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Graphical abstract 
 

 

Abstract 
 

A new compression algorithm used to ensure a modified Baptista symmetric cryptosystem 

which is based on a chaotic dynamical system to be applicable is proposed. The Baptista 

symmetric cryptosystem able to produce various ciphers responding to the same message 

input. This modified Baptista type cryptosystem suffers from message expansion that goes 

against the conventional methodology of a symmetric cryptosystem. A new lossless data 

compression algorithm based on theideas from the Huffman coding for data transmission is 

proposed.This new compression mechanism does not face the problem of mapping 

elements from a domain which is much larger than its range.Our new algorithm circumvent 

this problem via a pre-defined codeword list.  The purposed algorithm has fast encoding 

and decoding mechanism and proven analytically to be a lossless data compression 

technique. 
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1.0  INTRODUCTION 
 

The Baptista type cryptosystem suffers from message 

expansion that goes against the conventional 

methodology of a symmetric cryptosystem [3]. 

However its polyaphabetic cipher structure allures the 

continuance of research into enabling this 

application.  

Data compression is a process of reducing the size 

of a file by doing some alteration to the structure. In 

real world applications, compression is very useful 

because it helps to reduce the consumption of 

expensive resources such as memory space, total time 

for data transfer over network and communication 

costs by using available bandwidth effectively. There 

are 2 types of compression: lossy and lossless. 

The first category is lossy data compression 

techniques. Through this technique the 

decompression process of compressed data 

produces results with loss of some information. This 
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compression technique is called irreversible 

compression since it is not possible to reconstruct 100% 

the original message during the decompression 

process. As lossy cannot generate the original 

message perfectly, the difference between the 

original and after message decompressing, cannot 

be tolerated. 

This paper will solely focus on one “lossless data 

compression technique”. This technique compresses 

data without effectively losing detail. Therefore data 

can be perfectly reconstructed. Thus, the information 

after being decompressed does not change from its 

original structure before compression. It is also known 

as reversible compression since the original data is 

reconstructed by decompression process. An 

example is the ZIP file mechanism. Since the original 

data becomes smaller, it is easy to be transmitted 

through today’s public bandwidth.  

Prior to transmission we propose a novel lossless 

data compression method on the ciphertext. This 

strategy has facilitated a possible practical 

deployment of the Baptista cryptosystem. 

 
 
2.0 THE ENCRYPTION AND COMPRESSION 
ALGORITHM 

 

The modified Baptista cryptosystem [7] become more 

secure against attacks similar to the one-time pad 

attack that occurs in year 2003[1]. The strong 

characteristics from the original Baptista cryptosystem 

were sustained.   In this subsection, we will go through 

Baptista cryptosystem via matrix secret key based on 

IFS [7].  

 

IFS consisting of the maps, 

𝑤𝑖(𝑥, 𝑦) = (
𝑎𝑖 𝑏𝑖
𝑐𝑖 𝑑𝑖

) (
𝑥
𝑦) + (

𝑒𝑖
𝑓𝑖
) , 𝑖 = 1,2,… , 𝑁         (1) 

for 𝑖 = 1. That is, 

𝑤1 = (
𝑥𝑖+1
𝑦𝑖+1

) = (
𝑎 𝑏
𝑐 𝑑

) (
𝑥𝑖
𝑦𝑖
) + (

𝑒
𝑓) (2), 

 

and  let the matrix 

𝐴 = (
𝑎 𝑏
𝑐 𝑑

) 

consist of only elements within set {0, 1}. 

Next, the 2 × 1 matrix 

𝐵 = (
𝑥𝑖
𝑦𝑖
) 

will consist of Baptistaciphertext values, and the 

matrix 

𝐶 = (
𝑒
𝑓) 

will be equal to zero (i.e. 𝐶 = 0). 

 

2.1  Encryption Algorithm 

 

Preparing a chaotic map. 

 

i. Assume that we construct a look-up table 

consisting of 𝑗 𝜀-intervals. 

ii. Represent each site with 𝑆1, 𝑆2, 𝑆3, … , 𝑆𝑗. 

iii. The minimum value of the first interval is 0, 

and the upper bound of the interval is 1. 

iv. Choose a one-dimensional chaotic map. 

