

79:4 (2017) 35–43 | www.jurnalteknologi.utm.my | eISSN 2180–3722 |

Jurnal

Teknologi

Full Paper

OLTP PERFORMANCE IMPROVEMENT USING

FILE-SYSTEMS LAYER COMPRESSION

Suharjito*, Adrianus B. Kurnadi

Computer Science, Binus Graduate Program, Bina Nusantara

University, Jakarta, Indonesia

Article history

Received

4 June 2016

Received in revised form

4 January 2017

Accepted

10 March 2017

*Corresponding author

suharjito@binus.edu

Graphical abstract

Abstract

Database for Online Transaction Processing (OLTP) application is used by almost every

corporations that has adopted computerisation to support their operational day to day

business. Compression in the storage or file-systems layer has not been widely adopted for

OLTP database because of the concern that it might decrease database performance.

OLTP compression in the database layer is available commercially but it has a significant

licence cost that reduces the cost saving of compression. In this research, transparent file-

system compression with LZ4, LZJB and ZLE algorithm have been tested to improve

performance of OLTP application. Using Swing-bench as the benchmark tool and Oracle

database 12c, The result indicated that on OLTP workload, LZJB was the most optimal

compression algorithm with performance improvement up to 49% and consistent

reduction of maximum response time and CPU utilisation overhead, while LZ4 was the

compression with the highest compression ratio and ZLE was the compression with the

lowest CPU utilisation overhead. In terms of compression ratio, LZ4 can deliver the highest

compression ratio which is 5.32, followed by LZJB, 4.92; and ZLE, 1.76. Furthermore, it is found

that there is indeed a risk of reduced performance and/or an increase of maximum

response time.

Keywords: OLTP database, performance, file-systems layer compression

© 2017 Penerbit UTM Press. All rights reserved

1.0 INTRODUCTION

The popularity of the internet and online commerce

has resulted in the explosion of the number of

electronic transactions. The increase of the size of

transactions data results in a huge increase of storage

requirements and its associated costs including

space, electricity and cooling. Two techniques that

are often used to reduce data size are compression

and deduplication. Both techniques result in the

increase of CPU utilisation traded with saving of

storage capacity that has to be physically provided.

This CPU utilisation overhead for compression and

decompression is one of the deterrents that prevents

the use of compression for database. [1] The Other

effects of compression is that it will reduce the amount

of I/O that has to be done by the application and this

opens the possibility that compression besides saving

the storage space might also improve performance.

To be able to increase application performance,

the amount of time saving for I/O operations must be

bigger than the additional time needed to do

compression or decompression of data. There have

been several studies on the effect of compression

implemented on database layer or storage layer. The

effect of filesystems compression on database

performance on the other hand has not been much

studied academically to the best of writer’s

knowledge.

Several studies on the effect of compression to

database performance have been done before.

However, most of them focus on compression

implementation at the database layer itself [2], [8], [9],

[10] or at the storage layer [5], [6], [11], [12]. Only one

36 Adrianus & Suharjito / Jurnal Teknologi (Sciences & Engineering) 79:4 (2017) 35–43

study [13] focuses on compression implementation at

the filesystems layer.

Compression implementation at the database

layer has a unique benefit. It can also give benefits to

database backup and database replication process,

but it will only work for that specific database and

sometimes translate to a higher software licence cost

or a complex modification of the database software.

Whereas compression implementation at the

filesystem level will work on any database and in the

case that the filesystems are available on several

operating systems, the applicability of the study will be

higher.

With regard to the type of the database for related

works, some used database that is not widely used

commercially or they did not mention the database

type. One of the earliest studies [1] discusses

compression implementation for Scientific and

Statistical database, compression benefits and

disadvantages and then compares several suitable

compression algorithms for the type of data in

Scientific and Statistical Database.

The second related work still deals with

compression implementation at the database layer

for a generic database [2] and discusses the query

algorithm and compression characteristics that can

enable query processing without decompression and

its effect on I/O performance, transaction processing

and query processing. Performance comparison in

the second study is done only through theoretical

calculation for hybrid hash join.

The third related work [3] also still discusses

compression implementation at database layer. It

discusses the characteristics of a compression

algorithm that can increase database performance.

