑦(4) +
𝑘

𝑡
𝑦′′′ + 𝑓(𝑡, 𝑦(𝑡)) = ℎ(𝑡),  (12) 

 𝑦(0) = 𝑦0, 𝑦′(0) = 𝑦1, 𝑦′′(0) = 𝑦2, 𝑦′′′(0) = 0, 

  

Recently, some researchers obtained 

approximations for Lane-Emden equations, for 

example, Wazwaz [8, 9, 10] by using ADM, Chowdhury 

and Hashim [11], Bataineh et al. [12], Singh et al. [13], 

Van Gorder [14] by using HPM, Yildirim and Ozis [15] 

and Dehghan and Shakeri [16] by using VIM, Boubaker 



27                                    Parand & Delkhosh / Jurnal Teknologi (Sciences & Engineering) 79:1 (2017) 25–36 

 

 

and Van Gorder [17] by using Boubaker polynomials 

expansion scheme, Marzban et al. [18] by using hybrid 

functions, Parand et al. in [19] by using a Hermite 

functions collocation method, in [20] by using Bessel 

orthogonal functions collocation method, in [21] by 

using Rational Chebyshev functions of the second 

kind collocation method, Hosseini and Abbasbandy 

[55] by using combination of the Spectral Method and 

Adomian Decomposition Method, and Azarnavid et 

al. [56] by using Picard-Reproducing Kernel Hilbert 

Space Method, and other methods [22, 23, 24, 25, 26, 

27, 28, 29, 30]. 

 

2.2 Generalized Fractional order of the Chebyshev 

Functions (GFCFs) 

 

 In this section, first, the GFCFs have been introduced, 

and then some properties and convergence of them 

for our method have been expressed.  

 

2.2.1  The Chebyshev Functions 

 

The Chebyshev polynomials have many properties, for 

example orthogonal, recursive, simple real roots, 

complete in the space of polynomials. For these 

reasons, many researchers have employed these 

polynomials in their research [31, 32, 33, 34, 35, 36]. 

The number of researchers using some 

transformations extended Chebyshev polynomials to 

various domains, for example by using 𝑥 =
𝑡−𝐿

𝑡+𝐿
,   𝐿 > 0 

the rational Chebyshev functions on semi-infinite 

domain [37, 38, 39, 40, 41, 42, 43, 44, 45], by using 𝑥 =
𝑡

√𝑡2+𝐿
, 𝐿 > 0 the rational Chebyshev functions on infinite 

domain [46], and by using 𝑥 = 1 − 2(
𝑡

𝜂
)𝛼 , 𝜂, 𝛼 > 0 the 

generalized fractional order of the Chebyshev 

functions (GFCF) of the first kind on the domain [0, 𝜂] 

[47] are introduced. 

 

2.2.2  The GFCFs Definition 

 

Using transformation 𝑥 = 1 − 2(
𝑡

𝜂
)𝛼, 𝛼, 𝜂 > 0 on classical 

Chebyshev polynomials of the first kind, the GFCFs are 

defined in the interval [0, 𝜂], and are denoted by  

 𝜂𝐹𝑇𝑛
𝛼(𝑡) = 𝑇𝑛(1 − 2(

𝑡

𝜂
)𝛼) [47]. 

 

The analytical form of  𝜂𝐹𝑇𝑛
𝛼(𝑡) of degree 𝑛𝛼 given by 

 𝜂𝐹𝑇𝑛
𝛼(𝑡) = ∑

𝑛

𝑘=0

(−1)𝑘
𝑛22𝑘(𝑛 + 𝑘 − 1)!

(𝑛 − 𝑘)! (2𝑘)!
(
𝑡

𝜂
)𝛼𝑘 

 = ∑𝑛𝑘=0 𝛽𝑛,𝑘,𝜂,𝛼  𝑡
𝛼𝑘,     𝑡 ∈ [0, 𝜂],  (13) 

 

where  

𝛽𝑛,𝑘,𝜂,𝛼 = (−1)
𝑘 𝑛22𝑘(𝑛+𝑘−1)!

(𝑛−𝑘)!(2𝑘)!𝜂𝛼𝑘
   𝑎𝑛𝑑   𝛽0,𝑘,𝜂,𝛼 = 1. (14) 

 

The GFCFs are orthogonal with respect to the weight 

function 𝑤(𝑡) =
𝑡
𝛼
2
−1

√𝜂𝛼−𝑡𝛼
 in the interval [0, 𝜂] as follow:  

∫
𝜂

0 𝜂𝐹𝑇𝑛
𝛼(𝑡) 𝜂𝐹𝑇𝑚

𝛼(𝑡)𝑤(𝑡)𝑑𝑡 =
𝜋

2𝛼
𝑐𝑛𝛿𝑚𝑛.  (15) 

where 𝛿𝑚𝑛 is the Kronecker delta, 𝑐0 = 2, and 𝑐𝑛 = 1 for   

𝑛 ≥ 1.  

