

78: 5–9 (2016) 13–19 | www.jurnalteknologi.utm.my | eISSN 2180–3722 |

Jurnal

Teknologi

Full Paper

UTILIZATION OF HIGH-SPEED DSP ALGORITHMS OF

CYCLIC REDUNDANCY CHECKING (CRC-15) ENCODER

AND DECODER FOR CONTROLLER AREA NETWORK

Ronnie O. Serfa Juan, Hi Seok Kim *

SLSI Laboratory, Electronic Engineering, College of Engineering,

Cheongju University, Cheongju City, South Korea

Article history

Received

21 July 2015

Received in revised form

12 November 2015

Accepted

4 January 2016

*Corresponding author

khs8391@cju.ac.kr

Graphical abstract

Abstract

Advanced driver assistance system (ADAS) performs an increasing improvement in

active road safety and driving convenience. Controller Area Network (CAN) is now

getting popular because of its expanding applications and widely utilizations in

low-cost embedded systems from automation to medical industry. While

implementing an effective and efficient mechanism for clock synchronization,

serial operation causes the reduction of CAN transmission rate can have an

adverse impact on the real-time applications of systems employing this protocol.

Also, maintaining the reliability of this technology especially in safety services, a

reliable system needs certain requirements like glitches management and

troubleshooting in order to avoid certain occurrences of transmission error. In this

paper we present a simulated Cyclic Redundancy Checking (CRC) encoder and

decoder that perform high speed error detection for CAN using CRC-15. Digital

Signal Processing (DSP) algorithms were used, namely pipelining, unfolding and

retiming to attain the feasible iteration bound and critical path that is appropriate

for CAN system. The source code for Encoder and Decoder has been formulated

in Verilog Hardware Description Language (HDL) from actual simulation to

implementation of this CRC-15 for CAN system.

Keywords: CRC-15. CAN encoder and decoder, pipelining, unfolding, retiming

© 2016 Penerbit UTM Press. All rights reserved

1.0 INTRODUCTION

A system like Controller Area Network (CAN) needs a

real-time approach in correcting certain defects in its

node like errors and glitches during transmission and

reception. Aside from other CAN protocol’s

requirements: safety and security are needed to give

a proper attention. Because the aim of road traffic

safety systems are to reduce or totally eliminate the

harm, certain fatalities or even in damage to property

from resulting collisions of road vehicles. Research and

development in CAN applications like the Advanced

Driver Assistance Systems (ADAS) is rapidly increasing.

Today, the requirements for better performance of this

system and process flow are raised significantly.

Fortunately, CAN itself has a self-correcting method

specification that used for error checking on each

frame’s contents which is called as the Cyclic

Redundancy Checking (CRC) code. CRCs are used in

a wide variety of computer networks and data

storage devices to provide inexpensive and effective

error detection capabilities [1]. On transmission mode

as information transfer rates and the amount of the

data stored increases, the need for an uncomplicated

but powerful error detection codes increases as well.

Whenever high speed transmission rate is required,

serial implementation does not meet this requirement.

However, CRC hardware operation is based on

Linear Feedback Shift Registers (LFSRs), which utilizes

serial transmission. LFSR is built from a simple shift-

registers with a small number of XOR gates and this is

being used for random number generations, counters

14 Ronnie O. Serfa Juan & Hi Seok Kim / Jurnal Teknologi (Sciences & Engineering) 78: 5–9 (2016) 13–19

and especially for error checking and correction.

While Galois Fields is the theory behind LFSRs; a finite

field named after Évariste Galois that contains a finite

number of elements. Serial usage for CRC codes

cannot achieve a high throughput. Likewise, CRC

generation can be implemented using parallel

techniques. Parallel CRC code computation can

significantly increase its throughput. Common

polynomial representations of CRC polynomials for

automotive controller network applications are CRC-

11 and CRC-24 for FlexRay utilizations [2], CRC-15 for

CAN applications while CRC-17 and CRC-21 are for

CAN-FD [3]. Equation (1) shows the standard

implementation using CRC-15 generating polynomial

P(X) for CAN:

P(X) = X15 + X14 + X10 + X8 + X7 + X4 + X3 + 1 (1)

The generating polynomial P(X) can be transform into

binary form as 1100010110011001, which has 16 bits in

total. The left most bit is the most significant bit and

corresponds to the coefficient of X15, the highest order

of P(X).