The compression must be fast, and fine grained. The

study uses TPC-D benchmark to shows that light weight

compression can increase most query performance,

in the extreme case up to 2 times and that

performance is only reduced for some update

operations. The database used for this study was also

not named.

The fourth related work [4] explains how H-HIBASE

compression implemented in the storage layer can

increase performance for all kinds of query operations

compared to DHIBASE and uncompressed Oracle 10g

database. The last study [5] is the only one that

discusses the impact of transparent compression at

the filesystem layer (ZFS) to the performance of a

datawarehouse application. This last study employs

the widely used Oracle database combined with ZFS

filesystems compression and SwingBench to show up

to 92% performance improvement of compressed

database. The last study uses Sales History scenario in

Swingbench which is an OLAP scenario and the

algorithm compared was LZJB, ZLE and GZIP. The study

also compares the performance improvement with

Oracle Advanced Compression Option (ACO) which

is implemented at the database layer. The

advantages of this study are that it can be directly

applied since Oracle database is widely used and ZFS

filesystem is available from various operating systems

such as Oracle Solaris, Linux and FreeBSD. Although

the study has successfully shown the performance

improvement for data warehouse workload, it was

limited in the sense that it did not compare against

Oracle Hybrid Columnar Compression, which was

claimed to have a much higher compression ratio

and performance improvement for OLAP workload.

This study aims to extend the usability and

applicability of the previous research by testing OLTP

database workloads. OLAP workloads benchmark

using Swingbench will only test the decompression

impact on performance while an OLTP workload that

has various read/write ratios will test the combination

of both compression and decompression impact to

database performance. The comparison of

compression algorithm is changed to LZ4, LZJB and

ZLE. GZIP was not tested in our study because it was

the compression with the highest CPU overhead in the

previous study. LZ4 is a new compression algorithm in

ZFS that was newly incorporated in Oracle Solaris 11.3

operating systems used for the experiment.

Our study also aims to interpret three technical

measurement results namely compression ratio,

transaction per second and maximum response time

into business benefit variables like storage savings,

increased productivity, and SLA improvement. The

business benefits will be ranked using Analytic

Hierarchy Process and compared with the cost

ranking for each scenario. With three read/write ratios,

it is also possible to see correlation between

read/write ratios and the level of performance

improvement. There is also risky that with certain

read/write ratios, the compression might have a

negative impact on performance in terms of

transaction per second or the increase in maximum

response time. Our study will be able to find out which

algorithm is the most suitable for a given scenario and

which algorithm is the safest to be used in case we do

not have knowledge of read/write ratio or application

characteristics.

2.0 METHODOLOGY

This study is a contrived study using data measured

from a laboratory experiment. The research

framework of this study is shown in Figure 1.

37 Adrianus & Suharjito / Jurnal Teknologi (Sciences & Engineering) 79:4 (2017) 35–43

Figure 1 Research framework of this study

2.1 Experiment Environment Setup

Experiment on the impact of file-system compression

was done using the following environment:

 SPARC T4-4 server logical domain with the

specification as follows :

o 4 core SPARC T4 2.85 GHz

o 32 GB RAM

o 450 GB HDD for OS

o 450 GB HDD for data

 Solaris 11.3 operating systems

 Oracle Database 12c

 Swing-bench version 2.5.971

The server used actually had 4 x 8 core SPARC T4

CPU and 256 GB, but it was find out early that 4 core

was already very powerful and it was easier to

measure CPU utilisation when the number of core was

reduced. The memory allocated to the logical

domain was also reduced to reduce cache effect at

ZFS file-system. The logical domain was set with bare

metal I/O so there was no I/O overhead.

After the operating systems has been installed, we

need to create user, group and project settings as the

requirements of Oracle Database installation. We also

need to create several ZFS file-systems with different

compression settings. Before creating a ZFS file-

system, we need to create a ZFS pool with the

following command:

zpool create dpool cxtxdx

The command above created a zfs pool called dpool

from the disk cxtxdx. After the pool was created, we

created several file-systems with the following

commands:

zfs create dpool/baseline

zfs create dpool/zle

zfs create dpool/lzjb

zfs create dpool/lz4

To set appropriate compression algorithm to the

file-systems, we used the following commands:

zfs set compression=zle dpool/zle

zfs set compression=lzjb dpool/lzjb

zfs set compression=lz4 dpool/lz4

The benchmark tool Swing-bench was created by

an Oracle UK employee named Dominic Giles. It was

created to provide a realistic benchmark to test

Oracle RAC [6]. Swing-bench was chosen as the

benchmark tool for this study because it is often used

to benchmark Oracle database performance both

for vendors sponsored the white paper [7] [8] and also

for academic research papers published in

international conference especially about database

performance on virtualised environment [9] [10] and

[11]. Swing-bench software has four built-in

benchmark scenarios as shown in Table 1.

