

78:6–4 (2016) 61–66 | www.jurnalteknologi.utm.my | eISSN 2180–3722 |

Jurnal

Teknologi

Full Paper

USE OF NEW EFFICIENT LOSSLESS DATA COMPRESSION

METHOD IN TRANSMITTING ENCRYPTED BAPTISTA

SYMMETRIC CHAOTIC CRYPTOSYSTEM DATA

Muhamad Azlan Dauda*, Muhammad Rezal Kamel Ariffinb, S.

Kularajasingamc, Che Haziqah Che Hussina, Nurliyana Juhana,

Mohd Mughti Hasnid

aPreparatory Center for Science and Technology, Universiti

Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah,

Malaysia
bDepartment of Mathematics, Faculty of Sciences, Universiti Putra

Malaysia, 43400 UPM Serdang, Selangor, Malaysia
cSunway College Johor Bahru, No.3, Jalan Austin Heights Utama,

Taman Mount Austin, 81100 Johor Bahru, Johor, Malaysia
dDepartment of Fundamental and Applied Sciences, Faculty of

Science and Information Technology, Universiti Teknologi

PETRONAS, 36210 Bandar Seri Iskandar, Perak, Malaysia

Article history

Received

24 July 2015

Received in revised form

16 December 2015

Accepted

24 January 2016

*Corresponding author

azlan.daud@ums.edu.my

Graphical abstract

Abstract

A new compression algorithm used to ensure a modified Baptista symmetric cryptosystem

which is based on a chaotic dynamical system to be applicable is proposed. The Baptista

symmetric cryptosystem able to produce various ciphers responding to the same message

input. This modified Baptista type cryptosystem suffers from message expansion that goes

against the conventional methodology of a symmetric cryptosystem. A new lossless data

compression algorithm based on theideas from the Huffman coding for data transmission is

proposed.This new compression mechanism does not face the problem of mapping

elements from a domain which is much larger than its range.Our new algorithm circumvent

this problem via a pre-defined codeword list. The purposed algorithm has fast encoding

and decoding mechanism and proven analytically to be a lossless data compression

technique.

Keywords: Lossless, lossy, baptista cryptosystem, Huffman, coding, encoding

© 2016 Penerbit UTM Press. All rights reserved

1.0 INTRODUCTION

The Baptista type cryptosystem suffers from message

expansion that goes against the conventional

methodology of a symmetric cryptosystem [3].

However its polyaphabetic cipher structure allures the

continuance of research into enabling this

application.

Data compression is a process of reducing the size

of a file by doing some alteration to the structure. In

real world applications, compression is very useful

because it helps to reduce the consumption of

expensive resources such as memory space, total time

for data transfer over network and communication

costs by using available bandwidth effectively. There

are 2 types of compression: lossy and lossless.

The first category is lossy data compression

techniques. Through this technique the

decompression process of compressed data

produces results with loss of some information. This

62 Muhamad Azlan Daud et al. / Jurnal Teknologi (Sciences & Engineering) 78:6–4 (2016) 61–66

compression technique is called irreversible

compression since it is not possible to reconstruct 100%

the original message during the decompression

process. As lossy cannot generate the original

message perfectly, the difference between the

original and after message decompressing, cannot

be tolerated.

This paper will solely focus on one “lossless data

compression technique”. This technique compresses

data without effectively losing detail. Therefore data

can be perfectly reconstructed. Thus, the information

after being decompressed does not change from its

original structure before compression. It is also known

as reversible compression since the original data is

reconstructed by decompression process. An

example is the ZIP file mechanism. Since the original

data becomes smaller, it is easy to be transmitted

through today’s public bandwidth.

Prior to transmission we propose a novel lossless

data compression method on the ciphertext. This

strategy has facilitated a possible practical

deployment of the Baptista cryptosystem.

2.0 THE ENCRYPTION AND COMPRESSION
ALGORITHM

The modified Baptista cryptosystem [7] become more

secure against attacks similar to the one-time pad

attack that occurs in year 2003[1]. The strong

characteristics from the original Baptista cryptosystem

were sustained. In this subsection, we will go through

Baptista cryptosystem via matrix secret key based on

IFS [7].