In CAN bit frame, this 15-bit CRC segment in a data

or remote frame contains the frame check sequence

spanning from start of field (SOF), arbitration field,

control field and through the data field [4] including

the stuffed bits. The general hardware set-up for CRC

calculation is a serial implementations using modulo-2

division [5].

This paper is organized as follows: In Section 2, are

divided into three parts: principle behind the CRC

codes using serial implementation; utilization using LFSR

theory, and Parallel CRC architecture; CRC codes

algorithm presentation; Lastly, proposed method using

pipelining, unfolding and retiming. Section 3, discussion

of general related works regarding CRC designs and

utilizations. Then in Section 4, testbench evaluation

using FPGA implementation for CRC-15 encoder and

decoder utilization in serial operation and presentation

of the proposed DSP algorithm for parallel

implementation. Finally, Section 5 concludes this

paper.

2.0 PRINCIPLE AND ALGORITHMS OF CRC

CODES

CAN has very sophisticated error handling

implemented as part of the protocol. CRC is a

common method for checking for errors in data that

has been transmitted on a communications link

especially for CAN networks. It can be implemented

into two techniques: Serial and Parallel CRC

generation.

2.1 Serial Implementation of CRC

Transmitted messages are divided into predetermined

lengths that are divided by a fixed divisor also known

as generating polynomial. According to the basic

calculation, the remainder will be appended after

applying modulo-2 division and sent with the message.

The remainder is recalculated and compares it to the

transmitted remainder upon receiving the transmitted

information. If the transmitted data does not match,

an error is detected. This group of bits or remainder is

called a syndrome [6].

In Standard CAN and Extended CAN structures, the

total number of bits of CRC is 16 bits; 15 bits for CRC bit

sequences and 1 bit for CRC delimiter [7]. The frame

check sequence is derived from Bose, Chaudhuri and

Hocquenghem (BCH) best suited for frame lengths of

less than 127 bits.

The algorithm for this serial CRC architecture

transmission on both encoder and decoder circuit is

given as follows:

Initially, we must set the following values that will help

us to clearly understand the simple algorithm of CRC

code.

Let us denote, Data D(X) = 1010111 in binary form.

In polynomial form is X6 + X4 + X2 + X + 1 while the

Generating polynomial P(X) = 10101 in binary form.

In polynomial form is X4 + X2 + 1

First Step: Multiple the highest order of P(X) to D(X).

G(X) = X4 * (X6 + X4 + X2 + X + 1)

= X10 + X8 + X6 + X5 + X4 (polynomial form)

= 10101110000 (binary form)

Second Step: Divide G(X) to P(X) but using modulo-2

division or XOR operation. Figure 1 shows the modulo-

2 division.

Third Step: Upon transmitting the data, the CRC code

will be added to G(X). T(X) = G(X) + CRC. The

transmitted data T(X) frame will be:

T(X) = 10101110000 + 0111 = 10101110111 (binary form)

Fourth Step: To determine if T(X) frame during

transmission was transmitted successfully, it will be

evaluated at the receiving end using Step 2 again. If

no remainder was obtained, it means the T(X) frame

has no error [8]-[9]. However, if an error occurred

during transmission the remainder of the modulo-2

division is not zero; syndrome was occurred.

Fifth Step: For CAN application, the result of Step 4 will

determine if the ACK Slot is a dominant bit (0) for a

non-error or zero-remainder result, while the ACK Slot

will be a recessive bit (1) with an error occurrences or

the remainder is non-zero.