The logistic map; 

𝑥𝑖+1 = 𝑏𝑥𝑖(1 − 𝑥𝑖)for 𝑏 = 4. 

 

Preparing the matrix secret key. 

 

i. Generate a 𝑘 × 𝑘 matrix ([𝐴]𝑘×𝑘) such that 

its inverse ([𝐴]𝑘×𝑘
−1 ) exists. 

𝐴 =

(

 
 

𝑀11 𝑀12 … … 𝑀1𝑘
𝑀21 … … … 𝑀2𝑘
⋮
⋮
𝑀𝑘1

…
…
𝑀𝑘2

… … ⋮
… … ⋮
… … 𝑀𝑘𝑘)

 
 
, 

The matrix will consist elements only from the set {0, 1}. 

This matrix will be the secret key. 

Preparing distorted plaintext 

 

i. Encrypt each plaintext via Baptista 

method. 

ii. The iteration numbers are denoted as 𝐶1. 

iii. Group each element of 𝐶1 into matrix of 

dimension 𝑘 × 1. Then do the following 

matrix multiplication: 

[𝐶2]𝑘×1 = [𝐴]𝑘×𝑘 × [𝐶1]𝑘×1(4), 

iv. [𝐶2]𝑘×1is the ciphertext to be transmitted 

to the recipient. 

 

 

2.2  Compression Algorithm 

 

The algorithm will continue with observing the 

following codeword. The right column (binary code) is 

the code word for its counterpart residing within the 

same row in the left column (number). 

 
Table 1 Binary codes to represent the integers 

 

Number Binary Code 

1 1 

2 10 

3 100 

4 1000 

5 10000 

6 100000 

   
𝑛 − 1 1[(𝑛 − 1) − 1]0′𝑠 
𝑛 1[(𝑛 − 1)]0′𝑠 

 

 

Prior to the encoding process, to ensure correct 

decoding the size of the original data, n should be 

known to both the encoder and decoder. We denote 

‖𝑏‖ to be the length of the corresponding data string 

𝑏 = {0,1}𝑛for [𝐶2]𝑘×1. For 𝑗 = 1,2,3,… we define the 𝑗-th 

data string as 𝑏𝑗 = (2
‖𝑏𝑗−1‖ − 1) − 𝑏𝑗−1. Given a data 

string input 𝑏0, we will do the following; 
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i. Convert 𝑏0 to its decimal value. 

ii. Compute,𝑏1 = (2
‖𝑏0‖ − 1) − 𝑏0 

iii. Code the difference between the length 

of ‖𝑏0‖ and ‖𝑏1‖ as 𝑤1 (refer Table 1) 

iv. Continue the loop 𝑏𝑗 = (2
‖𝑏𝑗−1‖ − 1) − 𝑏𝑗−1 

for 𝑗 = 1,2,3,… , 𝑘until 0 ≤ 𝑏𝑗 ≤ 3 (observe 

that ‖𝑏𝑗‖ = 2). In each loop a codeword 

𝑤𝑗 will be produced based on the 

difference between the length of 

‖𝑏𝑗−1‖and ‖𝑏𝑗‖. Observe that the values of 

𝑏𝑗are strictly decreasing, and as soon as it 

reaches0 ≤ 𝑏𝑗 ≤ 3  the algorithm will 

terminate.  

v. From the codeword list {𝑤1, 𝑤2, … , 𝑤𝑘−1, 𝑤𝑘} 

we will append 𝑏𝑘 at the end of the 

codeword to gain [𝐶2]𝑘×1 =
{𝑤1, 𝑤2, … , 𝑤𝑘−1, 𝑤𝑘 , 𝑏𝑘}. Once again 

observe that ‖[𝐶2]𝑘×1‖ = 𝑛. Then, focus on 

the last codeword 𝑤𝑘𝑏𝑘 will be shifted to 

the left according to the number of zeros 

in 𝑤𝑘. The result is compressed data 

denoted by [𝐶2]𝑘×1𝑐.  

vi. The encoder will then send the 

compressed data [𝐶2]𝑘×1𝑐. Notice that the 

zero’s within 𝑤𝑘 is excluded in the 

corresponding sequence which 

constructs [𝐶2]𝑘×1𝑐. Hence, ‖[𝐶2]𝑘×1𝑐‖ ≤

‖[𝐶2]𝑘×1‖. 
 