Table 1 Swing-Bench Benchmark Scenarios

Benchmark Description
Read/Write

Ratio

Order Entry
Classic Order Entry

Benchmark. TPC-C Like
60/40

Calling Circle
Telco based self-service

application
70/30

Stress Test

Simple Insert / Update /

Delete / Select

Benchmark

50/50

Sales History DSS benchmark 100/0

This experiment uses three Swing-bench OLTP

benchmark scenarios to provide data: Order Entry

with 60/40 read-write ratio, Calling Circle with 70/30

read-write ratio and Stress Test with 50/50 read-write

ratio.

2.2 Data Collection Method

Swing-bench is not only a benchmark tool, it also

comes with wizards to create the schema and

populate data required for each benchmark

scenario. The wizard can be run interactively with GUI

to select such parameters as database network

address, username, password, scale of data size,

location of data file and other parameters, The wizard

can also be run in lights out mode by providing

command line parameter or referring to an xml

configuration file.

We did some trial run with some parameter settings

with each scenario to check if all data especially CPU

38 Adrianus & Suharjito / Jurnal Teknologi (Sciences & Engineering) 79:4 (2017) 35–43

utilisation could easily be measured. Based on the trial

run, the following statements are the parameter

settings for each scenario:

 Order Entry scenario was set with 1 GB data

size and 10 minutes runtime

 Calling Circle scenario was set with 10 GB

raw data size and 5 minutes runtime

 Stress Test scenario was set with 10 GB raw

data size and 5 minutes runtime

 All scenarios were set with 500 users

To ensure that the compression ratio and other

measurable results can be compared between

compression algorithms, an initial data for the

benchmark must only be generated once for each

scenario. The compression ratio is only valid when we

compare exactly the same data. The wizard for each

scenario should then be used to populate the data

located in the dpool/baseline file-systems.

Order Entry benchmark and Calling Circle

benchmark have its own setup wizard named

oewizard and ccwizard, but Stress Test scenario uses

the same schema and data population as Order

Entry. Stress Test only differs from Order Entry in the type

of transactions and its relative weight during the

benchmark run.

Before the benchmark was run, compression ratio

was measured and the data file along with Oracle

spfile and control file should be backed up. The

compression ratio for a given ZFS file-system can be

measured with this command:

zfs get compressratio dpool/filesystemname

To run the benchmark Swing-bench provides three

options, we can use swing-bench, mini-bench and

char-bench. The first is a full blown GUI, where we can

set benchmark duration, number of users and so on,

mini-bench is a minimalist GUI for the same purpose

and char-bench uses command line options to

provide parameters for the benchmark. All options

used xml configuration files to set the transactions that

will be run and its weight during the benchmark. We

will use char-bench to run the benchmark because it

can provide more detailed output including

transaction dump and CPU utilisation monitoring result

to output files.

The type of transaction and its relative weight for

Order Entry benchmark that we used can be seen in

Table 2.

Table 2 Order Entry Transactions and Weight

Transaction Name Weight Enabled

Customer Registration 15 TRUE

Update Customer

Details
10 TRUE

Browse Products 40 TRUE

Process Orders 5 TRUE

Browse Orders 5 TRUE

Sales Rep Query 2 FALSE

Warehouse Query 2 FALSE

Warehouse Activity

Query
2 FALSE

Order Entry has some transactions type that by default

is not enabled. It can be used if we want to increase

the read ratio, but for this study we left the settings as

default. The type of transactions and its weight settings

for Calling Circle and Stress Test are shown in Table 3

and Table 4.

Table 3 Calling Circle Transactions and Weight

Transaction Name Weight Enabled

New Customer 25 TRUE

Update Customer Details 100 TRUE

Retrieve Customer Details 50 TRUE

One notable difference of Calling Circle scenario

is that during data population there is a setting to

specify how much transactions should be prepared.

