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^Äëíê~ÅíK This paper presents a method for Electrical Capacitance Tomography (ECT) flow 
classification using voting technique, employing Multilayer Perceptrons (MLPs) as the intelligent 
pattern classifiers. MLP classifiers were trained with a set of simulated ECT data associated to 
various flow patterns and was tested with untrained data to verify their performances. MLP 
classifiers which gave high percentage of correct classification were integrated into a voting system 
and tested over a distinct set of ECT data. The performances of the individually selected 
classifiers were compared with the voting system.  The results showed superiority of the voting 
system over individual classifiers. 

 
hÉóïçêÇëW Electrical capacitance tomography; multilayer perceptron; voting; pattern 
classification; ensemble neural network 
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Classification of gas-liquid flow patterns is one the most important activities 
especially in the industrial field. It is essential in order to know the content of 
process equipment to determine process flow parameters such as density, flow 
phase, velocity and mass flow rate (Warsito and Fan, 2001). Pattern classification 
refers to a technique used for automatic assignment of patterns to their classes 
based on input pattern vectors. Prior to classification, significant attributes of 
pattern data are extracted and separated from irrelevant details. Then, 
classification is accomplished using a pattern classifier system which employs 
certain classification techniques with an objective of minimizing misclassification 
error.  
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Artificial Neural Network (ANN) systems have been commonly employed as flow 
pattern classifiers (Kuwahara Éí= ~äK, 2008; Hernández Éí= ~äK, 2007; Yan Éí= ~äK, 
2004; Xia and Yang, 2000; Jingbo and Xiatie, 2000). It is a variant of an intelligent 
system, which solves a problem based on the experience gained in a learning 
process. It accomplishes its objective by executing and generalizing the 
experiences.  
  ANN is a system consisting of a number of neurons as processing units, which 
are properly arranged to produce a useful ANN architecture capable of solving 
various tasks. Given inputs and sample outputs associated to a task, each ANN 
processing unit does a simple computation in the quest of learning.  ANNs have 
been used to classify gas-oil flow patterns based on Electrical Capacitance 
Tomography (ECT) data (Xia and Yang, 2000; Jingbo and Xiatie, 2000; Yan Éí=
~äK, 2004). However, the previous works have only focused upon classification 
results of a single ANN classifier. Such conventional intelligent classifiers are 
normally unstable in their classification capability (Cunningham Éí=~äK, 2000). Thus 
classification outputs may not be accurate and some patterns may be misclassified.  
This is of particular concern for ECT data which is so greatly flow regime 
dependent that a single intelligent classifier may not be efficient enough to cater 
for the instability problem. 
  Therefore, in this research, more than one intelligent pattern classifier is 
integrated into a system, and the best classification result for each set of ECT data 
is obtained based on a voting technique (Dietrich, 2002; Rao Éí= ~äK, 2007). An 
integrated pattern classifier is a kind of ensemble system and has shown to be 
more robust than individual classifier at solving various classification applications 
(Bhattacharya and Chaudhuri 2002; Valdovinos and Sanchez, 2006; Pasti and 
Canuto Éí=~äK, 2007; Mackin Éí=~äK, 2007; Castro, 2009).   
 
 
OKM ^mmol^`e=^ka=jbqelap==
=
The combination of integrated pattern classifiers and voting technique is referred 
to as a voting system in this paper. In gas-oil flow, each flow pattern is associated to 
a certain type called flow regime. There are six flow regimes that are commonly 
recognized in oil-gas flows namely, annulus, stratified, bubble, full (i.e. full of oil), 
empty (i.e. full of gas) and core. For this work, the voting system is used to classify 
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the gas-oil flow patterns into their appropriate flow regimes based on simulated 
ECT data. The work carried out to accomplish the objective is divided into three 
main tasks. The first task is the preparation of flow pattern ECT data. The second 
task is the development of the neural network for learning process and the third 
task is the implementation of the voting system, which constitutes the main 
objective of this work.  
 