Figure 1 Step 2 procedures using modulo 2

15 Ronnie O. Serfa Juan & Hi Seok Kim / Jurnal Teknologi (Sciences & Engineering) 78: 5–9 (2016) 13–19

2.2 LFSR Theory on CRC Coding

CRC arithmetic is primarily performs XOR operation in

particularly values and using shifting techniques. Linear

Feedback Shift Registers (LFSR) theory is needed in

order to determine the expected CRC code. LFSR are

widely used in BCH codes and CRC operation [10]-

[12]. Also LFSR are n-bit counters exhibiting pseudo-

random behavior. It is built from simple shift-registers

that composes a D flip-flops with a number of XOR

gates. Generally, it is used for random number

generation, counters and error checking and

correction like the Cyclic Redundancy Check. Some

of LFSR’s advantages are composed of little hardware

and high speed in operation. In Equation (2), K

denotes the length of the LFSR, i.e., the number of

delay elements and P0, P1, P2, P3, …, Pk represent the

coefficients of the characteristic polynomial of this

LFSR is

P(X) = P0 + P1X + P2X2 + … + PKXK (2)

where P0, P1, P2, P3, …, Pk GF(2). A 4-bit LFSR is shown

in Figure 2.

Q D
Q1

Q D
Q2

Q D
Q3

Q D
Q4

CLK
Figure 2 A 4-bit LFSR

The CRC is based on polynomial arithmetic, the

remainder of dividing one polynomial in GF(2) (Galois

Field with two elements) by another. LFSR algorithm for

CRC is presented as follows:

1. Choose the appropriate CRC polynomial, for CAN

protocol; CRC-15 is the standard polynomial.

2. To build a 15 bits LFSR, the following specifications

from the Galois Field Polynomial of CRC-15.

a. G(X) = X15 + X14 + X10 + X8 + X7 + X4 + X3 + X0

(Generating polynomial of CRC-15)

b. The X0= 1 term corresponds to connecting the

feedback directly to the first FF for general LFSR but

for CRC application another XOR gate will be

connected before the first FF.

c. The X15 indicates the number of flip-flop; total

of 15 flip flops for CRC-15.

d. These terms X14, X10, X8, X7, X4, and X3

connects XORs between FF3 and FF4, FF4 and FF5,

FF7 and FF8, FF8 and FF9, FF10 and FF11 and FF14 and

FF15 as a required tap of every LFSR. Figure 3 shows

the LFSR of CRC-15.

3. Then CRC shift sequence will be the next step in

determining the CRC codes. The initial contents of the

LFSR are shown in the top row; namely, L0 through L14.

Settings an 8-bit data, the first data bit (most significant

bit) D7 is shifted into the shift register, the new contents

of the shift register are function of D7 and the previous

contents. Continue to shift until eight shifts (we used

only 8 data bits for explanation purposes).

After the last data bit was shifted to the LFSR, we can

be able to set-up the main Verilog program code for

the encoder of CRC from the output of these shifted

data sequence.

2.3 Parallel Implementation of CRC

Generally serial CRC architecture used LFSR design but

the drawback raises on the transmission rate. It

consumes more time to send the information. Parallel

architecture overcomes this problem. It is an efficient

way to increase the throughput rate. Although parallel

transmission increase the data that can be processed

in one clock cycle, it can lead to a long critical path

(CP).

Though, increasing the throughput rate will reduce

the parallel processing, this architecture tends to

increase the hardware cost. The proposed design

obtains shorter CP for parallel CRC circuits leading to

high processing speed than the common serial

implementation of CRC.