 

3.3  Approximation of Functions 

 

Any function 𝑦(𝑡), 𝑡 ∈ [0, 𝜂], can be expanded as 

follows:  

𝑦(𝑡) = ∑

∞

𝑛=0

𝑎𝑛 𝜂𝐹𝑇𝑛
𝛼(𝑡), 

where using the property of orthogonality in the 

GFCFs:  

𝑎𝑛 =
2𝛼

𝜋𝑐𝑛
∫
𝜂

0
𝜂𝐹𝑇𝑛

𝛼(𝑡)𝑦(𝑡)𝑤(𝑡)𝑑𝑡,                    𝑛 = 0,1,2,⋯. 

 

In practice, we have to use first 𝑚-terms GFCFs and 

approximate 𝑦(𝑡):  
 

𝑦(𝑡) ≃ 𝑦𝑚(𝑡) = ∑
𝑚−1
𝑛=0 𝑎𝑛 𝜂𝐹𝑇𝑛

𝛼(𝑡) = 𝐴𝑇Φ(𝑡),  (16) 

with  

𝐴 = [𝑎0, 𝑎1, ⋯ , 𝑎𝑚−1]
𝑇 ,    (17) 

Φ(𝑡) = [𝜂𝐹𝑇0
𝛼(𝑡), 𝜂𝐹𝑇1

𝛼(𝑡),⋯ , 𝜂𝐹𝑇𝑚−1
𝛼 (𝑡)]𝑇 . (18) 

 

The following theorem shows that by increasing 𝑚, 

the approximation solution 𝑓𝑚(𝑡) is convergent to 𝑓(𝑡) 
exponentially. 

 

Theorem 2. Suppose that 𝐷𝑘𝛼𝑓(𝑡) ∈ 𝐶[0, 𝜂] for 𝑘 =
0,1, . . . , 𝑚, and  𝜂𝐹𝑚

𝛼 is the subspace generated by 

{𝜂𝐹𝑇0
𝛼(𝑡),𝜂 𝐹𝑇1

𝛼(𝑡), . . . ,𝜂 𝐹𝑇𝑚−1
𝛼 (𝑡)}. If 𝑓𝑚 = 𝐴𝑇Φ (in Eq. (16)) 

is the best approximation to 𝑓(𝑡) from  𝜂𝐹𝑚
𝛼, then the 

error bound is presented as follows  

 

 ∥ 𝑓(𝑡) − 𝑓𝑚(𝑡) ∥𝑤≤
𝜂𝑚𝛼𝑀𝛼

2𝑚Γ(𝑚𝛼+1)
√

𝜋

𝛼.𝑚!
, 

 

where 𝑀𝛼 ≥ |𝐷
𝑚𝛼𝑓(𝑡)|, 𝑡 ∈ [0, 𝜂]. 

 

Proof. See Ref. [47]. 

 

Theorem 3. The generalized fractional order of the 

Chebyshev function  𝜂𝐹𝑇𝑛
𝛼(𝑡), has precisely 𝑛 real zeros 

on interval (0, 𝜂) in the form  

 𝑡𝑘 = 𝜂 (
1−cos(

(2𝑘−1)𝜋

2𝑛
)

2
)

1

𝛼

,       𝑘 = 1,2, . . . , 𝑛. 

Moreover, 
𝑑

𝑑𝑡 𝜂𝐹𝑇𝑛
𝛼(𝑡) has precisely 𝑛 − 1 real zeros on 

interval (0, 𝜂) in the following points:  

 𝑡′𝑘 = 𝜂 (
1−cos(

𝑘𝜋

𝑛
)

2
)

1

𝛼

, 𝑘 = 1,2, . . . , 𝑛 − 1. 

Proof. See Ref. [47]. 
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2.3  Application of the Method 

 

In this section, the GFCFs collocation method to solve 

some well-known Lane-Emden type equations of 

various orders for different values of 𝑓(𝑡, 𝑦),  𝑦0, 𝑦1, 𝑦2 
and 𝑘 is applied. 

1.  The second-order Lane-Emden type equations 

For satisfying the boundary conditions, we satisfy the 

conditions Eq. (4) by multiplying the operator Eq. (16) 

by 𝑡2 and adding it to 𝑦0 and 𝑦1𝑡 as follows:  

 

 𝑦�̂�(𝑡) = 𝑦0 + 𝑦1𝑡 + 𝑡
2𝑦𝑚(𝑡).  (19) 

 

Now, 𝑦�̂�(𝑡) = 𝑦0 and 
𝑑

𝑑𝑡
𝑦�̂�(𝑡) = 𝑦1, when 𝑡 tends to zero, 

so the conditions in the Eq. (4) are satisfied. 

To apply the collocation method, we construct the 

residual function by substituting 𝑦�̂�(𝑡) in the Eq. (19) for 

𝑦(𝑡) in Lane-Emden type Eq. (3):  

 

𝑅𝑒𝑠(𝑡) =
𝑑2

𝑑𝑡2
𝑦�̂�(𝑡) +

𝑘

𝑡

𝑑

𝑑𝑡
𝑦�̂�(𝑡) + 𝑓(𝑡, 𝑦�̂�(𝑡)) − ℎ(𝑡). (20) 

 

2.  The third-order Lane-Emden type equations 

For satisfying the boundary conditions, we satisfy the 

conditions in the Eqs. (8) and (9) as follows:  

 

 𝑦�̂�(𝑡) = 𝑦0 + 𝑡
3𝑦𝑚(𝑡). 

