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Abstract

The Lane-Emden type equations are employed in the modeling of several phenomena in the areas of mathematical physics
and astrophysics. These equations are categorized as non-linear singular ordinary differential equations on the semi-infinite
domain. In this paper, the generalized fractional order of the Chebyshev orthogonal functions (GFCFs) of the first kind have been
infroduced as a new basis for Spectral methods, and also presented an effective numerical method based on the GFCFs and
the collocation method for solving the nonlinear singular Lane-Emden type equations of various orders. Obtained results have
compared with other results to verify the accuracy and efficiency of the presented method.
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1.0 INTRODUCTION

In this section, some basic definitions and theorems
which are wuseful for our method have been
infroduced [1].

Definition 1. For any real function f(t), t > 0, if there
exists a real number p > u, such that f(t) = tPfi(t).
where f;(t) € €(0, ), is said to be in space C,, p € R,
anditisin the space C} if and only if f™ € C,,n € N.

Definition 2. The fractional derivative of f(t) in the
Caputo sense by the Riemann-Liouville fractional
integral operator of order a > 0 is defined as [2, 3, 54]:

1 t
DEf(t) = a),[ (t—s)m e 1p™mf(s)ds, a>0,
0

r(m—
form—1<a<mmeN,t>0and f e C".
Some properties of the operator D% are as follows. For

fec, p=-1, =0, y=-1, Ny={0,1,2,..} and
constant C:

(HDC =0,
(IDDDFf(t) = DU*f (D),

0 y €Ny andy < [a],
@D =) rgrn
TG —at ) , otherwise.
n n
(iv) D* Z cifi(®) | = Z c;D*f;(t), where c¢; € R.

i=1 i=1

Definition 3. Suppose that f(t) € €(0,n] and w(t) is a
weight function, then we define:

n
Il F(t) I|5,=f F2(w(t)dt.
0

Theorem 1. (Generalized Taylor's formula) Suppose that
f(t) € C[0,n] and D¥ef(t) € C[0,n], where k = 0,1,...,m,
0<a<1andn>0.Then we have

tma

_ ym-1_t" i +
Ft) = S} o DF(0%) +

D™Ef(8), (1)

F(ma+1)
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with 0 < & < t, vt € [0,1]. And thus

P piaf(0h)] < My 2)

2 r(ma+1)’

If(®) - 2

=0 T(ia+1)
where M, > |[D™f(&)].
Proof: See Ref. [4].

In case of a = 1, the generalized Taylor's formula in the
Eg. (1) reduces to the classical Taylor’'s formula.

The organization of the paper is expressed as
follows: in section 2, the methodology used is
expressed. In section 3, the proposed method is
applied to some types of Lane-Emden equations and
then the obtained results are considered. Finally, a
conclusion is provided.

2.0 METHODOLOGY

In this section, the mathematical Preliminaries for our
method have been considered.

2.1 Mathematical Preliminaries on Lane-Emden Type
Equations

In this section, the mathematical Preliminaries on
Lane-Emden type equations of various orders have
been expressed.

2.1.1 The Lane-Emden Type Equations of Second
Order

The study of singular boundary value problems
modeled by second-order nonlinear ordinary
differentfial equations (ODEs) have attracted many
mathematicians and physicists. One of the important
equationsin this category is the following Lane-Emden
type equation:

y'(©+ §Y’(t) +fEy@®) =h®), kt>0, (3)
with the boundary conditions:
y(0) =yo, ¥'(0) =y, (4)

where k,y, and y; are real constants, f(t,y) and
h(t) are some given continuous real-valued functions.
For special forms of f(t,y). the well-known Lane-
Emden equations occur in several models of non-
Newtonian fluid mechanics, mathematical physics,
astrophysics, efc. For example, when f(t,y) = q(y). the
Lane-Emden equations occur in modeling several
phenomena in  mathematical physics and
astrophysics, such as the theory of stellar structure, the
thermal behavior of a spherical cloud of gas,
isothermal gas sphere and theory of thermionic
currents [5, 6].

The Eqg. (3) can be written as follows [7]:

2 (D) +f(Ey@®) =h@®),  kt>0. (5)

2.1.2 The Lane-Emden Type Equations of Third and
Fourth Orders

According to Eqg. (5), in general, we can achieve:

d d
£k = (tk E) y+£(ty®) =h®),

¥(0) =¥0,¥'(0) = y1, (6)
where k is called the shape factor.