IFS consisting of the maps,

𝑤𝑖(𝑥, 𝑦) = (
𝑎𝑖 𝑏𝑖
𝑐𝑖 𝑑𝑖

) (
𝑥
𝑦) + (

𝑒𝑖
𝑓𝑖
) , 𝑖 = 1,2,… , 𝑁 (1)

for 𝑖 = 1. That is,

𝑤1 = (
𝑥𝑖+1
𝑦𝑖+1

) = (
𝑎 𝑏
𝑐 𝑑

) (
𝑥𝑖
𝑦𝑖
) + (

𝑒
𝑓) (2),

and let the matrix

𝐴 = (
𝑎 𝑏
𝑐 𝑑

)

consist of only elements within set {0, 1}.

Next, the 2 × 1 matrix

𝐵 = (
𝑥𝑖
𝑦𝑖
)

will consist of Baptistaciphertext values, and the

matrix

𝐶 = (
𝑒
𝑓)

will be equal to zero (i.e. 𝐶 = 0).

2.1 Encryption Algorithm

Preparing a chaotic map.

i. Assume that we construct a look-up table

consisting of 𝑗 𝜀-intervals.

ii. Represent each site with 𝑆1, 𝑆2, 𝑆3, … , 𝑆𝑗.

iii. The minimum value of the first interval is 0,

and the upper bound of the interval is 1.

iv. Choose a one-dimensional chaotic map.

The logistic map;

𝑥𝑖+1 = 𝑏𝑥𝑖(1 − 𝑥𝑖)for 𝑏 = 4.

Preparing the matrix secret key.

i. Generate a 𝑘 × 𝑘 matrix ([𝐴]𝑘×𝑘) such that

its inverse ([𝐴]𝑘×𝑘
−1) exists.

𝐴 =

(

𝑀11 𝑀12 … … 𝑀1𝑘
𝑀21 … … … 𝑀2𝑘
⋮
⋮
𝑀𝑘1

…
…
𝑀𝑘2

… … ⋮
… … ⋮
… … 𝑀𝑘𝑘)

,

The matrix will consist elements only from the set {0, 1}.

This matrix will be the secret key.

Preparing distorted plaintext

i. Encrypt each plaintext via Baptista

method.

ii. The iteration numbers are denoted as 𝐶1.

iii. Group each element of 𝐶1 into matrix of

dimension 𝑘 × 1. Then do the following

matrix multiplication:

[𝐶2]𝑘×1 = [𝐴]𝑘×𝑘 × [𝐶1]𝑘×1(4),

iv. [𝐶2]𝑘×1is the ciphertext to be transmitted

to the recipient.

2.2 Compression Algorithm

The algorithm will continue with observing the

following codeword. The right column (binary code) is

the code word for its counterpart residing within the

same row in the left column (number).

Table 1 Binary codes to represent the integers

Number Binary Code

1 1

2 10

3 100

4 1000

5 10000

6 100000

𝑛 − 1 1[(𝑛 − 1) − 1]0′𝑠
𝑛 1[(𝑛 − 1)]0′𝑠

Prior to the encoding process, to ensure correct

decoding the size of the original data, n should be

known to both the encoder and decoder. We denote

‖𝑏‖ to be the length of the corresponding data string

𝑏 = {0,1}𝑛for [𝐶2]𝑘×1. For 𝑗 = 1,2,3,… we define the 𝑗-th

data string as 𝑏𝑗 = (2
‖𝑏𝑗−1‖ − 1) − 𝑏𝑗−1. Given a data

string input 𝑏0, we will do the following;

63 Muhamad Azlan Daud et al. / Jurnal Teknologi (Sciences & Engineering) 78:6–4 (2016) 61–66

i. Convert 𝑏0 to its decimal value.

ii. Compute,𝑏1 = (2
‖𝑏0‖ − 1) − 𝑏0

iii. Code the difference between the length

of ‖𝑏0‖ and ‖𝑏1‖ as 𝑤1 (refer Table 1)

iv. Continue the loop 𝑏𝑗 = (2
‖𝑏𝑗−1‖ − 1) − 𝑏𝑗−1

for 𝑗 = 1,2,3,… , 𝑘until 0 ≤ 𝑏𝑗 ≤ 3 (observe

that ‖𝑏𝑗‖ = 2). In each loop a codeword

𝑤𝑗 will be produced based on the

difference between the length of

‖𝑏𝑗−1‖and ‖𝑏𝑗‖. Observe that the values of

𝑏𝑗are strictly decreasing, and as soon as it

reaches0 ≤ 𝑏𝑗 ≤ 3 the algorithm will

terminate.

