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Abstract 
 

This paper designs and evaluates a vehicle-to-grid (V2G) electricity trader capable of 

selecting an appropriate subset out of a large number of electric vehicles (EVs) which 

want to sell their energy to a microgrid. A genetic algorithm, tailored for this trade 

coordination, reduces the amount of unmet demand forecasted one day advance in 

the microgrid. Each subset is encoded to an integer r vector whose element has either 1 

or 0 according to whether the associated EV is included in the subset or not. The 

evaluation function estimates the fitness of a feasible solution, employing a fast heuristic-

based unit scheduler. Its lightweight-ness allows the genetic algorithm to calculate the 

fitness of the massive number of feasible subsets, each of which has a fixed number of 

EVs. This admission test gives a chance for EVs to contact with other microgrids when 

they are not accepted to the final trade schedule. The performance measurement result 

obtained from a prototype implementation reveals that the proposed scheme achieves 

up to 20.8 % performance improvement over the random selection scheme in terms of 

unmet demand. Moreover, the proposed scheme can efficiently cope with overload 

condition, that is, many EVs are concentrated in a single microgrid, judging from its 

stable performance curve. 
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1.0  INTRODUCTION 
 

The modern power network called the smart grid 

pursues energy efficiency by orchestrating many 

heterogeneous grid entities and also taking 

advantage of leading-edge information 

technologies [1]. In the meantime, EVs (Electric 

Vehicles) electrify even the transportation system 

and make it as a part of the power network. Here, 

EVs are one of the most unique components in the 

smart grid as they do not only consume energy but 

also store electricity. In addition to their basic role, 

namely, driving, they can send the electricity stored 

in their batteries back to the grid [2]. This V2G 

(Vehicle-to-Grid) capability can shift peak load as 

EVs can be charged during the night time when the 

energy demand is very low. The peak shift can 

potentially avoid constructing a new power plant. 

Moreover, EV owners can earn money by charging 

at a low price and selling at an expensive peak time 

rate [3]. Promisingly, EV batteries can store electricity 

generated from renewable energy sources such as 

wind which inherently suffers from severe 

intermittency. Hence, V2G-enabled EV sare 

considered a new energy source in smart power 

systems. 

However, the national grid hardly permits the 

backward electricity flow to the grid due to security 

risks, management problems, and others. Instead, a 

micro grid having autonomous control and its own 
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power subsystem can vigorously purchase energy 

from EVs, which are plugged-in to it. The micro grid 

such as a shopping mall can implement its own V2G 

strategy and enhance economic benefits by 

avoiding expensive peak-rate electricity. During the 

peak time, many shoppers will highly likely stay inside 

the mall and more energy will be needed, increasing 

the energy cost. This time is also a chance for the 

micro grid to buy more energy from EVs. On the other 

hand, EV owners can be diversely rewarded by 

discount coupons, cash, and many other useful 

methods in shopping mall-style microgrids. Within a 

micro grid, EVs will charge, rest, and discharge under 

the regulation signals given by grid-specific control 

logic [4]. This control system must be built upon an 

efficient and real-time two-way interaction 

mechanism [5].  

In most V2G scenarios, energy trading is carried 

out in day-ahead markets [6]. Here, an EV informs the 

microgrid of its sales request specifying current SoC 

(State-of-Charge), arrival time, plug-in time, and the 

like. In our previous work [7], we have designed an 

interaction mechanism between both parties, 

namely, EVs and a microgrid. The V2G coordinator, 

after running a unit scheduler, or V2G trade broker, 

for a given set of sales requests from EVs, tells them 

respectively when to arrive at the microgrid and how 

much electricity they can sell. It creates an electricity 

flow schedule in a time-table style, intelligently 

alleviating the imbalance between supply and 

demand. However, it is easily expected that the 

control logic will be very complex according to the 

increase in the number of EVs participating in the 

V2G trade. If a great number of EVs want to visit 

simultaneously and sell at a single grid during a 

specific time interval, not all electricity can be 

bought [8]. The coordinator is desirably required to 

notify each participant whether it is admitted in the 

next day trade. Then, unaccepted or unsatisfied EVs 

can begin a new negotiation with other microgrids. 