We prepared 8000 transactions that took

approximately 5 minutes to run.

Table 4 Stress Test Transactions and Weight

Transaction Name Weight Enabled

Insert Transaction 15 TRUE

Simple Select 40 TRUE

Update Transaction 30 TRUE

Delete Transaction 10 TRUE

After the benchmark was run for the baseline we

need to shut down the database and restore the

backup to another file-system with compression.

Oracle database should be set to NOARCHIVELOG

mode so that after the restore, the transactions from

the first benchmark run will not be replayed.

2.3 Data Analysis Method

To analyze the result for each scenario we used

Analytic Hierarchy Process employed to make

decisions when we have several criteria. Analytic

Hierarchy Process (AHP) was developed by Saaty [22].

AHP decomposed a decision objective into

several criteria that can be decomposed further to

sub criteria. Each criterion will be assigned ranking

which was calculated from how many times a

criterion was more important than the other criteria.

The alternatives that will be chosen for the decision will

also be ranked for each criterion.

For our work, the decision goal or objective is to

choose which algorithm has the most benefit for each

benchmark scenario. There are four criteria in making

the decision:

 Storage saving is derived from compression

ratio

 Productivity increase is derived from

transaction per second improvement

 Improvement of the SLA is derived from the

improvement of maximum response time

 Compression cost is derived from CPU utilisation

overhead

39 Adrianus & Suharjito / Jurnal Teknologi (Sciences & Engineering) 79:4 (2017) 35–43

From the four criteria above, we separate the first

three as benefit criteria and the last as the cost

criterion. Early when AHP was first implemented

people tended to lump together positive and

negative criteria together. However, it was

recogniszed that positive and negative priorities in

nature are not directly comparable. [13] By grouping

positive criteria together, we will be able to rank the

benefit of each scenario without the cost. Of course,

we then calculate cost ranking separately and later

can create benefit to cost ratio ranking for each

scenario.

3.0 RESULTS AND DISCUSSION

The data results from each benchmark scenario were

based on different data, so they were analyzed

separately by, first, using AHP method. AHP method

decomposed decision making process into a

hierarchy of objective, criteria and alternatives which

can be seen in Figure 2.

Figure 2 Analytic Hierarchy Process diagram

First, we need to determine relative importance of

the benefit criteria. The relative importance of the

criteria is subjective. In this research, based on

experience, the writer’s subjective judgment is that

storage saving has equal importance to performance

improvement and business SLA. The relative

importance sum of all criteria is 1.

After the ranking of the criteria has been decided,

we need to calculate the relative importance of the

alternatives for each criterion using pair wise

comparison matrices. Because the matrices values

were taken from the measurement of each

alternative value for related criteria, the resulting

ranking will be consistent. AHP can combine both

subjective and objective factor in the decision making

process.

After calculating the highest ranking for benefit

and benefit to cost ratio for each scenario, then we

can do cross scenario comparison to see if there is any

correlation between the results and the change of

read/write ratio and other characteristics of each

scenario.

3.1 Result and Analysis from Order Entry scenario

The benchmark results between the baseline and the

three compression algorithms for Order Entry scenario

shows increased performance as shown in Table 5.

Table 5 Order Entry Transaction Performance

Compression

Algorithm

Transactions

finished in

10 minutes

Average

Transaction

per second

Performance

improvement

Baseline 162226 269.48

ZLE 167773 279.16 3.59%

LZJB 191789 318.59 18.22%

LZ4 207503 342.98 27.27%

Storage saving comparison between the baselines

and compressed for Order Entry scenario is shown in

Table 6.

Table 6 Order Entry Compression Ratio

Compression

Algorithm

Compression

Ratio

Storage

Saving

Baseline 1

ZLE 1.69 40.83%

LZJB 3.02 66.89%

LZ4 3.76 73.40%

Improvement of maximum response time for Order

Entry is shown in Table 7. Notice that LZJB compression

algorithm improves maximum response time, while the

other two compression algorithms make the maximum

response time worse.

