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Graphical abstract 
 

 

Abstract 
 

This paper features the design approach of a low noise amplifier (LNA) which dissipates 

19.89 mW from a 1.2 V power supply that was designed based on a 0.13 μm RFCMOS 

process. A detailed methodology that leads to a power-efficient design of the LNA is 

presented. A theoretical noise figure optimization using fixed power and physics-based 

gm/ID characteristics were used as a design optimization guide. Simultaneous noise and 

input matching under constrained power (PCSNIM) was achieved with an extra gate-

source capacitor while gain enhancement was obtained by employing a capacitive 

feedback at the cascode transistor.  The LNA is further optimized by implementing the 

forward biasing scheme to attain good LNA performance at low power. The end-design of 

the optimized LNA produces a noise figure of 3.55 dB, a power gain of 17.12 dB, a Third 

Order Input Intercept Point (IIP3) of -19.70 dBm, an input reflection coefficient of -14.15 dB 

and an output reflection coefficient of -18.37 dB. Simulated results validate peak 

performance at 2.45GHz, which makes the LNA suitable for Bluetooth and the industrial, 

scientific and medical (ISM) applications.  

 

Keywords: LNA; CMOS; inductive source degenerated 

 
© 2016 Penerbit UTM Press. All rights reserved 

  

 

 

1.0  INTRODUCTION 
 

The wireless communication industry is currently 

undergoing incredible evolution. There is huge demand 

for low power, portable, battery-operated electronic 

devices. This introduces new design issues and 

challenges such a low power and good noise 

performance. These growing demands provide the 

motivation for further research and analysis toward 

achieving good LNA architecture for the wireless 

application. There are many problems in designing LNA 

because there are many requirements need to be 

satisfied in order to achieve high performance LNA. The 

parameters of interest are minimum noise contribution, 

maximum gain, low power consumption, source 

impedance matching, circuit stability and linearity.  

In responding to the demand for a low-cost but high 

performance wireless front-end circuitry, many intensive 

studies on radio-frequency CMOS circuits have been 

conducted. Noise performance is a critical factor for 

the LNA. Most of the function of LNA are dependent on 

each other. Hence, to improve one function so the 

other function will be degraded. The goal is to reduce 

the trade-off between high performance and low-cost, 

low power consumption design. The objective of this 

project is to analyze the performance of the noise 

figure, gain, reverse isolation, impedance matching, 

linearity, power consumption and stability. Besides, this 

project is implemented by using the EDA and 

electromagnetic tool to simulate and analyzed the 

circuits design. The other objective is to use the 

inductive source degeneration topology as a basic 

circuit topology in order to obtain the impedance 

matching with the optimize gain and noise figure.  
Low noise amplifier (LNA) is built on the RF receiver. In 

the RF receiver there were come out with the other 

component such band pass filter, mixer and the 

demodulator. The main function of LNA is it can amplify 
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weak signal that was received by the receiver. 

Obviously, the signal that was transmitted is in low signal 

and this LNA will amplify that signal to become it in high 

signal. LNA is the first active block in a receiver chain. It 

follows the antenna and its output drive a mixer. In 

many common cases, LNA always inserted between 

the filter and antenna. LNA is a circuit used to provide 

gain while maintaining noise as low as possible. LNA 

widely used in wireless receiver and sensor interfaces.   

This paper is organized into four sections. The first part 

provides an introduction and background of the 

research topic, motivation of the research and outline 

of the paper. The second part is the theoretical design 

parameters, circuit architectures, design trade-offs and 

conventional LNA topologies are described. The current 

low power LNA designs and the important requirements 

in the IEEE.802.11 standard are also discussed. Results of 

the simulated design will be discussed in the third 

section. Performance comparison with other published 

works also discussed in this section. Lastly, the findings in 

this paper will be summarize in the conclusion part.  

 

 

2.0  INDUCTIVE DEGENERATION TOPOLOGY 
 

In LNA, there are many topologies which is resistive 

termination, series shunt feedback, common gate 

connection and inductive degeneration. Based on the 

literature, inductively degenerated common source is 

the most widely use topology in LNA circuit architecture 

due to its ability in good input impedance matching. 

Inductively degenerated cascode LNA is chosen to be 

implemented because it is the basic topology to most 

of varsities LNA presently available. It allow maximum 

gain under low power constraint [3]. Among the four 

topologies, the inductive degeneration is the best for 

the noise figure and gain specification. CMOS 

technology allow integration of both digital and analog 

circuits on the same chip in order to reduce cost, 

improve performance, increase manufacturability by 

reducing the number of chips and bond wires.  

 

2.1   Circuit Diagram  

 

The proposed structure of the LNA is a single-stage 

cascode LNA with inductive degeneration at the 

source. The cascode topology is embraced as it offers 

high gain and worthy input-output isolation, which 

increase stability and simplify input port matching [3]. 

The inductively common-source structure on the other 

hand allows for maximizing gain under a reasonably low 

power.  

The simplified schematic of the proposed CMOS LNA 

for simultaneous noise and input matching is illustrated 

in Figure 1 and the simplified small-signal equivalent 

circuit is shown in Fig 2 where vRF and RS model the 

antenna.  