For the given set of sales requests from EVs, the 

coordinator tries to meet the microgrid-side energy 

demand, which is estimated by a prediction model 

built upon energy consumption history [9]. If not all 

electricity can be purchased by the microgrid, the 

coordinator decides the subset of EVs, which best 

meets the given scheduling goal. However, the 

number of feasible subsets will exponentially increase 

according to the increase in the number of EVs, while 

the fitness of a single subset will be estimated only 

after the generation of its trade schedule, which is 

already an NP problem. On the contrary, if trade 

scheduling is carried out by a heuristic scheme 

having linear time complexity [8], we can just focus 

on finding a better subset. As its time complexity is 

estimated to be O(2n),where n is the number of set 

elements, it is necessary to employ a suboptimal 

technique even if it may sacrifice the accuracy. The 

genetic algorithm is one of the most widely used 

suboptimal techniques and can even manage the 

execution time, necessarily meeting the tolerance 

bound in response time [10]. 

In this regard, we are to design a genetic algorithm-

based subset finding scheme for efficient V2G 

energy trading. It tries to find a subset of EVs 

admitted in the energy trade and creates an 

electricity flow schedule for a microgrid within a 

practical time bound. Here, as a basic building 

block, a lightweightV2G trade scheduler, or unit 

scheduler, for a fixed set of EV sis essentially 

exploited. Then, it is necessary to integrate this 

scheduler module to the genetic algorithm mainly in 

evaluating the fitness of a feasible subset, even if its 

original role is to create an on-off connection 

schedule between EVs and the microgrid. In the 

evolutionary process, each subset is encoded to an 

integer-valued vector to apply genetic operators 

such as selection, reproduction, and mutation. Each 

vector, or chromosome, is mapped to a sales request 

set and the unit scheduler is invoked to evaluate the 

fitness of the set. The object function calculates the 

unmatched demand, or insufficiency, and the 

chromosome having the least insufficiency will survive 

after the given number of iterations. This mechanism 

can cope with a large number of EVs participating in 

the trade. 

 

 

2.0  RELATED WORK 

 

It is well known that in most cases, over 90 % of a day, 

personal vehicles are not used. Hence, when they 

are parked and plugged-in to the grid, possibly via 

chargers, an EV can act as a battery device. [4] 

addresses a distributed V2G control scheme capable 

of efficiently suppressing system frequency 

fluctuation. Detecting a system-level frequency drop, 

the control mechanism reshapes the load by shifting 

EV charging or even making EVs instantly inject 

power back to the grid. Here, efficient action control 

mechanisms are essential forV2G and it can be 

carried out by centralized or decentralized manners. 

In addition, the real-time V2G capacity estimation is 

important to leverage the effectiveness of V2G 

services.[11] estimates the amount of energy that 

can be sold to the grid, considering the chargeability 

and drivability upon their EV charge scheduling 

algorithm. For each time slot, the estimation process 

calculates the minimum requirement of SoC and 

checks how much electricity can be charged before 

the next departure time. 

As for energy trading, the trade coordination is 

carried out in day-ahead markets, combined with 

V2G services to mitigate trading risks stemmed from 

uncertainties in future energy prices and availability. 

[3] considers day-ahead resource scheduling. Its 

V2G-integrated demand response programs 

schedule the charging operation based on both trip 

reduce and shift reduce strategies. After the 

mathematical formulation, the coordinator 

customizes a particle swarm optimizer to achieve a 

practically acceptable execution time. In [12], to 

participate in the regulation service, EVs submit bids, 
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specifying the amount of its regulation power and 

price. Accepted EVs follow an on-line regulation 

signal from the grid. Here, an EV acts as a single 

battery pack and how to decide control actions 

such as charge, discharge, and rest ,is essential for 

intelligent system-wide V2G services. Additionally,[13] 

exploits emerging reconfigurable battery packs to 

cope with cell imbalance mainly considering SOH 

(State-of-Health) levels. It reconfigures the battery 

pack connection according to whether packs are 

discharging or being charged. 

 

 

3.0  SYSTEM MODEL 
 

A. Interaction Between Evs And The Microgrid 

 

We assume that an aggregator of the target 

microgrid interacts with each EV which wants to sell 

its electricity via an appropriate communication 

channel, highly likely through the Internet [14]. The 

reservation process is usually carried out one-day 

advance. The microgrid forecasts the electricity 

demand and decides how much it wants to buy from 

EVs for each time slot, mainly considering the 

necessary amount and energy prices [15]. EVs submit 

requests-to-sell messages to the aggregator, 

specifying their earliest and latest arrival times as well 

as the amount to sell. The request follows the same 

model used in our previous work [16]. In addition, the 

plug-induration, which corresponds to the stay time in 

the microgrid, is also given. Here, EV drivers can 

adjust their travel plans and the arrival times at the 

grid according to the schedule generated by the 

aggregator. While physically plugged-into the 

microgrid, an EV will be electrically connected or 

disconnected to the grid by the switch operation. 