 

3.0 UNIQUENESS OF THE DECOMPRESSION 
PROCESSAND DECRYPTION ALGORITHM 
 

3.1  Uniqueness of The Decompression process 

 
Proposition 1 (Decompression Algorithm)  

 

The following decoding process of an encoded 

information by section2.2 is unique. 

1- Expand [𝐶2]𝑘×1𝑐 to the original size 
‖[𝐶2]𝑘×1‖ by shifting back 𝑏𝑘 to the right by 

padding in zero’s until we have  

‖[𝐶2]𝑘×1𝑐‖ = ‖[𝐶2]𝑘×1‖. To decode we 

have to decide where each code begins and 

ends, since they do not have the same 

length.  During the encoding process we 

utilized the codeword list as given by Table 1. 

As a result, we only need to scan through the 

input string of 𝑚𝑐 from right to left until we 

recognize the first codeword. Then, we are 

able to determine the corresponding value 

and start looking for the next codeword. 

Observe that from Table 1 all cases will begin 

with 0 from the right and stop with 1 on the 

left.     

2- Excluding 𝑏𝑘, start by extracting the 

codeword from the LSB of 𝑚𝑐. Translate the 

codeword from Table 1. 

3- Compute, 𝑏𝑘−1 = (2
‖𝑝0‖ − 1) − 𝑏𝑘where  

‖𝑝0‖ = ‖𝑤𝑘‖ + ‖𝑏𝑘‖. 

4- Next, compute, 𝑏𝑘−2 = (2
‖𝑝1‖ − 1) −

𝑏𝑘−1where ‖𝑝1‖ = ‖𝑤𝑘−1‖ + ‖𝑝0‖. 

5- Continue until  𝑏𝑘−𝑖 = (2
‖𝑝𝑖−1‖ − 1) −

𝑏𝑘−𝑖+1, where 𝑖 =
1,2,3,… , 𝑘. The original data is 𝑏0. 

 

Proof 

 

Let 𝑏𝑘−𝑖+1 be parameter that is used to input into the 

decoding procedure prior to the procedure giving 

output 𝑏𝑘−𝑖 (i.e. 𝑏𝑘−𝑖 = (2
‖𝑝𝑖−1‖ − 1) − 𝑏𝑘−𝑖+1).  

The compression algorithm consists of a sequence of 

subtractions. Assume that the decoding process is not 

unique, then for a pair (𝑏𝑘−𝑖, ‖𝑝𝑖−1‖), we have the 

following relations; 

𝑏𝑘−𝑖+1 = (2
‖𝑝𝑖−1‖ − 1) − 𝑏𝑘−𝑖 

and 

𝑏𝑘−𝑖+1 = (2
‖𝑝𝑖−1‖ − 1) − 𝑏′𝑘−𝑖 

where 𝑏𝑘−𝑖 ≠ 𝑏′𝑘−𝑖.  
 

Following through we will have: 

(2‖𝑝𝑖−1‖ − 1) − 𝑏′𝑘−𝑖 = (2
‖𝑝𝑖−1‖ − 1) − 𝑏𝑘−𝑖 

This would imply that 𝑏𝑘−𝑖 − 𝑏
′
𝑘−𝑖 = 0. Thus, 

𝑏𝑘−𝑖 = 𝑏
′
𝑘−𝑖. This is a contradiction. Hence, 

assumption is false and the decoding process 

provides a unique output.∎ 

 

3.2  Decryption Algorithm 

 

Multiply [𝐴]𝑘×𝑘
−1  with the following ciphertexts([𝐶2]𝑘×1). 

 

i. Do the following matrix multiplication: 

[𝐶1]𝑘×1 = [𝐴]𝑘×𝑘
−1 × [𝐶2]𝑘×1(5), 

ii. This would result in a list of integer. 

iii. Use each integer to iterate the logistic 

map. Start iterating the logistic maps until 

it falls in the corresponding phase space 

of the first character and continue 

iterating until the final character to get 

the original plaintext. 