To consider the Lane-Emden type equations of higher
orders, the Eq. (6) is used as follows [8, 9]:

_g am

R (D) y + £ (6 y(0) = h(D). (7)
1. To determine third-order equations, it is obvious
that:

m+n=3, mnz=1,

namely {m = 2,n = 1}, or {m = 1,n = 2}. Therefore

(a) For m=2, n=1:
nr 2k I

YAy MDDy f e y(0) = h(D),  (8)
y(0) = ¥,,¥'(0) = y""(0) = 0.

(b) For m=1, n=2:

ym +%yn + f(t,y(t)) = h(t), (9)

y(0) = ¥,,¥'(0) = y"(0) = 0.

2. To determine fourth-order equations, it is obvious
that:
m+n=4, mn2=1,

namely in=3,n=1}, {m=2,n=2} or {m=1,n=3}
Therefore
(a) For m=3, n=1:
3k 3k(k—=1) 4
OELI (k-1)

T+t2y+ t3

KE=DW2) 1 4 £ (6, (8)) = h(),

(10)

¥(0) = y,,¥'(0) = ¥"(0) = y"'(0) = 0,
(b) For m=2, n=2:
y® + 2y KDy 4 f(y©) = h®), (1)
¥(0) = y0,¥'(0) = y1,¥"(0) = y"'(0) = 0,
(c) For m=1, n=3:
Y@ + 2y + £(6,y(6)) = h(t), (12)

y(0) = ¥0,¥'(0) = y1,¥"(0) = y,,¥"'(0) = 0,

Recently, some researchers obtained
approximations for Lane-Emden equations, for
example, Wazwaz [8, 9, 10] by using ADM, Chowdhury
and Hashim [11], Bataineh et al. [12], Singh ef al. [13],
Van Gorder [14] by using HPM, Yildirim and Ozis [15]
and Dehghan and Shakeri [16] by using VIM, Boubaker
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and Van Gorder [17] by using Boubaker polynomials
expansion scheme, Marzban et al. [18] by using hybrid
functions, Parand et al. in [19] by using a Hermite
functions collocation method, in [20] by using Bessel
orthogonal functions collocation method, in [21] by
using Rafional Chebyshev functions of the second
kind collocation method, Hosseini and Abbasbandy
[55] by using combination of the Spectral Method and
Adomian Decomposition Method, and Azarnavid et
al. [56] by using Picard-Reproducing Kernel Hilbert
Space Method, and other methods [22, 23, 24, 25, 26,
27,28, 29, 30].

2.2 Generadlized Fractional order of the Chebyshev
Functions (GFCFs)

In this section, first, the GFCFs have been infroduced,
and then some properties and convergence of them
for our method have been expressed.

2.2.1 The Chebyshev Functions

The Chebyshev polynomials have many properties, for
example orthogonal, recursive, simple real roofs,
complete in the space of polynomials. For these
reasons, many researchers have employed these
polynomials in their research [31, 32, 33, 34, 35, 36].
The number of researchers using some

fransformations extended Chebyshev polynomials to
various domains, for example by using x = % L>0

the rational Chebyshev functions on semi-infinite
domoin [37, 38, 39, 40, 41, 42, 43, 44, 45], by using x =

Jtz_ L > 0 the rational Chebyshev functions on infinite
domain [46], and by using x =1 — 2(;)“, n,a >0 the

generalized fractional order of the Chebyshev
functions (GFCF) of the first kind on the domain [0, 7]
[47] are intfroduced.

2.2.2 The GFCFs Definition

Using transformation x = 1 — 2(%)"‘, a,n > 0 on classical

Chebyshev polynomials of the first kind, the GFCFs are
defined in the interval [0,n], and are denoted by
PFTE(D) = To(1 = 2()) [47).

The onolyﬂcol form of , FT{(t) of degree na given by
u anZk(n+k—1) t ook
FTE() —Z( D e &
= Zk:o ﬁn,k,n,a t*, te [0,7], (13)

where

22K (n+k—1)!
Brkna = (—1)k(r:lk)réw and Boxna = 1. (14)

The GFCFs are orthogonal with respect to the weight

function w(t) = \/% in the interval [0,7n] as follow:
) oFTE@®) o FTE@wt)dt = o= cpbmn. (15)

where 6, is the Kronecker delfo, co=2,andc, = 1for
n=1.