 

Now, 𝑦�̂�(𝑡) = 𝑦0 and 
𝑑

𝑑𝑡
𝑦�̂�(𝑡) =

𝑑2

𝑑𝑡2
𝑦�̂�(𝑡) = 0, when 𝑡 

tends to zero. 

We construct the residual functions:   

        (a) For m=2, n=1:  

𝑅𝑒𝑠(𝑡) = 𝑦�̂�′′′ +
2𝑘

𝑡
𝑦�̂�′′ +

𝑘(𝑘−1)

𝑡2
𝑦�̂�′ + 𝑓(𝑡, 𝑦�̂�(𝑡)) − ℎ(𝑡).

 (21) 

 

        (b) For m=1, n=2:  

 𝑅𝑒𝑠(𝑡) = 𝑦�̂�′′′ +
𝑘

𝑡
𝑦�̂�′′ + 𝑓(𝑡, 𝑦�̂�(𝑡)) − ℎ(𝑡). (22) 

 

3.  The fourth-order Lane-Emden type equations 

For satisfying the boundary conditions, we satisfy the 

conditions in the Eqs. (10), (11) and (12) as follows:   

 

        (a) For m=3, n=1: 𝑦�̂�(𝑡) = 𝑦0 + 𝑡
4𝑦𝑚(𝑡). 

        (b) For m=2, n=2: 𝑦�̂�(𝑡) = 𝑦0 + 𝑦1𝑡 + 𝑡
4𝑦𝑚(𝑡). 

        (c) For m=1, n=3: 𝑦�̂�(𝑡) = 𝑦0 + 𝑦1𝑡 +
𝑦2

2
𝑡2 + 𝑡4𝑦𝑚(𝑡).  

We construct the residual functions:   

        (a) For m=3, n=1:   

𝑅𝑒𝑠(𝑡) = 𝑦�̂�
(4) +

3𝑘

𝑡
𝑦�̂�′′′ +

3𝑘(𝑘−1)

𝑡2
𝑦�̂�′′ +

𝑘(𝑘−1)(𝑘−2)

𝑡3
𝑦�̂�′ +

𝑓(𝑡, 𝑦�̂�(𝑡)) − ℎ(𝑡).  (23) 

        (b) For m=2, n=2:  

𝑅𝑒𝑠(𝑡) = 𝑦�̂�
(4) +

2𝑘

𝑡
𝑦�̂�′′′ +

𝑘(𝑘−1)

𝑡2
𝑦�̂�′′ + 𝑓(𝑡, 𝑦�̂�(𝑡)) − ℎ(𝑡).

  (24) 

        (c) For m=1, n=3:  

𝑅𝑒𝑠(𝑡) = 𝑦�̂�
(4) +

𝑘

𝑡
𝑦�̂�′′′ + 𝑓(𝑡, 𝑦�̂�(𝑡)) − ℎ(𝑡). (25) 

The equations to obtain the coefficient {𝑎𝑖}𝑖=0
𝑚−1 arise 

from equalizing 𝑅𝑒𝑠(𝑡) to zero on 𝑚 collocation points:  

 𝑅𝑒𝑠(𝑡𝑖) = 0,          𝑖 = 0,1, . . . , 𝑚 − 1.  (26) 

 

In this study, the roots of the GFCFs in the interval 

[0, 𝜂] (Theorem 3) are used as collocation points. By 

solving the obtained set of equations by a suitable 

method (e.g. Newton's method), we have the 

approximating function 𝑦�̂�(𝑡). 
It is worthwhile to note that it is common to solve a 

system of nonlinear equations, is applying the 

Newton's method. The main difficulty with such a 

system is how we can choose an initial approximation 

to handle Newton's method. We have had reason to 

believe that the best way to discover the proper initial 

approximation (or initial approximations) is to solve the 

system analytically for the very small 𝑚 (by means of 

symbolic software programs, such as Mathematica or 

Maple) and, then, we can find proper initial 

approximations, and particularly the multiplicity of 

solutions of such system. This action has been done by 

starting from proper initial approximations with the 

maximum number of ten iterations. In the present 

method, due to be added the fractional power, the 

order of complexity increases, but in many differential 

equations, accuracy of computations increases with 

𝑚 less. 

And also consider that all of the computations 

have been done by Maple 2015. 

 

 

3.0  RESULTS AND DISCUSSION 
 

In this section, using the present methods, some 

nonlinear singular Lane-Emden type equations of 

various orders are solved and then the obtained 

results are considered. 

 

3.1  Examples for the Second-order Lane-Emden Type 

Equations 

 

Example 1 (The standard Lane-Emden equation): For 

𝑓(𝑡, 𝑦) = 𝑦𝑀 , 𝑘 = 2, 𝑦0 = 1 and 𝑦1 = 0, the Eq. (3) is the 

standard Lane-Emden equation, which was used to 

model the thermal behavior of a spherical cloud of 

gas acting under the mutual attraction of its 

molecules and subject to the classical laws of 

thermodynamic [7, 19, 20, 51]:  

 

 𝑦′′(𝑡) +
2

𝑡
𝑦′(𝑡) + 𝑦𝑀(𝑡) = 0,        𝑡 > 0, (27) 

 𝑦(0) = 1, 𝑦′(0) = 0, 
 

where 𝑀 ≥ 0 is a constant. For = 0, 1 , and 5, the Eq. 