 

 

4.0  RESULTS AND DISCUSSIONS 

 
Example 1 

 

Let us use a 26-alphabets source, 𝑆 = {𝑎, 𝑏, … , 𝑧}. For 

illustrative purposes the key 𝑋0=0.232323 and 

parameter 𝑏 = 4. The text message is given by 𝑃 =

𝑎𝑡𝑡𝑎𝑐𝑘𝑎𝑡𝑑𝑎𝑤𝑛. Table 2 represents the Phase Space for 𝑆 =

{𝑎, 𝑏, … , 𝑧} while Table 3 shows the Ciphertext appears after 

Baptista Cryptosystem (a).  
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Table 2 Phase Space for 𝑆 = {𝑎, 𝑏, … , 𝑧}. 

 

Site Associated interval (phase space) 

a [0, 0.038462) 

b (0.038462, 0.076923) 

c (0.076923, 0.115385) 

d (0.115385, 0.153846) 

e (0.153846, 0.192308) 

f (0.192308, 0.230769) 

g (0.230769, 0.269231) 

h (0.269231, 0.307692) 

i (0.307692, 0.346154) 

j (0.346154, 0.384615) 

k (0.384615, 0.423077) 

l (0.423077, 0.461538) 

m (0.461538, 0.5) 

n (0.5, 0.538462) 

o (0.538462, 0.576923) 

p (0.576923, 0.615385) 

q (0.615385, 0.653846) 

r (0.653846, 0.692308) 

s (0.692308, 0.730769) 

t (0.730769, 0.769231) 

u (0.769231, 0.807692) 

v (0.807692, 0.846154) 

w (0.846154, 0.884615) 

x (0.884615, 0.923077) 

y (0.923077, 0.961538) 

z (0.961538, 1] 

 

1. Encryption. 

i. Choose 𝑘 =  2. 

ii. Preparing matrix key, let 𝐴 = (
1 1
0 1

), 

iii. Each character 𝑃, was encrypted via 

Baptista cryptosystem.  

iv. The following Plaintexts:  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 Ciphertext appears after Baptista Cryptosystem (a) 

 

Plaintext, 𝑷 Ciphertext, 𝑪𝟏 

a 8 

t 63 

t 25 

a 19 

c 1 

k 1 

a 55 

t 4 

d 33 

a 3 

w 4 

n 134 

 

v. Next, group each integer of 𝐶1 into 

matrix of dimension 𝑘 × 1. Then do the 

following matrix multiplication: 

[𝐶2]𝑘×1 = [𝐴]𝑘×𝑘 × [𝐶1]𝑘×1(6), 

vi. From the following Cihertexts, 𝐶1. Do the 

matrix multiplication procedure. 

vii.  

(
1 1
0 1

) (
8
63
) = (

71
63
), 

(
1 1
0 1

) (
25
19
) = (

44
19
), 

(
1 1
0 1

) (
1
1
) = (

2
1
), 

(
1 1
0 1

) (
55
4
) = (

59
4
), 

(
1 1
0 1

) (
33
3
) = (

36
3
), 

(
1 1
0 1

) (
4
134

) = (
138
134

). 

 

viii. The following Ciphertexts,𝐶2: 71, 63, 44, 

19, 2, 1, 59, 4, 36, 3, 138, 134. 

ix. Apply the compression algorithm from 

2.2. Consider that data transmission 

with the ability to transfer 1 bit data per 

second and transmit the data by text in 

each transmission. The Table 4 below 

shows that the data size after 

transmission. 

 
Table 4 Comparison Data Bit Size after Transmission (a) 

 

Ciphertext Ciphertext 

Original 

Size 

Ciphertext 

Compressed 

Size 

71 7 7 

63 6 3 

44 6 5 

19 5 4 

2 2 2 

1 1 1 

59 6 6 

4 3 3 

36 6 4 

3 2 2 

4 3 3 

134 8 8 
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Example 2 

 

Let us use a 26-alphabets source, 𝑆 = {𝑎, 𝑏, … , 𝑧}, refer 

Table 5. For illustrative purposes, we assume the key 

𝑋0=0.383838 and parameter 𝑏 = 4. The text message is 

given by 𝑃 = 𝑎𝑡𝑡𝑎𝑐𝑘𝑎𝑡𝑑𝑎𝑤𝑛.  