3.3 Approximation of Functions

Any function y(t), t €[0,5n]. can be expanded as
follows:

3}

YO = an GFTEE,
n=0
where using the property of orthogonality in the
GFCFs:

20 (7 a
an = —— 2FTE Oy (Ow(t)dt, n=01.2,-

TTCy Jo

In practice, we have to use first m-terms GFCFs and
approximate y(t):

Y(O) = ym(t) = 2050 an o FTE(E) = ATO(D), (16)
with
A= [ao' ap, -, am—l]T' (] 7)

() = [FTE(O), oFTEO), . oFTaa (O] (18)

The following theorem shows that by increasing m,
the approximation solution £, (t) is convergent to f(t)
exponentially.

Theorem 2. Suppose that D¥¢f(t) € C[0,n] for k=
0,1,...,m, and ,Ef is the subspace generated by
(FTE ) FTEE), .. FTE_1 (D} I fin = AT® (in Eq. (16))
is the best approximation to f(t) from ,Eg7, then the
error bound is presented as follows

£ = ) NS s [

where M, = |D™ef(t)|,t € [0,n].
Proof. See Ref. [47].

Theorem 3. The generalized fractional order of the
Chebyshev function , FT;¥ (t), has precisely n real zeros
on interval (0,7n) in the form

1- cos(—(Zk 1)”)
te=n|l—72—), k=12..n

d .
Moreover, - 2FT# () has precisely n — 1 real zeros on

interval (0,n) in the following points:

1
, 1—cos(kn—") a
the=1 - k=12,...,n—1.

Proof. See Ref. [47].
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2.3 Application of the Method

In this section, the GFCFs collocation method to solve
some well-known Lane-Emden type equations of
various orders for different values of f(t,y), vo, v1, V2
and k is applied.

1. The second-order Lane-Emden type equations

For safisfying the boundary conditions, we satisfy the
conditions Eqg. (4) by multiplying the operator Eq. (16)
by t? and adding it fo y, and y,t as follows:

Im(t) = Yo + it + 2y (0). (19)

Now, ¥, (t) = y, and %ﬁn(t) = y1, when t tends to zero,

so the conditions in the Eq. (4) are satisfied.

To apply the collocation method, we construct the
residual function by substituting 3, (t) in the Eq. (19) for
y(t) in Lane-Emden type Eq. (3):

Res(t) = S 7m(0) + 5L 5m(0) + F(t,5m(®) — h(D).  (20)

2. The third-order Lane-Emden type equations
For safisfying the boundary conditions, we satisfy the
conditions in the Egs. (8) and (?) as follows:

(1) = Yo + 3y (D).

- d a? _
Now, ¥, (t) =y, and Eym(t) = Fym(t) =0, when t
tends to zero.
We construct the residual functions:
(a) Form=2, n=1:

Res(t) =y + =

1 k k_1 Py P
!+ DT+ £ (6 m(£) — h(E).

(21)

(b) For m=1, n=2:
Res(t) = yn'"' + %)711\1 + (&) —h@®).  (22)

3. The fourth-order Lane-Emden type equations
For safisfying the boundary conditions, we satisfy the
conditions in the Egs. (10), (11) and (12) as follows:

(a) For m=3, n=1: ;5 (t) = yo + t*y,(t).

(b) For m=2, n=2: 7 (t) = yo + y1t + t*y, (0).

(c) For m=1, n=3: 7 (t) = yo + y1t + %tz + ttyn ().
We construct the residual functions:

(a) For m=3, n=1:
(4 3k 3K(K=1) | k(k=1)(k=2)
Res(t) = ym ™ + 0" + =20 + 5T +

F(ETm(®) = h(D). (23)

(b) For m=2, n=2:
Res(t) = 7™ + 2 70" + X270 + £ (£, (6)) — h(¢).
(24)

(c) For m=1, n=3:
Res(t) = Jm™® + 55w + F(£,Fm () — h(t). (25)

The equations to obtain the coefficient {a;}7;* arise
from equalizing Res(t) to zero on m collocation poinfs:

Res(t;) =0, i=01,...m—-1. (26)

In this study, the roots of the GFCFs in the interval
[0,7] (Theorem 3) are used as collocation points. By
solving the obtained set of equations by a suitable
method (e.g. Newton's method), we have the
approximating function y, (t).

