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Graphical abstract 
 

 

Abstract 
 

In this paper, we consider the numerical solution of one dimensional space-fractional 

diffusion equation. The half-sweep AOR (HSAOR) iterative method is applied to solve linear 

system generated from discretization of one dimensional space-fractional diffusion 

equation using Caputo’s derivative operator and half-sweep implicit finite difference 

scheme. Furthermore, the formulation and implementation of HSAOR iterative method to 

solve the problem are also presented. Two examples and comparisons with FSAOR iterative 

method are given to show the effectiveness of the proposed method. From numerical 

results obtained, it has shown that the HSAOR iterative method is superior as compared 

with the FSAOR methods.  
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1.0  INTRODUCTION 
 

In this paper we focus on numerical solution for one -

dimensional space-fractional diffusion equations. 

Generally, linear space-fractional diffusion equations 

(SFDE’s) given as follows  
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  (1)  

with initial condition  

    ,x0,xfx,0U   

and boundary conditions 

   ,tgt0,U 0     .Tt0,tgt,U 1   

We describe some necessary definitions and 

mathematical preliminaries of the fractional derivative 

theory which are required for our subsequent 

development of the approximation equation for the 

problem in Eq.(1). 

 

Definition 1.[1,2] The Riemann-Liouville fractional 

integral operator ,  J of order-   is defined as 
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Definition 2.[2,3] The Caputo’s fractional partial 

derivative operator, D  of order -  is defined as 
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with ,m1m   mN, 0x  . 

 

We have the following properties when 

,m1m   0x : 

 

,0D k 


( k is constant ), 
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Finally, its can be concluded  
that the HSAOR  is superior  

to FSAOR Iterative method 
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where function    denotes the smallest integer 

greater than or equal to  , N0= ,...2,1,0 and  . is 

the gamma function. 

The linear space-fractional diffusion equations occur 

in multiple diversified phenomena such as physics, 

finance and biology problems. Therefore numerical 

treatment is preferred in order to diagnose and solve 

the problems. In many application areas, it is 

necessary to use the numerical approach to obtain an 

approximation solution for the problem in Eq. (1) such 

as method of line (MOL) [4], implicit finite element 

method [5], grid-based schemes and Monte-Carlo 

method [6].  Based on extension work [7], in this paper, 

discretization scheme based on Caputo’s fractional 

derivative operator together with implicit finite 

difference scheme will be implemented to discretize 

the problem in Eq.(1).Thus, the generated linear system 

will be solved by using Half-Sweep AOR (HSAOR) 

iterative method. 

Basically, the proposed HSAOR method is inspired by 

the concept of half-sweep iteration which is 

introduced by Abdullah [8] via the Explicit Decoupled 

Group (EDG) iterative method to solve two-

dimensional Poisson equations. Actually, The half-

sweep iteration concept are essential to reduce         

the computational complexities during iterative              

process, because the implementation of half-sweep                 

iteration will only consider nearly half of all node  point 

in a solution domain respectively [9]. In addition to   

the advantage of this iteration concept, the 

implementations of this concept in various partial 

differential equations were further investigated [10, 11, 

12]. However, most of problems which have been 

solved by them are categorized as partial differential 

equation of integer order. In this work, we descretized 

space-fractional diffusion equation using implicit finite 

difference scheme with Caputo’s derivative operator 

in order to examine the implementation of HSAOR 

iteration method in solving the resultant linear system 

of equations. The standard AOR iterative method also 

known as the FSAOR iterative method is implemented 

as control method in order to investigate the 

performance of HSAOR iterative method. 

 

 

2.0 HALF-SWEEP CAPUTO’S IMPLICIT FINITE 
DIFFERENCE APPROXIMATION EQUATIONS 
 

In this section, the space-fractional diffusion equation 

(1) is solved. In order to find solution in Eq. (1), let us 

define ,
1


m

h


where, m=n+1 is positive even integer.  

By implementing definition (2) we obtain  
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Then the discrete approximation equation (4) can be 

written as 
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Then, using implicit finite difference scheme and 

Caputo’s derivative operator in Eq. (4), we obtain half-

sweep Caputo’s implicit finite difference 

approximation equation as 
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for i = 2,4,…,m-2. To simplify the above approximation 

equation, we get  
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Again, Eq.(7) can be shown 
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Let the series term in Eq. (8) be expanded to get the 

following approximation equation 

in2,iini,in2,-ii4-iin6,-ii fUrUqUpUsUR  i  (9) 

Where 
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By considering the interior node points of the solution 

domain in to Eq.(9), the generated linear system by 

half-sweep Caputo’s implicit finite difference 

approximation equation can be easily shown as  
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3.0  FORMULATION OF HSAOR ITERATIVE  
METHOD 
 

In this paper, FSAOR and HSAOR iterative methods will 

be applied to solve linear system generated from the 

discretization of the problem in Eq. (1) as shown in Eq. 