Table 7 Order Entry Max Response Time Improvement

Compression

Algorithm

Maximum

Response

Time (ms)

Improvem

ent

Relative

Respons

e Speed

Baseline 79862 0% 100%

ZLE 80625 -0.95% 99.05%

LZJB 39870 100.31% 200.31%

LZ4 95932 -16.75% 83.25%

CPU utilisation overhead for Order Entry scenario is

shown in Table 8. Notice that CPU overhead of LZ4

algorithm is far greater than the other compression

algorithms.

Table 8 Order Entry CPU Utilization Overhead

Compression

Algorithm

System

CPU

User

CPU

CPU

overhead

Baseline 2 6

ZLE 3 6 12.50%

LZJB 4 6 25.00%

LZ4 7 16 187.50%

From the data in Table 5, Table 6 and Table 7 we

calculated relative benefit ranking of compression

40 Adrianus & Suharjito / Jurnal Teknologi (Sciences & Engineering) 79:4 (2017) 35–43

algorithm for performance improvement, storage

saving, and SLA improvement using pair-wise

comparison matrices. We used the relative response

speed column in Table 8 to avoid negative

comparison values in comparison.

The compression with the highest benefit ranking

for Order Entry scenario can be calculated by

multiplying alternatives ranking for each criteria with

the criteria ranking, as shown in (1) below:

ZLE
LZJB
LZ4

|
0.225431 0.073146 0.258879799
0.369313 0.371231 0.523535715
0.405256 0.555623 0.217584486

|

× |
0.333
0.333
0.333

|
Saving

Performance
Response

= |
0.18563311
0.42093855
0.39242834

|
ZLE
LZJB
LZ4

 (1)

Based on the calculation, in Order Entry scenario

LZJB algorithm has the highest benefit, followed by LZ4

and ZLE. Cost ranking for Order Entry scenario can be

calculated using comparison matrix with data that

was seen in Table 8.

For Order Entry scenario the compression with the

highest cost ranking is LZ4 algorithm, followed by LZJB

and ZLE. The calculation result of the benefit to cost

ratio and comparison chart for it is shown in Figure 3.

Figure 3 Order Entry Benefit to Cost ranking

The compression with the highest benefit to cost

ranking is LZJB algorithm followed by ZLE and LZ4. LZ4

algorithm comes last in the ranking mainly because of

its high CPU utilisation.

3.2 Result and Analysis from Calling Circle Scenario

The benchmark results between the baseline and the

three compression algorithms for Calling Circle

scenario show increased performance as shown in

Table 9.

Table 9 Order Entry CPU Utilization Overhead

Compression

Algorithm

Average

Transaction per

second

Performance

improvement

Baseline 55.1

ZLE 61.39 11.42%

LZJB 82.33 49.42%

LZ4 80.44 45.99%

Based on Table 5 and Table 9, we can see that on

Calling Circle transaction is heavier and more CPU

intensive than Order Entry scenario, shown by the

lower average transaction per second achieved.

Storage saving comparison between baseline

database and compressed database for Calling

Circle is shown in Table 10.

Table 10 Calling Circle Compression Ratio

Compression

Algorithm

Compression

Ratio

Storage

Saving

Baseline 1

ZLE 1.76 43.18%

LZJB 4.92 79.67%

LZ4 5.32 81.20%

Data in Calling Circle scenario are more

compressible, shown by the higher compression ratio

achieved compared to compression ratio in Order

Entry scenario as shown in Table 6 and Table 10. The

improvement of maximum response time for Calling

Circle scenario is shown in Table 11.

Table 11 Max Response Time Improvement

Compression

Algorithm

Maximum

Response

Time (ms)

Speed

Improvement

Relative

Response

Speed

Baseline 26019

ZLE 22613 15.06%

LZJB 20758 25.34%

LZ4 18481 40.79%

As shown in Table 11, all compression algorithms in

Calling Circle scenario improve maximum response

time. Therefore, we do not need to use relative

response speed. We will be able to use speed

improvement column for Response Time Improvement

comparison matrix because there is no negative or

zero value. CPU utilisation overhead for Calling Circle

scenario is shown in Table 12.

Table 12 Calling Circle CPU Utilization Overhead

Compression

Algorithm

System

CPU
User CPU

CPU

overhead

Baseline 2 16

ZLE 3 17 11.11%

LZJB 4 24 55.56%

LZ4 6 23 61.11%

From data in Table 10, Table 11 and Table 12, we

calculated relative benefit ranking of compression

algorithm for performance improvement, storage

saving and SLA improvement using pair-wise

comparison matrices.