 

2. Encryption. 

i. Choose 𝑘 = 2. 

ii. Preparing matrix key, let A = (
1 1
0 1

), 

iii. Each character 𝑃, was encrypted via 

Baptista cryptosystem. 

iv. The following Plaintexts: 

 

 
Table 5 Ciphertext appears after Baptista Cryptosystem (b) 

 

Plaintext, 𝑷 Ciphertext, 𝑪𝟏 

a 30 

t 127 

t 1 

a 15 

c 12 

k 89 

a 16 

t 172 

d 44 

a 3 

w 45 

n 9 

 

v. Next, group each integer of 𝐶1 into matrix 

of dimension 𝑘 × 1. Then do the following 

matrix multiplication: 

[𝐶2]𝑘×1 = [𝐴]𝑘×𝑘 × [𝐶1]𝑘×1(7), 

vi. From the following Ciphertexts𝐶1. Do the 

matrix multiplication procedure. 

vii.  

(
1 1
0 1

) (
30
127

) = (
157
127

), 

(
1 1
0 1

) (
1
15
) = (

16
15
),   

(
1 1
0 1

) (
12
89
) = (

101
89
), 

(
1 1
0 1

) (
16
172

) = (
188
172

),   

(
1 1
0 1

) (
44
3
) = (

47
3
),  

(
1 1
0 1

) (
45
9
) = (

54
9
). 

 

viii. The following Ciphertexts, 

𝐶2: 157, 127, 16, 15, 101, 89,  
188, 172, 47, 3, 54, 9. 

ix. Apply the compression algorithm from 

section 2.2. Consider that data 

transmission with the ability to transfer 1 

bit data per second and transmit the 

data by text in each transmission. Table 

6 below shows the data size after 

transmission. 
 

Table 6 Comparison Data Bit Size after Transmission (b) 

 

Ciphertext Ciphertext Original 

Size 

Ciphertext Compressed 

Size 

157 7 7 

127 6 3 

16 6 5 

15 5 4 

101 2 2 

89 1 1 

188 6 6 

172 3 3 

47 6 4 

3 2 2 

54 3 3 

9 8 8 

 

5.0 COMPRESSION RATIO AND 

TRANSMISSION SPEED  
 

Compression ratio is defined as, 

 

Compression 

ratio, 𝐶𝑅                 = 

Uncompressed 

 size 
 

− 

Compressed  

Size 

Uncompressed size 

 

Remark 1 

 

From section 2.2, it implies that if 𝐶𝑅 → 1 (i.e. 

Compressed size → 0), the algorithm has an excellent 

compression rate. 

For data transmission speed, we consider that data 

transmission with the ability to transfer 1 bit data per 

second. See the following table (Table 6 and 7). 

 

 

6.0  CONCLUSION  
 

In this paper we have applied our new proposed 

compression algorithm on the Baptista cryptosystem. 

The result proves that our compression algorithm works 

on Baptista cryptosystem.  
 

Table 7 Conclusion of Experiment 1 

 

Data length before compression 50 bits 

Compression Ratio 0.120 

Speed (without compression) 50 

Speed (with compression) 44 

 

Table 8 Conclusion of Experiment 2 

 

Data length before compression 72 bits 

Compression Ratio 0.181 

Speed (without compression) 72 

Speed (with compression) 59 

 

 

From Tables 7 and 8 the speed of the compression 

are different. The compression ratio for experimental 
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example 1 is 0.120 and in example 2 is 0.181. This is 

because we changed the initial value (i.e. seed) in 

example 2 were changed. Also take note that 

experimental example 2 suffers from the ciphertext 

(data length before compression) expansion, but the 

new compression ratio is better than before. That is, to 

achieve better speed by making a small change in a 

Baptista cryptosystem in order to achieve better 

compression. Hence, from the above table (Table 8), 

it is clear that in some cases, by making a small 

change in the Baptista cryptosystem, the data will 

actually produce better compression ratio and speed. 

Through this work, the scheme can easily be 

visualized on current transmission technology and 

would be efficient for live data streaming. This newly 

developed algorithm has facilitated practical 

deployment of the Baptista cryptosystem. Future 

research can continue to be conducted, mainly to 

facilitate another algorithm to make it more efficient 

in terms of compression ratio and speed for the 

deployment of the Baptista cryptosystem. 
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