During the connection time, the electricity flows to 

the microgrid. 

 

B. Unit Scheduler 

 

A request-to-sell record, Ri, consists of (Ei, Li, Di, Ai), 

where each element denotes earliest arrival time, 

latest arrival time, plug-in duration, and amount to 

sell, respectively [8]. It accounts for the situation that 

an EV driver will go shopping while he or she can 

flexibly arrive during the interval from Eito Li and 

wants to select the arrival time on which he or she 

can be best rewarded. The amount to sell is decided 

by the electricity not used for driving [11]. The time 

scale is aligned with the length of a time slot, for 

example, 0.5 hours. The slotted time brings the 

manageable time complexity to trade coordination. 

Here, the per-slot electricity flow from an EV to the 

grid is constant and thus linear to the number of time 

slots during which the EV is connected to the grid, as 

the charging or discharging power levels are 

standardized [17]. After all, the amount to sell can be 

also represented by the number of time slots. 

Essentially, the demand is the amount of energy the 

microgrid wants to buy from EVs. When the EV-side 

supply is not sufficiently available, the microgrid 

cannot but consume the expensive peak-rate 

electricity for the unmet demand. On the contrary, 

when there are more EVs than needed, the surplus 

electricity cannot be bought by the microgrid. 

To avoid the search space expansion brought by the 

conventional exhaustive search, our unit scheduler 

iteratively identifies and matches both the time slot 

having the smallest number of available EVs and the 

EV which has the least flexibility in staying at the 

microgrid. While the exhaustive search should 

traverse the vast search space, this heuristic iterates 

at most for the number of time slots. Each time an EV 

is assigned to a time slot, its amount-to-sell decreases 

by one and also its availability interval will be 

modified. The availability interval will shrink as more 

slots are assigned to the EV, for the stay time is fixed. 

Here, an EV can be assigned to a single slot at most 

once, while a time slot can take as many EVs as it 

needs. This approach leads to the computation time 

linearly dependent on the number of EVs for the fixed 

number of slots. The procedure iterates until all slots 

are processed or no EV remains. According to the 

created trade schedule, which specifies when to 

connect or disconnect each EV, the amount of 

unmet demand can be estimated by scanning all 

time slots. For more detail, refer to [8]. 

 

 

4.0  GENETIC COORDINATOR 

 

Figure 1 illustrates our V2G coordinator design 

combined with an example. In the figure, 10 EVs from 

V0 to V9 want to sell their electricity and each of 

them sends its request-to-sell message to the 

coordinator by the predefined time instant. The 

coordinator decides which one will be admitted to 

the final V2G trade schedule. The number of feasible 

subsets is210, and one of them will be selected. The 

investigation of all of them brings an intolerable 

response time even when the number of 

participating EVs increases just a little bit. Hence, It is 

practical to employ a genetic algorithm to complete 

within an acceptable execution time. The scheduling 

goal is to reduce the unmet demand and the object 

function calculates it. The smaller the unmet 

demand, the higher will be the fitness.
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Figure 1 Overall architecture of the proposed V2G trader 

coordinator 

 

 

To run a genetic algorithm, a subset of EVs is 

represented by an integer-valued vector. Here, the 

vector element at location i is bound to Vi and has 

either 0 or 1 according to whether the associated EV 

is included in the subset. The length of the vector is 

equal to the number of EVs participating in the trade 

procedure, namely, 10. As an example, a subset {V0, 

V1, V3}is represented by 1101000000. In genetic 

iterations, each chromosome is evaluated. 

According to the vector, the subset of requests-to-sell 

is built and handed to the unit scheduler described in 

the previous subsection. It creates a trade schedule 

of the subset and calculates unsatisfied demand as 

well as the surplus electricity by inspecting the 

schedule table. Its linear execution time allows the 

genetic coordinator to call it each time a new 

chromosome is created, specifically, at the 

initialization of population or the reproduction of 

chromosomes .In this example, the chromosome of 

0001101100,which represents the subset {V3, V4, V6, 

V7} is chosen as the final solution. Its trade schedule is 

already calculated and saved for the next day V2G 

operation. 