(27) has the exact solutions, respectively:  

𝑦(𝑡) = 1 −
1

3!
𝑡2,      𝑦(𝑡) =

𝑠𝑖𝑛(𝑡)

𝑡
,      𝑦(𝑡) = (1 +

𝑡2

3
)
−
1

2
. (28) 

 

In other cases, there is not any exact analytical 

solution. Therefore, we apply the GFCF collocation 

method to solve the standard Lane-Emden Eq. (27), 

for 𝑀 = −0.5, 0.5, 1.5, 2, 2.5, 3, and 4. 
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We construct the residual function as follows:  

 

 𝑅𝑒𝑠(𝑡) =
𝑑2

𝑑𝑡2
𝑦�̂�(𝑡) +

2

𝑡

𝑑

𝑑𝑡
𝑦�̂�(𝑡) + (𝑦�̂�(𝑡))

𝑀. (29) 

 

Therefore, to obtain the coefficient {𝑎𝑖}𝑖=0
𝑚−1, 𝑅𝑒𝑠(𝑡) is 

equalized to zero at 𝑚 collocation point. By solving this 

set of nonlinear algebraic equations, we can find the 

approximating function 𝑦�̂�(𝑡). 
Tables 1 - 8 show comparing the obtained solutions 

𝑦(𝑡) by the present method and some well-known 

methods in other papers, for the standard Lane-

Emden equations with 𝑀 = −0.5, 0.5, 1.5, 2, 2.5, 3, 3.5 

and 4 respectively. These tables also show the residual 

function 𝑅𝑒𝑠(𝑡) in some points. Table 9 shows 

comparing the obtained zeros of the standard Lane-

Emden equations by the present method and the 

values given by Horedt [7], Parand et al. [19] and 

Parand et al. [20] for 𝑀 = −0.5, 0.0, 0.5, 1.0, 1.5, 2, 2.5,
3, 3.5,  and 4. It is seen that using low number of points, 

the obtained results are very good compared to other 

methods, and for various values of 𝑀, the accurate 

results are calculated. Figure 1 shows the graphs of the 

standard Lane-Emden type equations for 𝑀 = −0.5,
0.0, 0.5, 1.0, 1.5, 2, 2.5, 3, 3.5 and 4.  

 

Table 1 Obtained values of 𝑦(𝑡) for standard Lane-Emden 

𝑀 = −0.5 by the present method for example 1 (𝑚 = 10, 𝛼 =
0.75) 

 

t Horedt [7] Present Error Res(t) 

0.100 0.9983329 0.9983353 0.0000024 1.4360e-4 

0.500 0.9580681 0.9579185 0.0001495 8.9803e-4 

1.000 0.8288357 0.8288176 0.0000180 1.2076e-3 

2.000 0.2320758 0.2318148 0.0002609 8.2943e-3 

2.208 8.8001e-4 8.3136e-4 0.0000486 1.8312e-3 
     

Table 2 Obtained values of 𝑦(𝑡) for standard Lane-Emden 

𝑀 = 0.5 by the present method for example 1 (𝑚 = 15, 𝛼 =
0.75) 

 

t Horedt [7] Present Error Res(t) 

0.10 0.9983338 0.9983338 7.0717e-9 7.4826e-6 

0.50 0.9585943 0.9585942 2.4441e-8 3.2593e-5 

1.00 0.8375345 0.8375352 7.4162e-7 1.2657e-4 

2.00 0.4025795 0.4025796 1.4812e-7 1.4373e-4 

2.70 2.6741e-2 2.6738e-2 2.7973e-6 9.3612e-3 

2.75 1.3502e-3 1.3504e-3 1.4657e-7 6.5629e-3 
 

Table 3 Obtained values of 𝑦(𝑡) for standard Lane-Emden 

𝑀 = 1.5 by the present method for example 1 (𝑚 = 15, 𝛼 =
0.75) 

 

t Horedt [7] Present Error Res(t) 

0.10 0.9983346 0.9983345 1.7679e-8 1.0538e-9 

0.50 0.9591039 0.9591038 5.0043e-8 3.4754e-7 

1.00 0.8451698 0.8451697 4.3996e-8 7.6167e-7 

3.00 0.1588576 0.1588575 6.0018e-9 7.0922e-6 

3.60 1.1090e-2 1.1091e-2 5.0493e-8 1.2344e-5 

3.65 7.6392e-4 7.6393e-4 7.3142e-9 2.4625e-5 
     

 

 

 

 

Table 4 Obtained values of 𝑦(𝑡) for standard Lane-Emden 

𝑀 = 2 by the present method for example 1 (𝑚 = 15, 𝛼 = 0.75) 

 

t Horedt [7] Parand [20] Present Res(t) 

0.10 0.9983350 0.99833499854 0.99833499986 1.0838e-7 

0.50 0.9593527 0.95935271580 0.95935271585 3.1003e-7 

1.00 0.8486541 0.84865411140 0.84865409603 6.6652e-7 

3.00 0.2418241 0.24182408305 0.24182406641 1.7998e-6 

4.00 4.88401e-2 4.88401499e-2 4.884014079e-2 2.6970e-6 

4.30 6.81094e-3 6.81094327e-3 6.810947394e-3 2.7737e-6 

4.35 3.66030e-4 3.66030179e-4 3.660339568e-4 2.3105e-6 

 