(10). In previous studies, a lot of works have been done 

to describe the various iterative methods such as 

Young [13, 14, 15], Hackbush [16], Saad [17], Evans [18] 

and Yousif and Evans [19]. To derive the formulation of 

both proposed methods, let the coefficient matrix A in 

Eq. (10) be expressed as 

                 A = D - L – V                                                      (11)    

where D, L and V are diagonal, strictly lower triangular 

and strictly upper triangular matrices respectively 

[13,14,15]. Then, based on Eq. (11)the general scheme 

for the HSAOR iterative method can be shown as 

[7,10,20,21] 
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1
~       (12) 

 

where  kU
~

represents an unknown vector at kth 

iteration. Since   , this iterative method (12) will 

be named as the HSSOR [12,22,23,24], while 

1  we obtain the HSGS method. Basically, the 

general algorithm for HSAOR iterative method to solve 

linear system (10) would be generally described in 

Algorithm 1. 

 

Algorithm 1: HSAOR method 
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ii. For 1,,2,1,0  nj   implement 

a. For pmppi  ,,2,1  calculate 
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b.Convergence test. If the convergence 

criterion i.e

    101 10  kk U
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is 

satisfied, go to next time level. Otherwise 

go back to Step (a). 

 

iii Display approximate solutions. 

 

However If p=1, Algorithm 1 will be named as FSAOR 

 

 
4.0  CONVERGENCE OF AOR  METHOD 
 

In this section we will show that convergence of AOR 

method .We have AOR method for the solution (1) has 

the form: 
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Theorem 4.1. [25](a) If the AOR method (13) converges 
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Proof. (a). It is known that the eigenvalues j of 

 0,, L are connected with the eigenvalues j  

of  LL ,  ( L is the SOR iteration matrix) by the 

relationship [20] 
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and since 2)2(2,1  mjj  from hypothesis, we 

obtain  
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and proof of part (a) is completed. 
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5.0  NUMERICAL EXPERIMENTS 
 

For the numerical experiments, two examples were 

considered to verify the effectiveness of the 

implementation of the HSAOR iterative method. To 

comparison between FSAOR and HSAOR methods, 

three criteria will be considered such as number of 

iterations (K), execution time (second) and maximum 

error at three different values of 

1.8 and5.1,2.1   with different mesh sizes as 
128, 256, 512, 1024 and 2048. In implementations of 

two numerical experiments, the convergence test 

considered the tolerance error 1010 . Results of 

numerical experiments, which were obtained from 

implementations of the FSAOR and HSAOR iterative 

method have been recorded in Tables 1 and 2 

respectively. 

 

Tables 1 Comparison between number of iterations (K), the execution time (seconds) and maximum errors for the iterative 

methods using example 1 at 8.1,5.1,2.1  

 

 

M 

 

Method   = 1.2   = 1.5   = 1.8 

K Time Max 

Error 

K Time Max 

Error 

K Time Max 

Error 

128 

 

FSAOR 65 1.32 2.37e-02 188 3.88 6.21e-04 269 5.35 3.99e-02 

HSAOR 46 0.53 2.24e-02 78 0.83 6.99e-04 225 2.13 4.03e-02 

256 

 

FSAOR 128 10.00 2.44e-02 370 28.88 5.69e-04 756 58.90 3.97e-02 

HSAOR 77 2.94 2.37e-02 204 7.70 6.21e-04 732 28.08 3.99e-02 

512 FSAOR 270 84.05 2.47e-02 983 104 5.35e-04 2497 703 3.96e-02 

HSAOR 129 19.88 2.44e-02 544 83.61 5.69e-04 2388 368.65 3.97e-02 

1024 FSAOR 577 125 2.49e-02 3640 689 5.13e-04 5220 1119 2.36e-02 

HSAOR 278 179.11 2.47e-02 1457 502 5.35e-04 4098 982 3.38e-02 

2048 FSAOR 1150 540 2.52e-02 5950 3102 5.09e-04 13203 3920 2.30e-02 

HSAOR 606 424 2.49e-02 3885 2035 5.24e-04 11376 3256 2.35e-02 
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Table 2 Comparison between number of iterations (K), the execution time (seconds) and maximum errors for the iterative 

methods using example 2 at 8.1,5.1,2.1  

 
 

M 

 