There are different techniques for parallel CRC

generations given as follows:

a. A Table-Based Algorithm for Pipelined CRC

Calculations

b. Fast CRC Update

c. F-Matrix Parallel CRC Generation

d. Unfolding, Retiming and Pipelining Algorithm

2.3.1 A Table-Based Algorithm for Pipelined CRC

Calculations

This algorithm provides lower memory Look Up Table

(LUT) and high pipelining table architecture and can

obtain a higher throughput. The main problem is, it will

store the pre-calculating CRC in LUT so, every time it

required to change the LUT when changing the

polynomial

Figure 3 LFSR of a 15-bits CRC

16 Ronnie O. Serfa Juan & Hi Seok Kim / Jurnal Teknologi (Sciences & Engineering) 78: 5–9 (2016) 13–19

2.3.2 Fast CRC Update

This parallel algorithm does not required to calculate

CRC each time for all the data bits, instead of that

calculating CRC for only those bits that are change

and it requires buffer to store the old CRC and data.

2.3.3 F-Matrix Parallel CRC Generation

This parallel algorithm is simpler and not complex to

compare with the other structure. It compresses long

sequence data bits.

2.3.4 Unfolding, Retiming and Pipelining Algorithm

An unfolding algorithm is used to convert the original

architecture to parallel processing. However, this

method may lead to a parallel CRC circuit with high

iteration bound, which is the lowest feasible critical

path. Hence, Pipelining is needed to minimize this

problem. It was developed to reduce the iteration

bound of the serial CRC architecture. Then, unfolding

algorithm is applied to attain a parallel structure with

low iteration bound. Finally, retiming algorithm is

essential to obtain the achievable lowest critical

path.

3.0 RELATED WORKS

CRC implementations for CRC encoders and

decoders are presented in various publications, but

no implementations has been made for CAN

applications using CRC-15. Also, CRC-15 design that

includes significant procedures in achieving an

appropriate software utilizations to hardware are not

been realized. In addition, no DSP algorithms such as

pipelining, utilization and retiming has been

deployed for CRC-15.

In [12] presented the implementation of CRC

encoder and decoder are based in FPGA utilizations.

Although this paper is not intended for any

applications like CAN networks, this work has an

insufficient discussions, and no synthesized results

were presented especially on detecting any possible

syndrome occurrences are not conferred on this

paper. In [13]-[14] shows the simulated results using

the DSP algorithms for CRC-9 that uses a generator

polynomial of X9 + X8 + X + 1. In Table I, and Table 2

shows the clock cycles, critical path, and the

iteration bound of CRC-9 respectively.

Table I Clock cycles of CRC-9 architecture

Architecture Number of

Clock Cycles

Original Architecture 9

2-level pipelined 10

4-level pipelined 12

Retiming after pipelining 12

Retiming the unfolded architecture 5

From these works mentioned above, we propose a

kind of realization of error-checking for CRC-15 that

verified through Verilog language and FPGA

implementation. Certain standards were been

observed for verifications and comparison purposes.

Table 2 Iteration bound of CRC-9 architecture

Architecture Iteration Bound

Original Architecture 2TXOR

2-level pipelined TXOR

4-level pipelined and Retiming 7/8TXOR

4.0 CRC-15 ARCHITECTURE SIMULATION

4.1 CRC-15 using Series Implementation for

Encoding and Decoding

To design the CRC encoder using VHDL, we can use

the algorithm presented above in getting the CRC

code. For the simulated Verilog program, we

selected the generating polynomial as;

 P(X) = X5 + X4 + X2 + 1

The input data in Figure 4 shows the data_in [11:0],

clk is the system clock, and crc_en for the enable

load signal rst for reset. While on the output side, the

data_trans [16:0] for transmission and crc_out [4:0] is

assigned for CRC code. The simulated result of CRC

encoding is illustrated in Figure 6.

Figure 4 CRC Encoder

From the simulation shown in Figure 5, we can see

that data_in as the input information code is 12’hAF5,

while the data_trans as the encoded output is

17’h15EB5, we can get the crc_out as 5’h15.