Table 5 Obtained values of 𝑦(𝑡) for standard Lane-Emden 

𝑀 = 2.5 by the present method for example 1 (𝑚 = 10, 𝛼 =
0.75) 

 

t Horedt [7] Parand [20] Present Res(t) 

0.10 0.9983354 0.99833541418 0.99833503458 4.8147e-6 

0.50 0.9595978 0.95959775446 0.95960162974 3.9807e-5 

1.00 0.8519442 0.85194419912 0.85194342182 2.5267e-6 

4.00 0.1376807 0.13768073303 0.13766004942 1.2495e-4 

5.00 2.90191e-2 2.90191866e-2 2.902408137e-2 3.0697e-4 

5.30 4.25954e-3 4.25954353e-3 4.258764232e-3 2.7243e-4 

5.355 2.10089e-5 2.10089382e-5 2.100708657e-5 1.6482e-4 

     

Table 6 Obtained values of 𝑦(𝑡) for standard Lane-Emden 

𝑀 = 3 by the present method for example 1 (𝑚 = 10, 𝛼 = 0.75) 

 

t Horedt [7] Parand [20] Present Res(t) 

0.10 0.9983358 0.99833582956 0.99833883172 1.372e-4 

0.50 0.9598391 0.95983906994 0.95979086302 3.922e-4 

1.00 0.8550576 0.85505756858 0.85506225670 2.129e-3 

5.00 0.1108198 0.11081983504 0.11074136512 2.184e-3 

6.00 4.37379e-2 4.37379838e-2 4.373437433e-2 1.415e-3 

6.80 4.16778e-3 4.25954876e-3 4.171491113e-3 1.374e-3 

6.896 3.60111e-5 3.60111453e-5 3.602801805e-5 2.177e-3 

     

Table 7 Obtained values of 𝑦(𝑡) for standard Lane-Emden 

𝑀 = 3.5 by the present method for example 1 (𝑚 = 8,𝛼 = 0.90) 
 

t Horedt [7] Present Error Res(t) 

0.10 0.9983362 0.9983391 0.0000029 6.7541e-4 

0.50 0.9600768 0.9597179 0.0003588 1.5668e-3 

1.00 0.8580096 0.8575136 0.0004959 1.8181e-5 

5.00 0.1786843 0.1834231 0.0047388 2.7972e-3 

9.00 1.18031e-2 1.20298e-2 0.0002267 3.9381e-3 

9.50 7.47234e-4 7.30544e-4 0.0000166 9.2213e-4 

9.53 1.20772e-4 1.18150e-4 0.0000026 1.1934e-3 

 

Table 8 Obtained values of 𝑦(𝑡) for standard Lane-Emden 

𝑀 = 4 by the present method for example 1 (𝑚 = 15, 𝛼 = 0.75) 

 

t Horedt [7] Parand [20] Present Res(t) 

0.10 0.9983367 0.9985876 0.9983371 2.347e-5 

0.50 0.9603109 0.9605160 0.9602977 7.612e-4 

1.00 0.8608138 0.8610072 0.8608802 4.359e-4 

5.00 0.2359227 0.2358368 0.2357450 9.300e-4 

10.0 5.96727e-2 0.0596105 5.983709e-2 7.000e-4 

14.0 8.33052e-3 0.0083058 8.360725e-3 3.053e-4 

14.9 5.76418e-4 0.0005759 5.765300e-4 1.721e-4 
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Table 9 Obtained zeros of standard Lane-Emden equations, 

by the present method for several 𝑀 for example 1 

 

M m Horedt [7] Parand [19] Parand [20] Present 

-0.5 10 2.20858842 - - 2.208588452 

0.0 20 2.44948974 - - 2.449489742 

0.5 15 2.75269805 - - 2.752698013 

1.0 40 3.14159265 - - 3.141592653 

1.5 15 3.65375374 3.65375374 3.653753749 3.653753762 

2.0 15 4.35287460 4.35287460 4.352874595 4.352874625 

2.5 10 5.35527546 5.35527546 5.355275468 5.355275468 

3.0 10 6.89684862 6.89684862 6.896848619 6.896848534 

3.5 08 9.53580534 - - 9.535805274 

4.0 15 14.9715463 4.9715463 14.97154637 14.97154183 

      

 

Figure 1 Obtained graphs of solutions of Lane-Emden standard 

equation, by the present method for several 𝑀 for example 1 

 

 

Example 2 (The isothermal gas spheres equation): For 

𝑓(𝑡, 𝑦) = 𝑒𝑦 , 𝑦0 = 0, and 𝑦1 = 0, the Eq. (3) is the 

isothermal gas sphere equation [19]:  

 

 𝑦′′(𝑡) +
2

𝑡
𝑦′(𝑡) + 𝑒𝑦(𝑡) = 0,        𝑡 > 0,  (30) 

 𝑦(0) = 0, 𝑦′(0) = 0, 

 

This model can be used to treat the isothermal gas 

sphere. For a thorough discussion of Eq. (30), see Davis 

[6], Van Gorder [14]. This equation has been solved by 

some researchers, for example Wazwaz [10] and 

Chowdhury and Hashim [11] by using ADM and HPM, 

respectively, Parand et al. [19] by using the Hermite 

collocation method, and Parand et al. [20] by using 

Bessel orthogonal functions collocation method. We 

construct the residual function as follows:  

 

 𝑅𝑒𝑠(𝑡) =
𝑑2

𝑑𝑡2
𝑦�̂�(𝑡) +

2

𝑡

𝑑

𝑑𝑡
𝑦�̂�(𝑡) + 𝑒

𝑦�̂�(𝑡). 