Method   = 1.2   = 1.5   = 1.8 

K Time Max 

Error 

K Time Max 

Error 

K Time Max 

Error 

128 

 

FSAOR 48 0.93 1.80e-01 133 1.41 5.44e-02 148 1.52 1.25e-04 

HSAOR 34 0.45 1.73e-01 55 0.70 5.16e-02 135 1.24 1.76e-04 

256 

 

FSAOR 97 3.58 1.84e-01 197 10.93 5.58e-02 457 16.66 1.44e-04 

HSAOR 55 2.67 1.81e-01 145 6.91 5.44e-02 439 11.61 8.88e-04 

512 FSAOR 106 18.71 5.39e-01 525 83.02 1.28e-02 1357 193.83 1.53e-04 

HSAOR 97 17.52 1.84e-01 386 73.38 5.58e-02 1147 101.20 4.09e-04 

1024 FSAOR 213 168 5.45e-01 1298 198 1.32e-02 4329 2103 1.25e-04 

HSAOR 209 150.23 1.86e-01 1030 160 5.65e-02 3731 1984.23 1.54e-04 

2048 FSAOR 815 398 1.92e-01 2506 912 5.73e-02 6520 3834 2.30e-04 

HSAOR 456 273 1.86e-01 2326 878 5.80e-02 6290 3462 2.45e-04 

 

 

Example 1: [3] 

 

We consider the following space-fractional initial 

boundary value problem 

       
 

 
 ,tx,p

x

tx,U
xd

t

tx,U














             (20)                         

at finite domain ,10  x  with  the diffusion   

    5.0xxd  . The source function  

       ,1sin21cos1, 2  txtxtxp  with the initial 

condition     )1sin(10, 2  xxU  and the boundary 

conditions        ,1sin2,,1sin,0  ttlUttU  for t>0.  The 

exact solution of this problem is     )1sin(1, 2  txtxU . 

 

Examples 2: [3] 

 

We consider the following space-fractional initial 

boundary value problem 

     
  ,e1-2xx3

x

tx,U
x)2.1(

t

tx,U t-2













             (21) 

with the initial condition   320, xxxU   and zero 

Dirichlet conditions. The exact solution of this problem 

is   -t2 x)e-(1xtx,U  . 

 
 

6.0  CONCLUSION 
 

In this work, we discussed the implementation of the 

HSAOR iterative algorithm which uses two accelerated 

parameter. The HSAOR Algorithm has performance 

good speedup and efficiency for computational time 

and number of iterations. Again, the HSAOR algorithm 

has shown their superiority over the FSAOR algorithm. 

For our future works, this study can be extended to 

investigate on the use of the AOR to combined with 

the concept quarter-sweep iterative family [26, 27, 28].  

 

References 
 
[1] Zhang, Y. 2009. A Finite Difference Method for Fractional 

Partial Differential Equation. Applied Mathematics and 

Computation. 215: 524-529. 

[2] Li, C., Qian, D., and Chen, Y. Q. 2011. On Riemann-Liouville 

and Caputo Derivatives. Hindawi Publishing Corporation 

Discrete Dynamics in Nature and Science. 1: 1-15. 

[3] Azizi, H., and Loghmani, G. B. 2013. Numerical 

Approximation for Space-Fractional Diffusion Equations via 

Chebyshev Finite Difference Method. Journal of Fractional 

and Applications. 4(2): 303-311. 

[4] Liu, F., Anh, V., and Turner, I. 2004. Numerical Solution of The 

Space Fractional Fokker-Planck Equation. Journal of 

Computational And Applied mathematics. 166: 209-219. 

[5] Burrage, K., Hale, N. and Kay, D. 2012. An Efficient Implicit 

FEM Scheme for Fractional-In-Space Reaction-Diffusion 

Equations. Society for Industrial and Applied mathematics. 

34(4): A2145-A2172. 

[6] Stern, R., Effenberger, F., Fichtner, H., and Schafer, T. 2013. 

The Space-Fractional Diffusion–advection Equation: 

Analytical Solutions And Critical Assessment of Numerical 

Solutions. Fractional Calculus and Applied Analysis. 17(1): 

171-190. 

[7] Sunarto, A., Sulaiman, J., and Saudi, A. 2014. Implicit Finite 

Difference Solution for Time-Fractional Diffusion Equations 

Using AOR Method. Journal of Physics Conference Series. 

495: 2024-2031. 

[8] Abdullah, A. R. The Four Point Explicit Decoupled Group 

(EDG) Method: A Fast Poisson Solver. International Journal 

Computer Mathematics. 76: 203-217.  