Figure 5 Simulated CRC Encoder

The decoding process is similar to the encoding

process, at the end of every transmission, we must

17 Ronnie O. Serfa Juan & Hi Seok Kim / Jurnal Teknologi (Sciences & Engineering) 78: 5–9 (2016) 13–19

verify the encoded result of the decoded code if

some possible error occurred during transmission.

Figure 6 CRC Decoder

From Figure 6, the inputs that we define are the

data_trans [16:0] is the received code words from the

encoder, the clk is the clock of the decoding

program, and rst is the reset signal. While for the

output part, data_decod [11:0] is the decoding

original input information and error [4:0] is the slot for

the syndrome occurred during transmission.

Figure 7 Simulated result of CRC decoder

Figure 7 show the data_trans is 17’h15EB1 and the

data_decod is 12’hAF5, we can identify the CRC

code as 5’h11. Therefore the encoding and

decoding program is correct because the result to

the simulated encoding process is the same, and the

error output is zero.

4.2 Proposed DPS Algorithm for Parallel

Implementation of CRC-15

The discussion presented above is based on serial

connection of CRC encoder and decoder, it can be

improved more using DSP algorithms of pipelining,

retiming and unfolding to minimize the problem arises

in transmission rate. Utilization using these DSP

algorithms in CRC-15 architectures overcomes this

drawback. This proposed architecture should be first

pipelined to reduce the iteration bound then retimed

and unfolding to design high speed parallel circuits.

4.2.1 Pipelining Algorithm

It reduces the CP either to increase the clock

frequency or sample speed or to reduce power

consumption at the same speed and the iteration

bound of the system will be reduced. The applied

four level pipeline algorithm of CRC-15 reduces the

iteration bound to 0.5TXOR is shown in Figure 8 its four

level pipelined structure equation is shown in

Equation (3)

Figure 8 Four Level Pipelined Structure of CRC-15

a(n+4) = a(n) + y(n) + b(n+2) + y(n+2)

 + b(n+4) (3)

4.2.2 Retiming Algorithm

Retiming is used to modify the locations of delay

elements in a circuit without affecting the

input/output characteristics of the circuit. This

algorithm reduces the CP but not changing the

latency of the system. Retiming is done by applying

the Floyd Warshall algorithm [15].

4.2.2.1 Unfolding Algorithm

Direct implementation of unfolding may lead to long

iteration bound with lowest achievable CP. In Figure

3 shows the architecture of CRC-15 in LFSR to the 3-

point unfolded of a 2-factor pipeline-cutset retimed

and 4-level pipeline of CRC-15 architecture as show

in Figure 9.

18 Ronnie O. Serfa Juan & Hi Seok Kim / Jurnal Teknologi (Sciences & Engineering) 78: 5–9 (2016) 13–19

Figure 9 3-point Unfolded, 2 factor cutset retiming pipeline and a 4-level pipeline of CRC-15

Table 3 shows the output of CRC-15 that is much

better output compare with the existing paper [13]-

[14] using CRC-9 for the number of clock cycles,

especially when CRC-15 is subjected to a retimed 3-

point unfolded and 4-level pipelined. The clock

cycles decreases 20% compares to the original CRC-

9 architecture. While Table 4 shows the iteration

bound comparison of CRC-9 to CRC-15. It shows a

much better output after CRC-15 is subjected to a

retimed 4-level pipelined operation, results shows a

decrease in iteration bound of 38.09% compare with

the original CRC-9.

Table 3 Comparison between CRC-9 and CRC-15 for

number of clock cycles

CRC Polynomial CRC-9 CRC-15

Original Architecture 9 15

4-level pipelined 12 20

Retiming after 4-level

pipelined

Retiming the 3-point

unfolded and 4-level

pipelined

12

5

20

4

Table 4 Comparison between CRC-9 and CRC-15 of

iteration bound

CRC Polynomial CRC-9 CRC-15

Original Architecture 2TXOR 2TXOR

2-level pipelined TXOR TXOR

4-level pipelined

Retiming after 4-level

pipelined

1/2TXOR

7/8TXOR

1/2TXOR

1/3TXOR

5.0 CONCLUSION

High speed data transmission preferred parallel

implementation that cannot be executed by serial

operation because of slow throughput. The proposed

method of applying the DSP algorithm shows a better

output from converting the serial CRC-15 to parallel

operation that resulted with lower iteration bound

and an increased throughput rate.