 

A series solution obtained by Wazwaz [10], Liao 

[52], Singh et al. [13] and Ramos [53] by using ADM, 

ADM, MHAM and series expansion respectively:  

 

𝑦(𝑡) ≃ −
1

6
𝑡2 +

1

5.4!
𝑡4 −

8

21.6!
𝑡6 +

122

81.8!
𝑡8 −

61.67

495.10!
𝑡10 +⋯.  

Tables 10 shows the comparison of 𝑦(𝑡) obtained by 

the present method and those obtained by Wazwaz 

[10] and Parand et al. [19] and [20]. The resulting 

graph of the isothermal gas spheres equation in 

comparison to the present method and those 

obtained by Wazwaz [10] and the Log graph of the 

residual error of approximate solution of the isothermal 

gas spheres equation are shown in Figure 2. 
 

Table 10 Obtained values of 𝑦(𝑡) for the isothermal gas spheres 

equation for example 2 (𝑚 = 30,𝛼 = 0.75) 

 

t Parand [19] Parand [20] Wazwaz [10] Present Res(t) 

0.1 -0.0016664188 -0.0016658338 -0.0016658339 -0.0016658338 4.9e-10 

0.2 -0.0066539713 -0.0066533671 -0.0066533671 -0.0066533671 4.1e-10 

0.5 -0.0411545150 -0.0411539572 -0.0411539568 -0.0411539572 1.96e-9 

1.0 -0.1588281737 -0.1588276775 -0.1588273537 -0.1588276775 1.96e-9 

1.5 -0.3380198308 -0.3380194247 -0.3380131103 -0.3380194247 1.08e-9 

2.0 -0.5598233120 -0.5598230043 -0.5599626601 -0.5598230043 4.25e-9 

2.5 -0.8063410846 -0.8063408705 -0.8100196713 -0.8063408705 7.45e-9 

      

 

(a) Graph of solutions 

(b) Graph of the residual error 

 

Figure  2 Graphs of solutions and the residual error of 

the isothermal gas spheres equation for example 2 
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Example 3: For 𝑓(𝑡, 𝑦) = 𝑠𝑖𝑛ℎ(𝑦), 𝑦0 = 1 and 𝑦1 = 0, Eq. (3) 

will be one of the Lane-Emden type equations [19, 20]:  

 

 𝑦′′(𝑡) +
2

𝑡
𝑦′(𝑡) + 𝑠𝑖𝑛ℎ(𝑦(𝑡)) = 0,        𝑡 > 0, (31) 

 𝑦(0) = 1, 𝑦′(0) = 0, 

 

A series solution obtained by Wazwaz [10] by using 

Adomian Decomposition Method (ADM) is:  

𝑦(𝑡) ≃ 1 −
𝑒2−1

12𝑒
𝑡2 +

1

480

𝑒4−1

𝑒2
𝑡4 −

1

30240

2𝑒6−3𝑒4+3𝑒2−2

𝑒3
𝑡6  

+
1

26127360

61𝑒8 − 104𝑒6 + 104𝑒2 − 61

𝑒4
𝑡8 +⋯. 

 

Table 11 shows the comparison of 𝑦(𝑡) obtained by 

the present method and those obtained by Wazwaz 

[10] and Parand et al. [19]. The resulting graph of the 

Eq. (31) in comparison to the present method and 

those obtained by Wazwaz [10] and the Log graph of 

the residual error of approximate solution are shown in 

Figure 3. This graph shows that the present method has 

an appropriate convergence rate. 

 

(a) Graph of solutions 

(b) Graph of the residual error 

 

Figure 3 Graphs of solutions and the residual error for 

example 3 

 

Table 11 Obtained values of 𝑦(𝑡) for Lane-Emden equation by 

the present method for example 3 (𝑚 = 20,𝛼 = 0.75) 

 

t Parand [19] Wazwaz [10] Present Res(t) 

0.1 0.9981138095 0.9980428414 0.9980428414 1.07e-8 

0.2 0.9922758837 0.9921894348 0.9921894347 1.51e-8 

0.5 0.9520376245 0.9519611019 0.9519610925 2.71e-8  

1.0 0.8183047481 0.8182516669 0.8182429282 3.30e-8 

1.5 0.6254886192 0.6258916077 0.6254387632 2.68e-8 

2.0 0.4066479695 0.4136691039 0.4066228877 3.43e-8 

 

Example 4: For 𝑓(𝑡, 𝑦) = 𝑠𝑖𝑛(𝑦), 𝑦0 = 1 and 𝑦1 = 0, the Eq. 