[9] Hasan, M. K., Othman, M., Abbas, Z., Sulaiman, J., and 

Ahmad, F. 2007. Parallel Solution of High Speed Low Order 

FDTD on 2D Free Space Wave Propagation. Lecturer Notes 

in Computer Science LNCS. 4706: 13-24. 

[10] Sunarto, A., Sulaiman, J., and Saudi, A. 2014. Half-Sweep 

Accelerated Over-Relaxations Iterative Method for The 

Solution Time-Fractional Diffusion Equations. Simposium 

Kebangsaan Sains Mathematiks ke 22. Shah-Alam, 

Malaysia. 109-115. 

[11] Sunarto, A., Sulaiman J., and Saudi, A. 2014. Half-Sweep 

Gauss-Seidel Iteration Applied to Time-Fractional Diffusion 

Equations. Journal Kalam. 7(2): 016-022. 

[12] Saudi, A, and J. Sulaiman. 2012. Path Planning for Indoor 

mobile Robot using Half-Sweep SOR via Nine-Point 

Laplacian ( HSSORL9L). IOSR Journal of Mathematics. 3(2): 

01-07. 



12            Andang Sunarto, Jumat Sulaiman & Azali Saudi / Jurnal Teknologi (Sciences & Engineering) 78:6–4 (2016) 7–12 

 

 

[13] Young, D. M. 1954. Iterative Methods for Solving Partial 

Difference Equations of Elliptic Type. Transaction of The 

AMS-American Mathematical Society. 76: 92-111. 

[14] Young, D. M. 1971. Iterative Solution of Large Sparse 

Systems. London: Academic Press. 

[15] Young, D. M. 1972. Second-Degree Iterative Methods for 

The Solution of Large Linear Systems. Journal of 

Approximation Theory. 15: 37-148. 

[16] Hackbush, W. 1995. Iterative Solution of Large Sparse 

Systems of Equations. New York: Springer-Verlag. 

[17] Saad, Y. 1996. Iterative Method for Sparse Linear Systems. 

Boston: International Thomas Publishing. 

[18] Evans, D. J. 1985. Group Explicit Iterative Methods for Solving 

Large Linear Systems. International Journal Computer 

Mathematics. 17: 81-108.  

[19] Yousif, W., and Evans, D. J. 1995. Explicit De-coupled Group 

Iterative methods and Their Implementations. Parallel 

Algorithm and Applications. 7: 53-71. 

[20] Hadjidimos, A. 1978. Accelerated Over Relaxation Method. 

Mathematics of Computation. 32: 149-157 

[21] Tian, H. 2003. Accelerated Over-relaxation Method for Rank 

Deficient Linear Systems. Applied Mathematics and 

computation. 14: 485-499. 

[22] Sunarto, A., Sulaiman, J., and Saudi, A. 2013. SOR Method 

for Implicit Finite Difference Solution of Time-Fractional 

Diffusion Equations. Borneo Science. 34: 34-42. 

[23] Sunarto, A., Sulaiman, J. and Saudi, A. 2014. Full-Sweep SOR 

Method for Solving Space-Fractional Diffusion Equations. 

Australian journal of Basic and Applied Science. 8: 153-158. 

[24] Sunarto, A., Sulaiman, J. and Saudi, A. 2014. Solving The 

Time-Fractional Diffusion Equations By The Half-Sweep SOR 

Method. Proceeding of International Conference of 

Advanced Informatics: Concept, Theory and Applications 

(ICAICTA), Bandung, Indonesia:  20-21 August 2014. 1: 272-

277. 

[25] Yeyios, A. K. 1988. A Necessary Condition for The 

Convergence of The Accelerated Overrelaxation (AOR) 

method. Journal of Computational and Applied 

Mathematics. 26: 371-373. 

[26] Sunarto, A., Sulaiman J. and Saudi, A. 2014. Approximate 

Solution for The Time-Fractional Diffusion Equations Using 

Quarter-Sweep Gauss-Seidel Method. Proceeding of The 1st 

International Conference on Science and Technology for 

Sustainability (ICoStech), Batam, Indonesia.  22 October 

2014. 1: 15-21. 

[27] Sunarto, A., Sulaiman, J. and Saudi, A. 2015. Numerical 

Solution of The Time–Fractional Diffusion Equations By Using 

Quarter-Sweep SOR Iterative Method. International of 

Journal Mathematical Engineering and Science (IJMES).  

3(2): 54-67. 

[28] Sulaiman, J., Othman, M., and Hasan, M. K. 2004. Quarter-

Sweep Iterative Alternating Decomposition Explicit 

Algorithm Applied to Diffusion Equations. International 

Journal Computer Mathematics. 81(12): 1559-1565. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