Compression algorithm with the highest benefit

ranking of Calling Circle scenario can be calculated

by multiplying alternative ranking for each criterion

with the criteria ranking as shown in (2):

41 Adrianus & Suharjito / Jurnal Teknologi (Sciences & Engineering) 79:4 (2017) 35–43

ZLE
LZJB
LZ4

|
0.2116148 0.106898811 0.185490824

0.390443519 0.462604137 0.312107402
0.397941681 0.430497051 0.502401774

|

× |
0.333
0.333
0.333

|
Saving

Performance
Response

= |
0.167833477
0.387996634
0.443169888

|
ZLE
LZJB
LZ4

 (2)

Based on the calculation result, on Calling Circle

scenario, LZ4 algorithm has the highest benefit,

followed by LZJB and ZLE. The cost ranking of Calling

Circle scenario can be calculated using comparison

matrix with data from Table 11.

On the Calling Circle scenario the compression

algorithm with the highest cost ranking is LZ4, followed

by LZJB and ZLE. The calculation of benefit to cost ratio

and comparison chart for it, is shown in Figure 4.

Figure 4 Calling Circle Benefit to Cost ranking

The compression algorithm with the highest benefit

to cost ranking on Calling Circle scenario is ZLE

algorithm followed by LZ4 and LZJB. ZLE algorithm

comes first in this ranking mainly because of its very low

CPU overhead.

3.3 Result and Analysis from Stress Test scenario

Stress Test is the benchmark with the lightest type of

transactions shown by the highest average

transaction per second achieved, but it is also the

benchmark with the highest write ratio which results in

the lowest performance improvement as shown in

Table 13.

Table 13 Stress Test Transaction Performance

Compression

Algorithm

Average

Transaction

per second

Performance

Improvement

Relative

Performance

to Baseline

Baseline 8762.64 0% 100%

ZLE 9216.66 5.18% 105.18%

LZJB 9089.19 3.73% 103.73%

LZ4 8612.65 -1.71% 98.29%

LZ4 caused the decrease in performance in Stress

Test scenario. We had to use Relative Performance

value to avoid the negative comparison later. Storage

saving comparison between baselines and

compressed for Stress Test is shown in Table 14.

Table 14 Stress Test Compression Ratio

Compression

Algorithm

Compression

Ratio
Storage Saving

Baseline 1

ZLE 1.58 36.71%

LZJB 2.94 65.99%

LZ4 3.49 71.35%

As usual, LZ4 achieved the highest storage saving

followed by LZJB and ZLE. Improvement of maximum

response time for Order Entry is shown in Table 15.

Table 15 Stress Test Max Response Time Improvement

Compression

Algorithm

Maximum

Response

Time (ms)

Speed

Improvement

Relative

Response

Speed

Baseline 4978257 0% 100%

ZLE 8282371 -39.89% 60.11%

LZJB 4003496 24.35% 124.35%

LZ4 2487597 100.12% 200.12%

In Stress Test scenario, ZLE algorithm achieved the

highest performance improvement but made the

maximum response time worse. We had to use

Relative Response Speed in the comparison matrix.

CPU utilisation overhead for Stress Test scenario is

shown in Table 16.

Table 16 Stress Test CPU Utilization Overhead

Compression

Algorithm

System

CPU

User

CPU

CPU

overhead

Relative

CPU

utilization

Baseline 6 8 0% 100%

ZLE 6 8 0% 100%

LZJB 7 8 7.14% 107.14%

LZ4 9 7 14.29% 114.29%

LZ4 algorithm consistently showed the highest CPU

utilisation overhead followed by LZJB and ZLE. CPU

overhead for ZLE is so small it measured zero. We used

Relative CPU utilisation to avoid comparison with zero.

From data in Table 14, Table 15 and Table 16, we

calculated relative benefit ranking of compression

algorithm for performance improvement, storage

saving and SLA improvement using pair-wise

comparison matrices.