It is worthwhile to note that it is common to solve a
system of nonlinear equations, is applying the
Newton's method. The main difficulty with such a
system is how we can choose an initial approximation
fo handle Newton's method. We have had reason to
believe that the best way to discover the proper initial
approximation (or inifial approximations) is fo solve the
system analytically for the very small m (by means of
symbolic software programs, such as Mathematica or
Maple) and, then, we can find proper initial
approximations, and particularly the multiplicity of
solutions of such system. This action has been done by
starfing from proper initial approximations with the
maximum number of ten iterations. In the present
method, due to be added the fractional power, the
order of complexity increases, but in many differential
equations, accuracy of computations increases with
m less.

And also consider that all of the computations
have been done by Maple 2015.

3.0 RESULTS AND DISCUSSION

In this section, using the present methods, some
nonlinear singular Lane-Emden type equations of
various orders are solved and then the obtained
results are considered.

3.1 Examples for the Second-order Lane-Emden Type
Equations

Example 1 (The standard Lane-Emden equation): For
ft,y) =y, k=2,yy=1 and y; =0, the Eqg. (3) is the
standard Lane-Emden equation, which was used to
model the thermal behavior of a spherical cloud of
gas acting under the mutual attraction of its
molecules and subject to the classical laws of
thermodynamic [7, 19, 20, 51]:

Y'@®+2y @ +yM© =0, >0, (27)
y(0) =1,5'(0) =0,

where M > 0 is a constant. For =0, 1, and 5, the Eq.
(27) has the exact solutions, respectively:

sin(t)

yO=1-22, yo="2 yo=(1+5)" (29

In other cases, there is not any exact analytical
solution. Therefore, we apply the GFCF collocation
method to solve the standard Lane-Emden Eq. (27),
forM = —0.5,0.5,1.5,2,2.5,3, and 4.
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We construct the residual function as follows:
_ar _ 2d — M
Res(t) = <= Pm(t) + 2= Fm(8) + Gm(t)M.  (29)

Therefore, to obtain the coefficient {a;}7,*, Res(t) is
equalized to zero at m collocation point. By solving this
set of nonlinear algebraic equations, we can find the
approximating function v, (¢t).

Tables 1 - 8 show comparing the obtained solutions
y(t) by the present method and some well-known
methods in other papers, for the standard Lane-
Emden equations with M = —0.5, 0.5, 1.5, 2, 2.5, 3, 3.5
and 4 respectively. These tables also show the residual
function Res(t) in some points. Table 9 shows
comparing the obtained zeros of the standard Lane-
Emden equations by the present method and the
values given by Horedt [7], Parand ef al. [19] and
Parand et al. [20] for M = —0.5, 0.0, 0.5, 1.0, 1.5, 2, 2.5,
3, 3.5, and 4. Itis seen that using low number of points,
the obtained results are very good compared to other
methods, and for various values of M, the accurate
results are calculated. Figure 1 shows the graphs of the
standard Lane-Emden type equations for M = —0.5,
0.0, 0.5, 1.0, 1.5, 2, 2.5, 3, 3.5 and 4.

Table 1 Obtained values of y(t) for standard Lane-Emden
M = —0.5 by the present method for example 1 (m = 10,a =
0.75)

t Horedt [7] Present Error Res(t)
0.100  0.9983329 0.9983353 0.0000024 1.4360e-4
0.500  0.9580681 0.9579185 0.0001495 8.9803e-4
1.000 0.8288357 0.8288176 0.0000180 1.2076e-3
2.000 0.2320758 0.2318148 0.0002609  8.2943e-3
2208 8.8001e-4 8.3136e-4 0.0000486 1.8312e-3

Table 2 Obtained values of y(t) for standard Lane-Emden
M = 0.5 by the present method for example 1 (m = 15,a =
0.75)

t Horedt [7] Present Error Res(t)
0.10 0.9983338 0.9983338 7.0717e-9  7.4826e-6
0.50 0.9585943  0.9585942  2.4441e-8  3.2593e-5
1.00 0.8375345 0.8375352 7.4162e-7  1.2657e-4
2.00 0.4025795  0.4025796  1.4812e-7  1.4373e-4
2.70 2.6741e-2  2.6738e-2  2.7973e-6  9.3612e-3
2.75 1.3502e-3  1.3504e-3  1.4657e-7  6.5629e-3