 
OKN mêÉé~ê~íáçå=çÑ=cäçï=m~ííÉêå=b`q=a~í~=
 
An ECT simulator (Spink, 1996) is used to generate ECT data. For this work, a 
total of 3672 raw ECT datasets of various flow regimes are generated using the 
simulator. This number should be sufficient for an ANN to learn. The ECT 
sensor used in this work consists of 12 electrodes, which is commonly used in 
industry. Based on å(å-1)/2 where n is the number of electrodes, each flow pattern 
is represented by 66 capacitance values. The generated raw data are then 
normalized based on,  
 

                       
)(,)(,

)(,,
,

emptyjiCfulljiC
emptyjiCjiC

ji −

−
=λ                       (1) 

 
where λi,j  is the normalized ECT value, Ci,j is the raw ECT value, Ci,j (empty) is the 
raw ECT value of an empty flow regime and Ci,j (full)  is the raw ECT value of a full 
flow regime for ECT value j of flow pattern i. The normalized ECT data are 
randomly divided into 3 datasets; training set, validation set and test set in the ratio 
of 45:10:45, respectively. 
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In this work, a Multilayer-Perceptron (MLP) which is the simplest non-linear 
ANN architecture (Negnevitsky, 2005) is used as the intelligent pattern classifier. 
The Levenberg-Marquardt learning algorithm (Hagan and Manhaj, 1994) is used 
to train the MLP to be intelligent at flow regime classification. Essentially, an MLP 
has three layers of neurons; input, hidden and output layers. Basically, it learns the 
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salient features in the ECT data in order to carry out the classification task.  MLP 
learning is a process of determining an optimal number of hidden neurons and 
obtaining optimum neuronal connection weights (i.e. experience) for the optimal 
structure. The number of input neurons for an MLP is the number of input 
features and the number of output neurons equals the number of classes. Hence, 
for this work, an MLP has 66 input neurons and 6 output neurons. 
  The MLP learning process involves 3 main stages; training, validation and 
testing. The training data are used for MLP learning. The validation data are used 
to stop the training process when the MLP is optimally matured and the test data 
are used to assess the generalization performance of the trained MLP. The 
learning process operates based on the network growing whereby the number of 
hidden neurons in the MLP structure is gradually increased (starting from one) 
until an optimum size is achieved. For this work, training of MLP for each number 
of hidden neuron is repeated 30 times. Repetitions are carried out to ensure that 
the MLP reaches the global minimum. Each repetition produces one best-trained 
pattern classifier (PC). A trained MLP performance is assessed based upon the 
correct classification percentage given by, 
 

              %100×=
dataTotal 

asified datectly clasNo of corrtionclassificaCorrect        (2) 

 
  Table 1 illustrates an example calculation of correct classification percentage. 
Based on Table 1, the percentage of correct classification given by the ANN 
output is 66.67%, obtained by dividing the total data (i.e. 3) by the number of 
correctly classified data (i.e. 2) and multiplied by 100%. 
 

q~ÄäÉ=N Example calculation of correct classification which equals 67.77% 

 
^kk lìíéìí= q~êÖÉí lìíéìí `çêêÉÅíåÉëë

0 0 0 0 1 0 0 0 0 0 1 0 1 

0 0 1 1 0 1 0 0 1 0 0 0 0 

1 0 0 0 0 0 1 0 0 0 0 0 1 

Total of Correctness 2 

 

  The average and maximum correct classification percentages for training, 
validation and testing for each hidden neuron are recorded. 
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As explained, a voting system involves classification and voting stages. The 
classification stage consists of all best-trained MLP PCs whose classification 
outputs are passed to the voting stage which will select (based on voting technique) 
the best output as the final classification result.  
  The selection of best-trained PCs is done after the learning processes based on 
various number of hidden neurons. PCs which give best percentage of correct 
classification for each training, validation and testing sets are chosen and placed 
together in a voting system. If there is more than one best PCs for the same 
number of hidden neuron, their weights are first compared. If two or more PCs 
have the same weights, only one PC is selected. This is because PCs with the same 
weights have the same stability and capability. If however, they have different 
weights, then all of them are integrated into the voting system. Figure 2 shows a 
schematic diagram of the proposed voting system.  
 

 
 

cáÖìêÉ=O Block diagram of pattern classifier voting system 

 
Once the best-trained PCs have been selected, a voting strategy is implemented.  
The technique employed is based on voting by calculating the confidence level of 
a PC’s output. Simple mathematical formula is used to calculate the confidence 
level of outputs from each PC.  It is given by (Kumar ÉíK=~äK, 2000), 
 
          Confidence level = Largest output - 2nd largest output           (3) 
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The confidence level for each PC is determined by subtracting the second highest 
MLP output value (which may be a possible error) from the highest MLP output 
value (which is the possible class representation). This means that a PC with high 
confidence level is one which gives the highest difference between its largest and 
second largest outputs.  This denotes that the PC is very confident in its 
classification output. 
  The performance of the proposed voting system is assessed by comparing its 
correct classification percentage with all individual PCs based upon 1292 sets of 
verification data comprising ECT data that are different from the training, 
validation and test data. It has to be noted that the verification ECT data are 
simulated based on a different ECT sensor design.  Hence, the PCs performance 
verification involves an extremely difficult classification task due to different input 
features from what they have been trained previously. 
 