Compression algorithm with the highest benefit

ranking for Calling Circle scenario can be calculated

by multiplying alternatives ranking for each criterion

with the criteria ranking as shown in (3)

ZLE
LZJB
LZ4

|
0.210916403 0.34238281 0.15630038
0.379143924 0.33766276 0.323339747
0.409939673 0.31995443 0.520359873

|

× |
0.333
0.333
0.333

|
Saving

Performance
Response

= |
0.236296665
0.346368762
0.416334573

|
ZLE
LZJB
LZ4

 (3)

42 Adrianus & Suharjito / Jurnal Teknologi (Sciences & Engineering) 79:4 (2017) 35–43

Based on the calculation, on Stress Test scenario, LZ4

algorithm had the highest benefit, followed by LZJB

and ZLE. Cost ranking for Calling Circle can be

calculated using comparison matrix with data from

Table 16. For Calling Circle scenario the compression

with the highest cost ranking is LZ4, followed by LZJB

and ZLE. Comparison chart for cost ranking and

benefit ranking can be seen in Figure 5.

Figure 5 Stress Test Benefit to Cost ranking

The compression with the highest benefit to cost

ranking for Stress Test was LZ4 followed by LZJB and ZLE.

This might be because when the transaction types

were very light and the cost differences will not

change the benefit ranking.

3.4 Results Comparison across Scenario

We compared the results between scenario to see if

there was any correlation between read/write ratio

and the amount of performance improvement.

Figure 6 Performance Improvement All Scenario

Comparison Chart of Performance Improvement

for All Scenario in Figure 6 shows trends of decreasing

performance improvement for almost all compression

algorithms when the write ratio increase. The

exception is ZLE which improves between 60/40 to

50/50 read/write ratio. This is consistent with similar

studies [13] which showed that with an increase in

write ratio will require compression and

decompression process more data thus increasing

CPU usage and need more response time.

Figure 7 Maximum Response Time Improvement All Scenario

From the comparison chart in Figure 7, we can see

that LZJB is the only compression that did not cause

any increase in maximum response time. Meanwhile,

from Figure 6, we can see that LZJB compression also

never caused any performance decrease in this

study. This observation makes LZJB was the safest

compression algorithm to choose from the three

algorithms, in case we have not enough knowledge

about read-write ratio or other characteristics of the

application accessing the database. Compression in

the filesystem layer has the advantage that can be

used for a variety of databases, not only for the Oracle

database, but also do not require license fees.

However, the compression in the database layer

(ACO) also has unique advantages that can be used

during the process of backup and data replication.

4.0 CONCLUSION

The results of the benchmark and its analysis have

shown that compression at the file systems layer can

improve OLTP database performance with the

following things to note:

 Performance improvement tends to be higher

for OLTP applications with higher read ratio

 Among the algorithm studied here, LZJB is the

safest to implement for OLTP and seems to strike

the right balance between compression ratio

and CPU overhead

 Applications with more complex query like

Calling Circle scenario will yield more

performance using light weight compression

rather than higher compression ratio

We hope that the results of this study can help to

increase the adoption of file systems compression in

general and ZFS file systems particularly to help to save

storage cost and improve OLTP application

performance.

This study is limited by time and available

equipment and there are still a lot of topics that can

be pursued further for future work related to

43 Adrianus & Suharjito / Jurnal Teknologi (Sciences & Engineering) 79:4 (2017) 35–43

performance improvement using file systems

compression such as:

 OLTP performance improvement using other file

systems besides ZFS

 OLTP performance improvement using

compression on storage based on ZFS file-

system

 OLTP performance improvement using file

system compression on flash storage

References

[1] H. Plattner. 2009. A Common Database Approach for OLTP

and OLAP Using an In-Memory Column Database.

Proceedings of the 35th SIGMOD International Conference

on Management of Data - SIGMOD '09. Providence, Rhode

Island, USA.

[2] M. A. Bassiouni. 1985. Data Compression in Scientific and

Statistical Databases. IEEE Transactions on Software

Engineering. SE-11(10): 1047-1058.

[3] C. Diaconu, C. Freedman, E. Ismert, P.-Å. Larson, P. Mittal,

R. Stonecipher, N. Verma and M. Zwilling. 2013. Hekaton:

SQL Server’s Memory -Optimized OLTP Engine. SIGMOD'13,

New York.

[4] A. Cuzzocrea and S. Chakravarthy. 2010. Event-based

Lossy Compression for Effective and Efficient OLAP over.