Table 3 Obtained values of y(t) for standard Lane-Emden
M = 1.5 by the present method for example 1 (m = 15,a =
0.75)

t Horedt [7] Present Error Res(t)
0.10 0.9983346 0.9983345 1.7679e-8  1.0538e-9
0.50 0.9591039 0.9591038 5.0043e-8 3.4754e-7
1.00 0.8451698 0.8451697  4.39%6e-8 7.6167e-7
3.00 0.1588576 0.1588575 6.0018e-9  7.0922e-6
3.60 1.1090e-2  1.1091e-2  5.0493e-8  1.2344e-5
3.65 7.6392e-4  7.6393e-4  7.3142e-9  2.4625e-5

Table 4 Obtained values of y(t) for standard Lane-Emden
M = 2 by the present method forexample 1 (m = 15,a = 0.75)

t Horedt [7] Parand [20] Present Res(t)
0.10  0.9983350  0.99833499854  0.99833499986 1.0838e-7
0.50  0.9593527  0.95935271580  0.95935271585 3.1003e-7
1.00  0.8486541 0.84865411140  0.84865409603 6.6652e-7
3.00 0.2418241 0.24182408305  0.24182406641 1.7998e-6
400 4.88401e-2  4.8840149%9e-2  4.88401407%9e-2  2.6970e-6
430 6.81094e-3  6.81094327e-3  6.810947394e-3  2.7737e-6
435 3.66030e-4  3.66030179e-4  3.660339568e-4  2.3105e-6

Table 5 Obtained values of y(t) for standard Lane-Emden
M = 2.5 by the present method for example 1 (m = 10,a =

0.75)

t Horedt [7] Parand [20] Present Res(t)
0.10  0.9983354  0.99833541418 0.99833503458 4.8147e-6
0.50 0.9595978  0.95959775446 0.95960162974 3.9807e-5
1.00 0.8519442  0.85194419912 0.85194342182 2.5267e-6
400 0.1376807  0.13768073303 0.13766004942 1.2495e-4
500 2.90191e-2  2.90191866e-2  2.902408137e-2  3.0697e-4
530 4.25954e-3  4.25954353e-3  4.258764232e-3  2.7243e-4
5355 2.1008%e-5  2.10089382e-5  2.100708657e-5 1.6482e-4

Table 6 Obtained values of y(t) for standard Lane-Emden
M = 3 by the present method for example 1 (m = 10,a = 0.75)

t Horedt [7] Parand [20] Present Res(1)
0.10  0.9983358  0.99833582956 0.99833883172 1.372e-4
0.50 0.9598391 0.95983906994 0.95979086302 3.922e-4
1.00 0.8550576  0.85505756858 0.85506225670 2.129e-3
5,00 0.1108198  0.11081983504 0.11074136512 2.184e-3
6.00 4.37379e-2  4.37379838e-2  4.373437433e-2 1.415e-3
6.80 4.16778e-3  4.25954876e-3  4.171491113e-3 1.374e-3
6896 3.60111e-5  3.60111453e-5  3.602801805e-5 2.177e-3

Table 7 Obtained values of y(t) for standard Lane-Emden
M = 3.5 by the present method forexample 1 (m = 8,a = 0.90)

t Horedt [7] Present Error Res(t)
0.10  0.9983362  0.9983391  0.0000029 6.7541e-4
0.50 0.9600768  0.9597179  0.0003588 1.5668e-3
1.00 0.8580096  0.8575136  0.0004959 1.8181e-5
500 0.1786843  0.1834231  0.0047388 2.7972e-3
9.00 1.18031e-2 1.20298e-2 0.0002267 3.9381e-3
9.50 7.47234e-4  7.30544e-4 0.0000166 9.2213e-4
9.53 1.20772e-4 1.18150e-4 0.0000026 1.1934e-3