In our implementation, the initial population 

consists of chromosomes created according to the 

random number generation. Each vector element 

has 0 or 1. For each chromosome, a new variable is 

added to store the cost or fitness derived from the 

insufficiency and to avoid redundant calculation. The 

iteration of regular genetic algorithms includes 

selection and reproduction. The selection operation 

picks parents according to the fitness value. The 

roulette wheel selection gives more chances to 

chromosomes having better fitness values for mating. 

Reproduction, or crossover, is the process of taking 

two parents and producing a child with the hope 

that the child will be a better solution [10]. Our 

implementation randomly selects a pair of two 

crossover points and swaps the substrings from each 

parent. Reproduction may generate the same 

chromosome as the already existing ones in the 

population. It meaninglessly reduces diversity to have 

multiple instances of a single chromosome. So, they 

will be replaced by new random ones. Additionally, 

mutation exchanges two elements within a single 

chromosome. As such, our genetic iteration largely 

takes the conventional parameter selection. 

 

 

5.0  PERFORMANCE MEASUREMENT 

 

This section evaluates the performance of the 

proposed scheme by means of a prototype 

implementation, mainly comparing with a random 

selection scheme, which generates the sufficiently 

large number of arbitrary subsets and picks the best 

one. Even though this scheme takes no intelligent 

control mechanism, its performance is not so poor 

and it gives us a good reference for performance 

comparison. Each version runs on the average-

performance PC equipped with 2.5 GHz Intel(R) 

Core(TM) i5-3210 CPU and 8.0 GB memory. The main 

performance metric is the amount of unmet 

demand, which is denoted by insufficiency. The 

experiment measures insufficiency according to the 

change in the number of EVs, demand density, and 

population size. Here, the amount of electricity the 

microgrid needs exponentially distributes with the 

average value specified by demand density. In each 

experiment, one parameter is changed while the 

others are fixed to their respective default values. By 

default, the number of EVs, demand density, and 

population size have 30, 3.0, and60, respectively. 

In each parameter setting, 10 experiment sets are 

generated and the results are averaged. Besides 

basic performance parameter setting, the number of 

genetic iterations is set to 500.In our observation, the 

fitness hardly gets improved beyond this point. In the 

experiment, the number of slots is fixed to14, hence, 

the scheduling window will be 7 hours if a single time 

slot is 0.5 hours long. We think that 7 hours is enough 

to cover the usual peak-time duration. Actually, if the 

number of slots in the scheduling window increases 

with a finer time slot, the search space size may get 

too much expanded, especially when the number of 

EVs increases. For Ri, the values of Ei, Li, Ai, and Di are 

selected randomly within 14 slots, with straightforward 

restrictions that Li is larger than Ei and that Di is larger 

than Ai. The unit amount coincides with the amount 

that can flow from an EV to the microgrid obeying 

the standard connection specification in a single 

time slot. In the case of regular AC chargers, the 

actual value will be approximated to 1.5 kwh. 

Figure 2 Insufficiency according to the number of tasks 
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Figure 2 plots the insufficiency observed changing 

the number of EVs from 5 to 50. As more EVs 

participate in trade scheduling, the amount of 

energy available to the microgrid increases. Both 

schemes reduce the insufficiency by 16 % and28.4 % 

with 50 EVs, respectively, compared with their own 5-

EV cases. The performance gap between the two 

reaches 20.8% in the case of 25 EVs. With a large 

number of EVs, not all electricity can be bought and 

the large amount of unsold electricity, is yielded. 

However, there are more candidates to sell their 

electricity and the insufficiency can be reduced, 

benefiting from an intelligent computer algorithm. In 

addition, the search space also expands along with 

the increase in the number of EVs. So, it is difficult to 

find an efficient schedule out of vast solution space. 

Hence, the random scheme shows rather an instable 

behavior, its performance seeming more affected by 

the task set characteristics. This result indicates that 

the genetic scheme consistently finds a reasonable 

quality solution even in the case of an overload 

condition, in which many sales requests are 

concentrated on a single microgrid. 

Next, Figure 3 shows the effect of demand density 

to the insufficiency. The experiment changes 

demand density from1.0 to 5.0, namely, from 1.5 kwh 

to 7.5 kwh. Here, the amount of energy a slot needs 

from EVs is converted to the number of EVs. Basically, 

the more the microgrid wants, the more the 

insufficiency will be, as the available supply from EV 

sis fixed. In both schemes, the insufficiency increases 

almost linearly to demand density. The maximum 

performance gap between them is 5 slots when 

demand density is 3.5. The linear behavior indicates 

that each scheme can hardly increase the amount 

of energy trade as most additional energy remains 

unsold beyond a certain point, actually, 2.0. 