 The effects of the common-gate cascode transistor 

M2 on the noise and frequency response are 

neglected. Generally, the 0.13 μm LNA is to be 

designed such as to comply with the specifications 

whereby the LNA needs to provide a high gain of 

greater than 15 dB with a noise figure of lower than 4 dB 

operating at low power. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1 Proposed CMOS LNA for simultaneous noise and input 

matching 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2 Simplified small-signal equivalent circuit 

 

 

2.2   Theoretical Design 
 

For the topology, the basic LNA has been used in this 

analysis. This basic LNA used the inductive 

degeneration as the impedance matching. Then the 

cascode LNA also used in this design. The calculation 

for this analysis is first starting with defining the value of 

the inductor. Basically the inductor that used is 1 nH. The 

cut-off frequency which used the below equation: 

 

𝜔𝑡  =  
𝑔𝑚

𝐶𝑔𝑠
  = 

𝑅𝑠

𝐿𝑠
 

 

For the next, find the optimal Q for the inductor  

 

QL = √1 +
1

𝑃
 

Where P = 
𝛿.𝛼2

5.𝛶
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Parameter basically is dependent on the technology 

that is used but typically the value of   is set between 2-

4 (normally take value 4). 𝛿 is set 2-3 times of the value 

of   (normally take 4).  𝛼 is assumed 0.8-1(normally take 

0.9).  Then find the value of Lg: 

 

Lg = 
𝑄𝐿𝑅𝑆

𝜔0
 – Ls 

 

After that, find the gate source capacitance which is: 

 

Cgs = 
1

𝜔0
2(𝐿𝑔+𝐿𝑠)

 

 

Then find the width which is  

 

W = 
3

2
 

𝐶𝑔𝑠

𝐶𝑜𝑥𝐿𝑚𝑖𝑛
 

 

Where,  

𝜀s = dielectric constant for silicon 3.9 

𝜀o = dielectric constant for free space 9.854𝐸−14  𝐹/𝑐𝑚 

After the value of width have been found then next 

stages are to find the value of gm. 

 

gm = 𝜔𝑡 .𝐶𝑔𝑠 

 

Now the value of Effective can be found by using the 

equation 

Veff = (Vgs - 𝑉𝑇) =  
𝑔𝑚.𝐿𝑚𝑖𝑛

𝑈𝑛.𝐶𝑜𝑥.𝑊
 

 

Last the value of bias current can be calculated by 

using formula 

Id = 
1

2
 gm.Veff 

 

 

3.0  RESULTS AND DISCUSSION 
 

3.1   Pre and Post Layout Simulation 

 

Figure 3 below shows the pre and post layout simulation 

performance of single ended inductively degenerated 

cascode PCSNIM. It is designed for operating frequency 

at 2.45GHz. It can be seen that the S parameter curve 

for post layout simulation is shifted to lower frequency. 

This is due to the parasitic of the component lower 

down the frequency response of the LNA. 

Comparing the pre- and post-layout simulation 

results, the post-layout simulation will normally produce 

results that are worse than the results generated by the 

pre-layout simulations. This is due to the parasitics that 

were included in the post-layout simulations. The results 

from the post-layout simulation are normally closer to 

the measured results as this type of simulation includes 

the parasitic effects of the substrate. However, the post-

layout simulation, does at times over-estimates the 

design with parasitics and resulted in the measurement 

being better reflected by the pre-layout simulations. 

The problem with over-estimating the parasitics is that 

the design layout size and power consumption tend to 

be larger due to the designer’s eagerness to overcome 

these parasitics. This is because special layout 

techniques were employed and higher current were set 

to achieve higher gain. On the other hand, if the 

parasitics were under-estimated, the circuit’s 

performance may not be optimized or even functioning 

at all.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3  Layout 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 4  Fabricated chip micrograph 
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Figure 5 Pre and post layout simulation (a) S11 (b) S22 (c) S21 (d) S12 (e) NF (f) IIP3 

 

 

 

4.0  CONCLUSION 
 

In order to achieve the many design goals target for 

the LNA, the correct choice of LNA topology 

becomes very important. Many topologies were 

invented to optimize the performance of the LNA. 

SNIM offers simultaneous noise and input matching as 

oppose to the classical method of input matching.  

The constraint with this LNA is the minimum noise 

figure may become worse if smaller devices are 

used. Under this condition, a higher degeneration 

inductor is required which will move the noise figure 

away from the minimum noise figure of the classical 

input matching LNAs. 

In the PCSNIM LNA, a capacitor is connected 

between the G-S of the device to relax the 
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requirement for large gate inductance if the device 

is small. 

 It is shown in this report that the performance of 

the LNAs will improve if the input and output stages 

of the LNA were properly matched. As for the 

cascode in PCSNIM, the LNA need to be matched to 

a 50Ω load. As for LNA for wireless LAN application, 

power consumption of the LNA is best kept to its 

minimum possible for implementations in mobile 

systems. For the IEEE802.11b/g standard, a typical 

current consumption for single ended input LNA is less 

than 4 mA and this result in power consumption of 

approximately 4 mW at a supply voltage of 1.2V for 

a design implemented on a 0.13 µm process. 

Finally, gain and matching of the inductively-

degenerated cascode LNAs are very dependent on 

their inductors. Therefore, good inductor models are 

very important in achieving good performances. 
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