Table 8 Obtained values of y(t) for standard Lane-Emden
M = 4 by the present method forexample 1 (m = 15,a = 0.75)

t Horedt [7] Parand [20] Present Res(t)
0.10  0.9983367 0.9985876 0.9983371 2.347e-5
0.50  0.9603109 0.9605160 0.9602977 7.612e-4
1.00  0.8608138 0.8610072 0.8608802 4.359e-4
5.00  0.2359227 0.2358368 0.2357450 9.300e-4
10.0 5.96727e-2 0.0596105 5.983709e-2 7.000e-4
140 8.33052e-3 0.0083058 8.360725e-3 3.053e-4
14.9  5.76418e-4 0.0005759 5.765300e-4 1.721e-4
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Table 9 Obtained zeros of standard Lane-Emden equations,

by the present method for several M for example 1

Tables 10 shows the comparison of y(t) obtained by
the present method and those obtained by Wazwaz
[10] and Parand et al. [19] and [20]. The resulting
graph of the isothermal gas spheres equation in
comparison to the present method and those
obtained by Wazwaz [10] and the Log graph of the
residual error of approximate solution of the isothermal

gas spheres equation are shown in Figure 2.

Table 10 Obtained values of y(t) for the isothermal gas spheres
equation for example 2 (m = 30,a = 0.75)

M m Horedt [7] Parand [19] Parand [20] Present
-0.5 10 2.20858842 - - 2.208588452
0.0 20 2.44948974 - - 2.449489742
0.5 15 275269805 - - 2.752698013
1.0 40 3.14159265 - - 3.141592653
1.5 15 3.65375374  3.65375374 3.653753749 3.653753762
20 15 435287460  4.35287460 4.352874595 4.352874625
2.5 10 535527546 5.35527546 5.355275468 5.355275468
3.0 10 6.89684862  6.89684862 6.896848619 6.896848534
3.5 08 9.53580534 - - 9.535805274
40 15 14.9715463 4.9715463 14.97154637 14.97154183
14
08
06
04
02
01 =T T
10 1 12 13 14 15
t
[ M=0.5 == M=00 = M=05 = M=1.0 == M=1.5 = M=2 = M=25 = M=3 — M=3.5 — M~4|

Figure 1 Obtained graphs of solutions of Lane-Emden standard
equation, by the present method for several M for example 1

Example 2 (The isothermal gas spheres equation): For

fty)=¢e”,y,=0, and y; =0, the Eq. (3) is the
isothermal gas sphere equation [19]:
YO +2Y O +e¥O =0, t>0, (30)

y(0) =0,y'(0) =0,

This model can be used to treat the isothermal gas
sphere. For a thorough discussion of Eq. (30), see Davis
[6], Van Gorder [14]. This equation has been solved by
some researchers, for example Wazwaz [10] and
Chowdhury and Hashim [11] by using ADM and HPM,
respectively, Parand et al. [19] by using the Hermite
collocation method, and Parand et al. [20] by using
Bessel orthogonal functions collocation method. We
construct the residual function as follows:

Eiﬁn(t) + eIm(®),

az __
Res(t) = @}’m(t) + o

A series solution obtained by Wazwaz [10], Liao
[52]. Singh et al. [13] and Ramos [53] by using ADM,
ADM, MHAM and series expansion respectively:

1 8 122
—tt—— 64—t

61.67
- =010 4
5.4! 21.6! 81.8!

~_1.2
y®) = 6t + 495.10!

t Parand [19] Parand [20] Wazwaz [10] Present Res(t)
0.1 -0.0016664188  -0.0016658338  -0.0016658339  -0.0016658338  4.9e-10
02  -0.0066539713  -0.0066533671  -0.0066533671  -0.0066533671  4.1e-10
0.5 -0.0411545150  -0.0411539572  -0.0411539568  -0.0411539572  1.96e-9
1.0 -0.1588281737  -0.1588276775  -0.1588273537  -0.1588276775  1.96e-9
1.5 -0.3380198308  -0.3380194247  -0.3380131103  -0.3380194247  1.08e-9
20 -0.5598233120  -0.5598230043  -0.5599626601  -0.5598230043  4.25e-9
2.5 -0.8063410846 -0.8063408705 -0.8100196713  -0.8063408705  7.45e-9
0 =
s, 1 1.5 2 2
-0.1- o t
\.
-0.21 \.
N
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0.4 "
0.5 \'
N
-0.6 \
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!
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Figure 2 Graphs of solutions and the residual error of
the isothermal gas spheres equation for example 2
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Example 3: For f(t,y) = sinh(y),yo, = 1and y; = 0, Eq. (3)
will be one of the Lane-Emden type equations [19, 20]:

Y'() +2y'(6) + sinh(y()) =0,  t>0, (31)
y(0) =1,y'(0) =0,

A series solution obtained by Wazwaz [10] by using
Adomian Decomposition Method (ADM]) is:

oq_ €1 5 1 e*-1 , 1 2e5-3e*+3e?-2 ¢
y®) =1 12e t"+ 480 e2 30240 e3 t
1 61e® — 104e® + 104e% — 61 s
+ t8 +
26127360 e*

Table 11 shows the comparison of y(t) obtained by
the present method and those obtained by Wazwaz
[10] and Parand et al. [19]. The resulting graph of the
Eqg. (31) in comparison to the present method and
those obtained by Wazwaz [10] and the Log graph of
the residual error of approximate solution are shown in
Figure 3. This graph shows that the present method has
an appropriate convergence rate.
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0.9 \~,
!
S
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Figure 3 Graphs of solutions and the residual error for
example 3

Table 11 Obtained values of y(t) for Lane-Emden equation by
the present method for example 3 (m = 20,a = 0.75)

t Parand [19] Wazwaz [10] Present Res(t)
0.1 0.9981138095  0.9980428414  0.9980428414  1.07e-8
0.2 0.9922758837  0.9921894348  0.9921894347 1.51e-8
0.5 0.9520376245  0.9519611019  0.9519610925 2.71e-8
1.0 0.8183047481  0.8182516669  0.8182429282  3.30e-8
1.5 0.6254886192  0.6258916077  0.6254387632  2.68e-8
2.0 0.4066479695  0.4136691039  0.4066228877  3.43e-8

Example 4: For f(t,y) = sin(y),y, = 1 and y; = 0, the Eq.
(3) will be one of the Lane-Emden type equations that
we want to solve [19, 20]:

YO +2y'(O) +sin(y(®) =0, t>0,  (32)
y(0) =1,y'(0) =0,

A series solution obtained by Wazwaz [10] by using
ADM is:

y) =1 s Lkt vk (Lkz _Lkz)te
6 12017 183024™" 50402
113 ) 1 g
ke (- 37659201 T 362880 2"
& 21,2 _ 1 4 _ 19 4N 4+10
+k1 (555128000 ¥1%2 ~ 355763000 K2  Z3950080 KL F

where k; = sin(1) and k, = cos(1).

Table 12 shows the comparison of y(t) obtained by
the present method and those obtained by Wazwaz
[10]. In order to compare the present method with
those obtained by Wazwaz [10] and Parand et al. [19].
The resulting graph of the Eq. (32) in comparison to the
present method and those obtained by Wazwaz [10]
and the Log graph of the residual error of approximate
solution are shown in Figure 4. This graph shows that
the present method has an appropriate convergence
rate.

Table 12 Obtained values of y(t) for Lane-Emden equation
by the present method for example 4 (m = 30,a = 0.75)

t Parand [19] Wazwaz [10] Present Res(t)

0.1 0.9986051425  0.9985979358  0.9985979273  1.8le-11
0.2 0.9944062706  0.9943962733  0.9943962648  2.40e-11
0.5 0.9651881683  0.9651777886  0.9651777801  5.82e-11
1.0 0.8636881301  0.8636811027  0.8636811255  5.82e-11
1.5 0.7050524103  0.7050419247  0.7050452334  4.78e-11
2.0 0.5064687568  0.5063720330  0.5064636272  8.34e-11
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Figure 4 Graphs of solutions and the residual error for
example 4

3.2 Examples for the Third-order Lane-Emden Type
Equations

Example 5: For f(t,y) =y9,q € R and k =4,y, =1, the
Eg. (8) will be one of the third-order Lane-Emden type
equations [8]:

8 Ul

y' 4Ty +1—fy’+yq=0, (33)
y(0) = 1,y'(0) = y"(0) = 0.

A series solution obtained by Wazwaz [8] by using ADM
is:
1 q q(17q — 12)
~1——¢3 6 _ 9
40 90t * 38880 230947200
q(679¢ — 1182q + 528

2909934720000

12

The resulting graph of the Eq. (33) in comparison to
the present method and those obtained by Wazwaz
[8] and the Log graph of the residual error of

approximate solution with m = 25,@ = 0.75 and various
values of g are shown in Figure 5.
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Figure 5 Graphs of the absolute errors and the residual
errors for example 5

Example é: For f(t,y) = —9(4 + 10t + 3t®)y, k = 2, and
yo = 1, the Eq. (8) will be one of the third-order Lane-
Emden type equations [8]:

Y'Y 5y =94+ 1063 +3t)y =0, (34)
y(0) = 1,y'(0) = y"(0) = 0.