However, the genetic scheme enhances the trade 

performance especially during the interval from 2.5 

to 4.0, finding more EVs that can be admitted to the 

final schedule. 

 

Figure 3 Insufficiency according to per-slot demand 

 
 

Figure 4 shows the measurement result on the effect 

of population size. Large population accommodates 

more chromosomes, improving the diversity in mating 

two chromosomes. However, the execution time will 

get much longer as each genetic loop essentially 

includes selection and thus sorting steps. Figure 4 

indicates that the trade performance largely gets 

better according to the increase in population size. 

When population size grows from 20 to 100, 

insufficiency decreases by 20 %. Beyond this point, 

the improvement is not so significant. We can set the 

population size in this range when the number of 

tasks is less than 30. Definitely, population size is a 

tunable parameter and can be adjusted according 

to the system requirement on response time and 

accuracy. Even in the case that population size is 

100, the execution completes within 0.3 sec, 

guaranteeing a reasonable response time to EVs. 

 

Figure 4 Insufficiency according to the population size 

 
 
Figure 5 measures the number of EVs invited in the 

trade schedule. From the commercial microgrid 

aspect, it is more desirable to host more EVs, as they 

are potential customers, irrespective of the amount 

of electricity each EV can sell. The experiment 

changes the number of EVs submitting their requests-

to-sell from 5 to 50. Until 10 EVs, all requesters are 

admitted. On the contrary, from 15 EVs, all EVs 

cannot be admitted. Here again, the random 

scheme shows rather unpredictable behavior while 

the genetic scheme curve changes quite slowly. The 

genetic scheme does not outperform its counterpart 

only on 2 cases, namely, for 30 and 45 EVs. The 

maximum enhancement from the random scheme 

reaches 28.5% when there are 35 EVs. The figure also 

indicates that the number of invited EVs does not 

exceed 12 even when totally50 EVs want to sell their 

electricity. That is, EV admission is limited by the total 

demand from the microgrid. 
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Figure 5 Experiment result on the number of invited EVs 

 
 
Finally, Figure 6 plots the amount of electricity an EV 

can sell. From the EV side, it is better to sell more 

energy. The per-EV sales amount depends on the 

number of invited EVs and the total amount of sold 

electricity. For 5 EVs in our experiment setting, every 

electricity can be purchased and every EV is invited 

by both two schemes. In the case of 10EVs, the 

coordinator invites every EV, but does not buy the 

whole electricity. The genetic scheme, while inviting 

more EVs as shown in Figure 6, also allows an EV to 

sell more electricity. It outperforms the random 

scheme only except the cases of 15 and 35 EVs. The 

performance gap reaches33.7 % for 45 EVs. The 

genetic scheme shows about 20 %improvement in 

most points. Here, it must be mentioned that there 

exist cases in which the random scheme shows a 

better result. This is because we make the genetic 

algorithm take only the insufficiency in evaluating the 

fitness of a feasible solution. In addition, a 

sophisticated initialization of the population may lead 

to a better result. 

 

Figure 6 Measurement of the per-EV sales amount 

 

 

 

 

6.0  CONCLUSIONS 
 

In this paper, we have designed a V2G electricity 

trade coordinator between EVs and a microgrid to 

deal with a large number of EVs participating in the 

V2G trade. Agenetic algorithm is tailored to find a 

subset of EVs, mainly aiming at reducing insufficiency 

on the microgrid side. Here, the evaluation process 

has employed a heuristic-based unit scheduler 

whose execution time is just linear to the number of 

EVs in the trade process. The lightweight evaluation 

function, which also creates the on-off schedule for 

EV connections, leads to a reasonable response 

time, even in the large number of solutions to 

investigate. This admission test gives a chance for 

those EVs not admitted in the trade to contact with 

other microgrids. Its performance is measured via a 

prototype implementation, focusing on the 

insufficiency according to the number of tasks, 

demand density, and population size. The proposed 

scheme can efficiently work even in overload 

conditions, showing stable performance curves as 

well as achieving up to 20.8 % performance 

improvement. 

As future work, we are planning to conduct an 

extensive analysis for data streams created from EVs 

and charging stations [18]. Particularly, an energy 

consumption model and the EV trip statistics will be 

exploited for V2G trade planning in a smart grid city. 

Specifically, our research team is now building a 

data processing framework consisting of Hadoop 

and R statistical packages, combined with 

geographic utilities. 
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