(3) will be one of the Lane-Emden type equations that 

we want to solve [19, 20]:  

 

 𝑦′′(𝑡) +
2

𝑡
𝑦′(𝑡) + 𝑠𝑖𝑛(𝑦(𝑡)) = 0,        𝑡 > 0, (32) 

 𝑦(0) = 1, 𝑦′(0) = 0, 
 

A series solution obtained by Wazwaz [10] by using 

ADM is:  

𝑦(𝑡) ≃ 1 −
1

6
𝑘1𝑡

2 +
1

120
𝑘1𝑘2𝑡

4 + 𝑘1(
1

3024
𝑘1
2 −

1

5040
𝑘2
2)𝑡6 

+𝑘1𝑘2(−
113

3265920
𝑘1
2 +

1

362880
𝑘2
2)𝑡8 

+𝑘1(
1781

898128000
𝑘1
2𝑘2

2 −
1

399168000
𝑘2
4 −

19

23950080
𝑘1
4)𝑡10 +⋯,  

 

where 𝑘1 = 𝑠𝑖𝑛(1) and 𝑘2 = 𝑐𝑜𝑠(1). 

 

Table 12 shows the comparison of 𝑦(𝑡) obtained by 

the present method and those obtained by Wazwaz 

[10]. In order to compare the present method with 

those obtained by Wazwaz [10] and Parand et al. [19]. 

The resulting graph of the Eq. (32) in comparison to the 

present method and those obtained by Wazwaz [10] 

and the Log graph of the residual error of approximate 

solution are shown in Figure 4. This graph shows that 

the present method has an appropriate convergence 

rate. 

 
Table 12 Obtained values of 𝑦(𝑡) for Lane-Emden equation 

by the present method for example 4 (𝑚 = 30, 𝛼 = 0.75) 

 

t Parand [19] Wazwaz [10] Present Res(t) 

0.1 0.9986051425 0.9985979358 0.9985979273 1.81e-11 

0.2 0.9944062706 0.9943962733 0.9943962648 2.40e-11 

0.5 0.9651881683 0.9651777886 0.9651777801 5.82e-11 

1.0 0.8636881301 0.8636811027 0.8636811255 5.82e-11 

1.5 0.7050524103 0.7050419247 0.7050452334 4.78e-11 

2.0 0.5064687568 0.5063720330 0.5064636272 8.34e-11 
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(a) Graph of solutions  

(b) Graph of the residual error 

 

Figure 4 Graphs of solutions and the residual error for 

example 4 

 

 

3.2  Examples for the Third-order Lane-Emden Type 

Equations 

 

Example 5: For 𝑓(𝑡, 𝑦) = 𝑦𝑞 , 𝑞 ∈ 𝑅 and 𝑘 = 4, 𝑦0 = 1, the 

Eq. (8) will be one of the third-order Lane-Emden type 

equations [8]:  

 

 𝑦′′′ +
8

𝑡
𝑦′′ +

12

𝑡2
𝑦′ + 𝑦𝑞 = 0,   (33) 

 𝑦(0) = 1, 𝑦′(0) = 𝑦′′(0) = 0. 

 

A series solution obtained by Wazwaz [8] by using ADM 

is:  

𝑦(𝑡) ≃ 1 −
1

90
𝑡3 +

𝑞

38880
𝑡6 −

𝑞(17𝑞 − 12)

230947200
𝑡9

+
𝑞(679𝑞2 − 1182𝑞 + 528

2909934720000
𝑡12+. . .. 

 

The resulting graph of the Eq. (33) in comparison to 

the present method and those obtained by Wazwaz 

[8] and the Log graph of the residual error of 

approximate solution with 𝑚 = 25, 𝛼 = 0.75 and various 

values of 𝑞 are shown in Figure 5. 

 

(a) Graphs of the absolute errors 

(b) Graph of the residual error 

 

Figure 5 Graphs of the absolute errors and the residual 

errors for example 5 

 

 

Example 6: For 𝑓(𝑡, 𝑦) = −9(4 + 10𝑡3 + 3𝑡6)𝑦, 𝑘 = 2, and 

𝑦0 = 1, the Eq. (8) will be one of the third-order Lane-

Emden type equations [8]:  

 

 𝑦′′′ +
4

𝑡
𝑦′′ +

2

𝑡2
𝑦′ − 9(4 + 10𝑡3 + 3𝑡6)𝑦 = 0, (34) 

 𝑦(0) = 1, 𝑦′(0) = 𝑦′′(0) = 0. 

 

An analytical solution obtained by Wazwaz [8] by 

using ADM is 𝑦(𝑡) = 𝑒𝑡
3
. 

The resulting graph of the Eq. (34) in comparison to 

the present method and analytical solution, and the 

Log graph of the residual error of approximate solution 

with 𝑚 = 30 and 𝛼 = 3 are shown in Figure 6. 
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(a) Graphs of the absolute errors 

(b) Graph of the residual error 

 

Figure 6 Graphs of the absolute errors and the residual 

errors for example 6 

 

 

Example 7: For 𝑓(𝑡, 𝑦) = −(10 + 10𝑡3 + 𝑡6)𝑦, 𝑘 = 4, and 

𝑦0 = 1, the Eq. (9) will be one of the third-order Lane-

Emden type equations [8]:  

 

 𝑦′′′ +
4

𝑡
𝑦′′ − (10 + 10𝑡3 + 𝑡6)𝑦 = 0,  (35) 

 𝑦(0) = 1, 𝑦′(0) = 𝑦′′(0) = 0. 