An analytical solution obtained by Wazwaz [8] by
using ADM is y(t) = et’.

The resulting graph of the Eq. (34) in comparison fo
the present method and analytical solution, and the

Log graph of the residual error of approximate solution
with m = 30 and a = 3 are shown in Figure 6.
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Figure 6 Graphs of the absolute errors and the residual
errors for example 6

Example 7: For f(t,y) = —(10+ 10t3 +t%)y,k = 4, and
yo = 1, the Eq. (9) will be one of the third-order Lane-
Emden type equations [8]:

ym +%yn _ (10 +10t3 + t6)y =0, (35)
y(0) =1,y'(0) = y"(0) = 0.

An analytical solution obtained by Wazwaz [8] by
t3
using ADM is y(t) = es.

The resulting graph of Eq. (35) in comparison to the
present method and analytical solution, and the Log
graph of the residual error of approximate solution
withm =30 and a = 1.5 are shown in Figure 7.
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Figure 7 Graphs of the absolute errors and the residual
errors for example 7

3.3 Examples for the Fourth-order Lane-Emden Type
Equations

Example 8: For f(t,y) =y9,q € R,k =4, and y, =1, the
Eq. (10) will be one of the fourth-order Lane-Emden
type equations [9]:

y@ + %y"’ + i—fy" + i—jy' +y?=0, (36)

y(0) = 1,5'(0) = y"(0) = 0.

A series solution obtained by Wazwaz [9] by using ADM
is:

1 q q(40q — 33)
) =1 — —t4 8 _ 12
y(©® 840 + 6652800 1525620096000

The resulting graph of Eq. (36) in comparison to the
present method and those obtained by Wazwaz [9]
and the Log graph of the residual error of approximate
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solution with m = 25,a = 0.50 and various values of g
are shown in Figure 8.
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Figure 8 Graphs of the absolute errors and the residual
errors for example 8

Example 9: For f(t,y) =y9, q€R, k=4, yo=1, and
y1 = 0, the Eq. (11) will be one of the fourth-order Lane-
Emden type equations [9]:

Y@ 42y + 2y + y =, (37)

y(0) =1y (0) =y"(0) = 0.

A series solution obtained by Wazwaz [9] by using ADM
is:
1 8q—7
YO =1ty 1o q(8q—7)

t124+
360 1814400 43589145600 T

The resulting graph of Eq. (37) in comparison to the
present method and those obtained by Wazwaz [9]
and the Log graph of the residual error of approximate

solution with m = 25,a = 0.50 and various values of g
are shown in Figure 9.
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Figure 9 Graphs of the absolute errors and the residual
errors for example 9

Example 10: For f(t,y)=y%,q€Rk=4y,=1y, =0,
and y, = 0, the Eq. (12) will be one of the fourth-order
Lane-Emden type equations [9]:

yO+1y"yT=0, (38
y(0) = 1,y'(0) = y"(0) = 0.

A series solution obtained by Wazwaz [9] by using ADM
is:

1 q q(68q — 63)
) =1-——t* 8 _
y® 120" 362880 31135104000

The resulting graph of Eq. (38) in comparison to the
present method and those obtained by Wazwaz [9]
and the Log graph of the residual error of approximate
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solution with m = 25,a = 0.50 and various values of g

are shown in Figure 10.
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has provided an acceptable approach to solve non-

linear Lane-Emden type equations of various orders.
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4.0 CONCLUSION 15
The main goal of the paper was to infroduce a new
orthogonal basis, namely the generalized fractional 16
order Chebyshev orthogonal functions (GFCFs) to el
consfruct an approximation to the solution of non-
linear Lane-Emden type equations of various orders. [17]
The presented results show that the infroduced basis
for the collocation spectral method is efficient and I8
applicable. Our results have better accuracy with (18]
lesser m as compared to other results, and in most
cases, the present method has the absolute and the
residual errors are better. Comparison was made of [19]

the exact solution, the numerical solutions of Parand
et al. [19, 20], the analytical solution of Wazwaz [, 10],
the numerical solution of Horedt [7] and the present
method. It has been shown that the present method
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