 
PKM obpriqp=^ka=afp`rppflk=
 
Figures 3 to 5 show the results these values for training, validation and test datasets, 
respectively. All the three plots have similar shape, where the percentage of 
maximum correct classification increases with the addition of the number of 
hidden neuron. For 1 hidden neuron, the percentage of maximum correct 
classification for training, validation and test data have the smallest value compared 
to more hidden neurons. This is because the MLP with one hidden neuron is not 
powerful enough to achieve complete “intelligence” because the system has not 
reached an optimum structure. Later, it can be observed from each of the figures 
that the average correct classification percentage starts to decrease after 8 hidden 
neurons. Hence, MLP learning process is stopped at 12 hidden neurons. 
  For training (Figure 3) and validation (Figure 4), the percentage of maximum 
correct classification reaches 100% starting at the 3rd hidden. It can be seen that 
the percentage correct classification values increase with the increase in the 
number of hidden neuron. This is evident from 1 hidden neuron until 5 hidden 
neurons. From 6 to 12 hidden neurons, the plot fluctuates. For the test data 
(Figure 5), 100% correct classification is achieved starting from the 7th hidden 
neurons until the 12th, except at the 11th hidden neurons when the correct 
classification drops to 99.94%.  This situation shows that the ANN has started to 



========`^m^`fq^k`bJ_^pba=qljldo^mev=cilt=m^qqbok=`i^ppfcf`^qflk=======UN 

 

undergo saturation, which most probably leads to the problem of over-fitting, 
making the ANN incapable of generalizing the input pattern. 
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cáÖìêÉ=P Graph of correct classification based on training data  
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cáÖìêÉ=Q Graph of correct classification based on validation data 
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cáÖìêÉ=R Graph of correct classification based on test data 

 
  The best-trained PCs are selected based on 100% correct classification results 
of training, validation and test data. Table 2 lists all the selected PCs. Each of the 
selected PCs is given a representation name as in the table. The MLP PC with 11 
hidden neurons is not selected because its correct classification of test data is not 
100%. The MLP PC with 12 hidden neurons is also not selected because it is the 
outcome of an over-fitted classifier. Hence only MLP PCs with 7, 8, 9 and 10 
hidden neurons are selected as the best-trained PCs. 
  Prior to integration in the voting system, the performances of the selected PCs 
are first verified with the verification dataset for the task of gas-oil flow pattern 
classification. Then all of them are gathered into a single voting system and its 
performance is verified using the verification dataset.  
 
q~ÄäÉ=O List of best-trained PCs. The PCs with 7 and 9 hidden neurons have different weight 

values 
 

kçK çÑ=eáÇÇÉå=kÉìêçåë oÉéêÉëÉåí~íáçå=
7 Net1 

7 Net2 

8 Net3 

9 Net4 

9 Net5 
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10 Net6 

Figure 6 shows the performance comparison between all individual best-trained 
PCs and the voting system. It has to be reminded that low correct classification 
percentages obtained are due to ECT data of different ECT sensor design for the 
verification sets. The difference should test for the robustness of the PC systems.   
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cáÖìêÉ= S Performance comparison among the proposed voting system and individual PCs for 

classification of gas-oil flow regimes 
 

  The bar graph shows that the voting system gives the highest correct 
classification of 17.34%, compared to the other individual good PCs. This is 
followed by Net3 with 12.93% correct classification. The results demonstrate that a 
voting system is superior to individual intelligent PCs.  Net6 corresponding to PC 
with 10 hidden neurons produces the lowest correct classification of only 1.78%.  
This shows that 10 hidden neurons creates a PC which is too large (i.e. not 
optimal) leading to over-fitting of data and hence, degrade the generalization 
capability. 
 
 
 
 
 



UQ==============================grkfq^=jle^j^aJp^ibe=C=olpifk=g^j^irafk=

 

QKM `lk`irpflk=
=
The paper aims to study the performance of integrated intelligent pattern 
classifiers with voting technique. The proposed system, referred to a voting system 
involves two stages; classification and voting of output class. Its performance is 
compared with individual pattern classifiers towards gas-oil flow classification 
based on ECT data. The voting system of MLP ensemble has been found to have 
a superior classification performance compared to the individual intelligent pattern 
classifiers. This demonstrates the added benefits of using a voting system for 
classification, particularly for flow regime classification based on ECT data. 
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