 

An analytical solution obtained by Wazwaz [8] by 

using ADM is 𝑦(𝑡) = 𝑒
𝑡3

3 . 

The resulting graph of Eq. (35) in comparison to the 

present method and analytical solution, and the Log 

graph of the residual error of approximate solution 

with 𝑚 = 30 and 𝛼 = 1.5 are shown in Figure 7. 

 

(a) Graphs of the absolute errors 

(b) Graph of the residual error 

 

Figure 7 Graphs of the absolute errors and the residual 

errors for example 7 

 

 

3.3  Examples for the Fourth-order Lane-Emden Type 

Equations 

 

Example 8: For 𝑓(𝑡, 𝑦) = 𝑦𝑞 , 𝑞 ∈ 𝑅, 𝑘 = 4, and 𝑦0 = 1, the 

Eq. (10) will be one of the fourth-order Lane-Emden 

type equations [9]:  

 

 𝑦(4) +
12

𝑡
𝑦′′′ +

36

𝑡2
𝑦′′ +

24

𝑡3
𝑦′ + 𝑦𝑞 = 0,  (36) 

 𝑦(0) = 1, 𝑦′(0) = 𝑦′′(0) = 0. 

 

A series solution obtained by Wazwaz [9] by using ADM 

is:  

𝑦(𝑡) ≃ 1 −
1

840
𝑡4 +

𝑞

6652800
𝑡8 −

𝑞(40𝑞 − 33)

1525620096000
𝑡12+. . .. 

 

The resulting graph of Eq. (36) in comparison to the 

present method and those obtained by Wazwaz [9] 

and the Log graph of the residual error of approximate 
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solution with 𝑚 = 25, 𝛼 = 0.50 and various values of 𝑞 

are shown in Figure 8. 

 

(a) Graphs of the absolute errors 

(b) Graph of the residual error 

 

Figure 8 Graphs of the absolute errors and the residual 

errors for example 8 

 

 

Example 9: For 𝑓(𝑡, 𝑦) = 𝑦𝑞 , 𝑞 ∈ 𝑅, 𝑘 = 4, 𝑦0 = 1, and 

𝑦1 = 0, the Eq. (11) will be one of the fourth-order Lane-

Emden type equations [9]:  

 

 𝑦(4) +
8

𝑡
𝑦′′′ +

12

𝑡2
𝑦′′ + 𝑦𝑞 = 0, (37) 

 𝑦(0) = 1, 𝑦′(0) = 𝑦′′(0) = 0. 

 

A series solution obtained by Wazwaz [9] by using ADM 

is:  

𝑦(𝑡) ≃ 1 −
1

360
𝑡4 +

𝑞

1814400
𝑡8 −

𝑞(8𝑞 − 7)

43589145600
𝑡12+. . .. 

 

The resulting graph of Eq. (37) in comparison to the 

present method and those obtained by Wazwaz [9] 

and the Log graph of the residual error of approximate 

solution with 𝑚 = 25, 𝛼 = 0.50 and various values of 𝑞 

are shown in Figure 9. 

 

(a) Graphs of the absolute errors 

(b) Graph of the residual error 

 

Figure 9 Graphs of the absolute errors and the residual 

errors for example 9 

 

 

Example 10: For 𝑓(𝑡, 𝑦) = 𝑦𝑞 , 𝑞 ∈ 𝑅, 𝑘 = 4, 𝑦0 = 1, 𝑦1 = 0, 
and 𝑦2 = 0, the Eq. (12) will be one of the fourth-order 

Lane-Emden type equations [9]:  

 

 𝑦(4) +
4

𝑡
𝑦′′′ + 𝑦𝑞 = 0, (38) 

 𝑦(0) = 1, 𝑦′(0) = 𝑦′′(0) = 0. 

 

A series solution obtained by Wazwaz [9] by using ADM 

is:  

𝑦(𝑡) ≃ 1 −
1

120
𝑡4 +

𝑞

362880
𝑡8 −

𝑞(68𝑞 − 63)

31135104000
𝑡12+. . .. 

 

The resulting graph of Eq. (38) in comparison to the 

present method and those obtained by Wazwaz [9] 

and the Log graph of the residual error of approximate 
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solution with 𝑚 = 25, 𝛼 = 0.50 and various values of 𝑞 

are shown in Figure 10. 

 

(a) Graphs of the absolute errors 

(b) Graph of the residual error 

 

Figure 10 Graphs of the absolute errors and the residual 

errors for example 10 

 

 

4.0  CONCLUSION 
 
The main goal of the paper was to introduce a new 

orthogonal basis, namely the generalized fractional 

order Chebyshev orthogonal functions (GFCFs) to 

construct an approximation to the solution of non-

linear Lane-Emden type equations of various orders. 

The presented results show that the introduced basis 

for the collocation spectral method is efficient and 

applicable. Our results have better accuracy with 

lesser 𝑚 as compared to other results, and in most 

cases, the present method has the absolute and the 

residual errors are better. Comparison was made of 

the exact solution, the numerical solutions of Parand 

et al. [19, 20], the analytical solution of Wazwaz [9, 10], 

the numerical solution of Horedt [7] and the present 

method. It has been shown that the present method 

has provided an acceptable approach to solve non-

linear Lane-Emden type equations of various orders. 
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