Data & Knowledge Engineering. 69(1): 678-708.

[5] N. Mukherjee, S. Chavan, M. Colgan, D. Das, M. Gleeson, S.

Hase, A. Holloway, H. Jin, . J. Kamp, K. Kulkarni, T. Lahiri, J.

Loaiza, N. Macnaughton, V. Marwah, A. Mullick, A.

Witkowski, J. Yan and M. Zait. 2015. Distributed Architecture

of Oracle Database in-memory. International Conference

on Very Large Data Bases. Kohala Coast, Hawaii.

[6] H. Zhang, G. Chen, B. C. Ooi, K. L. Tan and M. Zhang. 2015.

In-Memory Big Data Management and Processing: A

Survey. IEEE Transactions on Knowledge and Data

Engineering. 27(7): 1920-1948.

[7] G. Ray, J. Haritsa and S. Seshadri. 1995. Database

Compression: A Performance Enhancement Tool.

International Conference on Management of Data.

[8] G. Graefe and L. D. Shapiro. 1991. Data Compression and

Database Performance. ACM/IEEE-CS Symposium on

Applied Computing, Kansas City.

[9] T. Westman, D. Kossmann, S. Helmer and G. Moerkotte.

2000. The Implemmentation and Performance of

Compressed Databases. ACM SIGMOD Record. 29(3): 55-

67.

[10] T. Ravichandran. 2013. Real Time Database Compression

Optimization Using Iterative. Computer Science &

Information Technology (CS & IT). 3(1): 99-105.

[11] A. Habib, A. S. M. L. Hoque and M. S. Rahman. 2012. High

Performance Query Operations on Compressed Database.

International Journal of Database Theory and Application.

5(3): 1-14.

[12] C. Lin, J. Wang and Y. Papakonstantinou. 2016. Data

Compression for Analytics over Large-scale In-memory

Column Databases. arXiv:1606.09315v2: 1-4,

[13] A. Wenas and Suharjito. 2016. Improving Data Warehouse

Performance Using Filesystem Technology with GZIP, LZJB

and ZLE Compression. Jurnal Informatika dan Sistem

Informasi. 2(2): 40-51.

[14] A. Tamrakar and V. Nanda. 2012. A Compression Algorithm

for Optimization of Storage Consumption of Non Oracle

Database. International Journal of Advanced Research in

Computer Science and Electronics Engineering. 5(1): 39-43.

[15] M. Sharma and S. Dora. 2012. Efficient Approach for

Compression in Data Warehouse. International Journal of

Computer Applications. 53(9): 9-11.

[16] D. Giles. 2015. Swingbench [Online]. Available:

http://www.dominicgiles.com/Swingbench.pdf.

[Accessed 2015].

[17] IBM. 2014. Oracle Database 11g and 12c on IBM Power

Systems built with IBM Power8 processor technology and

IBM FlashSystem 840. IBM Oracle International

Competency Center.

[18] VMware. 2010. Oracle Databases on vSphere Workload

Characterization Study. VMware, Palo Alto.

[19] F. N. Almari, P. Zavarsky, R. Ruhl, D. Lindskog and A. Aljaedi.

2012. Performance Analysis of Oracle Database in Virtual

Environments. Advanced Information Networking and

Applications Workshops (WAINA), 2012 26th International

Conference on, Fukuoka.

[20] I. E. Tope, P. Zavarsky, R. Ruhl and D. Lindskog. 2011.

Performance Evaluation of Oracle VM Server Virtualization

Software 64 Bit Linux Environment. Security Measurements

and Metrics (Metrisec). 2011 Third International Workshop

on, Banff, AB.

[21] D. Ye, A. Pavuluri, C. Waldspurger, B. Tsang, B. Rychlik and

S. Woo. 2008. Prototyping a Hybrid Main Memory Using a

Virtual Machine Monitor. Computer Design, 2008. ICCD IEEE

International Conference on, Lake Tahoe, CA.

[22] T. L. Saaty. 2008. Decision Making with Analytic Hierarchy

Process. Int. J. Services Sciences. 1(1): 83-98.

[23] T. L. Saaty and M. Ozdemir. 2003. Negative Priorities in the

Analytic Hierarchy Process. Mathematical and Computer

Modelling. 37(9): 1063-1075.