The result as shown in Figure 9 was subjected first

through the utilization of pipelined to minimize the

iteration bound, then it was retimed to reduce the

CP but not changing the latency of the system and

unfolding to obtain a superior design of a high speed

parallel circuit.

In our future work, we plan to analyze the effects of

higher pipelining level to maximize timing

optimization. And, the design can be analyze in

different unfolding factors for hardware overhead. In

addition, we also plan to develop an alternative error

correction-detection method for CRC in able to

minimize the bits usage and to increase the frame

rate in shortest possible transmission time.

Acknowledgement

This work was supported by the IT and R & D program

of Ministry of Trade, Industry and Energy (10049192,

Development of a Smart Automotive ADAS SW-SoC

for a Self-Driving Car).

References

[1] Koopman P. 2002. 32-bit Cyclic Redundancy Codes for

Internet Applications. Proc. IEEE International Conference

on Dependable Systems and Networks. 459-468.

[2] FlexRay Consortium. 2010, FlexRay Communication System

Protocol Specification Version 3.0.1. 114-115.

[3] BOSCH. 2012. CAN with Flexible Data-Rate Specifications

[Online].12-13.

[4] Voss, W. 2008. Error Detection and Fault Confinement,

in A Comprehensible Guide to Controller Area

Network, 2nd ed., Copperhill Media Corporation. 117-122.

[5] Janakiram Ch. and Srinivas, K.N.H. 2014. An Efficient

Technique for Parallel CRC Generation. International

Journal of engineering and Computer Science. 3(1): 9761-

9765

[6] Pfeiffer O., Ayre, A. and Keydel C. 2008. Underlying

Technology: CAN, in Embedded Networking with CAN

and CANopen, Copperhill Technologies Corporation. 224-

226.

[7] Khalifa O., Islam MD R. and Khan S. 2004. Cyclic

Redundancy Encoder for Error Detection in

19 Ronnie O. Serfa Juan & Hi Seok Kim / Jurnal Teknologi (Sciences & Engineering) 78: 5–9 (2016) 13–19

Communication Channels, in Proc. IEEE RF and

Microwave Conference. 224-226.

[8] Ramabadran T. V., and Gaitonde S.S. 1988. A tutorial on

CRC Computations. IEEE Micro. 8(4): 62-75.

[9] Glavieux A. 1999. Cyclic Redundancy Checking, in Data

Communications and Computer Networks, 2nd ed.,

Publishing House of High Education. 83-86.

[10] Peterson W. W. and Brown, D. T. 1961. Cyclic Codes for

Error Detection, in Proc. IRE. 228-235

[11] Ayinala M. and Parhi K. K. 2011. High-Speed Parallel

Architectures for Linear Feedback Shift Registers. IEEE

Transactions on Signal Processing. 59(9): 4459-4469.

[12] Zhang T. and Ding Q. 2011. Design and Implementation of

CRC Based on FPGA. IEEE 2nd International Conference in

Innovations in Bio-inspired Computing and Applications

(IBICA).

[13] Reddy B. N., Kumar B. K. and Sirisha K. M. 2012. On the

Design of High Speed Parallel CRC Circuits using DSP

Algorithms. International Journal of Computer Science

and Information Technologies (IJCSIT).

[14] Cheng C. and Parhi K. K. 2006. High-Speed Parallel CRC

Implementation Based on Unfolding, Pipelining, and

Retiming. IEEE Transactions on Circuits and Systems. 4(2):

1017-1021.

[15] Garfield, N. F. 2011. Floyd-Warshall Algorithm, Anim

Publisher