v. From the codeword list {𝑤1, 𝑤2, … , 𝑤𝑘−1, 𝑤𝑘}

we will append 𝑏𝑘 at the end of the

codeword to gain [𝐶2]𝑘×1 =
{𝑤1, 𝑤2, … , 𝑤𝑘−1, 𝑤𝑘 , 𝑏𝑘}. Once again

observe that ‖[𝐶2]𝑘×1‖ = 𝑛. Then, focus on

the last codeword 𝑤𝑘𝑏𝑘 will be shifted to

the left according to the number of zeros

in 𝑤𝑘. The result is compressed data

denoted by [𝐶2]𝑘×1𝑐.

vi. The encoder will then send the

compressed data [𝐶2]𝑘×1𝑐. Notice that the

zero’s within 𝑤𝑘 is excluded in the

corresponding sequence which

constructs [𝐶2]𝑘×1𝑐. Hence, ‖[𝐶2]𝑘×1𝑐‖ ≤

‖[𝐶2]𝑘×1‖.

3.0 UNIQUENESS OF THE DECOMPRESSION
PROCESSAND DECRYPTION ALGORITHM

3.1 Uniqueness of The Decompression process

Proposition 1 (Decompression Algorithm)

The following decoding process of an encoded

information by section2.2 is unique.

1- Expand [𝐶2]𝑘×1𝑐 to the original size
‖[𝐶2]𝑘×1‖ by shifting back 𝑏𝑘 to the right by

padding in zero’s until we have

‖[𝐶2]𝑘×1𝑐‖ = ‖[𝐶2]𝑘×1‖. To decode we

have to decide where each code begins and

ends, since they do not have the same

length. During the encoding process we

utilized the codeword list as given by Table 1.

As a result, we only need to scan through the

input string of 𝑚𝑐 from right to left until we

recognize the first codeword. Then, we are

able to determine the corresponding value

and start looking for the next codeword.

Observe that from Table 1 all cases will begin

with 0 from the right and stop with 1 on the

left.

2- Excluding 𝑏𝑘, start by extracting the

codeword from the LSB of 𝑚𝑐. Translate the

codeword from Table 1.

3- Compute, 𝑏𝑘−1 = (2
‖𝑝0‖ − 1) − 𝑏𝑘where

‖𝑝0‖ = ‖𝑤𝑘‖ + ‖𝑏𝑘‖.

4- Next, compute, 𝑏𝑘−2 = (2
‖𝑝1‖ − 1) −

𝑏𝑘−1where ‖𝑝1‖ = ‖𝑤𝑘−1‖ + ‖𝑝0‖.

5- Continue until 𝑏𝑘−𝑖 = (2
‖𝑝𝑖−1‖ − 1) −

𝑏𝑘−𝑖+1, where 𝑖 =
1,2,3,… , 𝑘. The original data is 𝑏0.

Proof

Let 𝑏𝑘−𝑖+1 be parameter that is used to input into the

decoding procedure prior to the procedure giving

output 𝑏𝑘−𝑖 (i.e. 𝑏𝑘−𝑖 = (2
‖𝑝𝑖−1‖ − 1) − 𝑏𝑘−𝑖+1).

The compression algorithm consists of a sequence of

subtractions. Assume that the decoding process is not

unique, then for a pair (𝑏𝑘−𝑖, ‖𝑝𝑖−1‖), we have the

following relations;

𝑏𝑘−𝑖+1 = (2
‖𝑝𝑖−1‖ − 1) − 𝑏𝑘−𝑖

and

𝑏𝑘−𝑖+1 = (2
‖𝑝𝑖−1‖ − 1) − 𝑏′𝑘−𝑖

where 𝑏𝑘−𝑖 ≠ 𝑏′𝑘−𝑖.

Following through we will have:

(2‖𝑝𝑖−1‖ − 1) − 𝑏′𝑘−𝑖 = (2
‖𝑝𝑖−1‖ − 1) − 𝑏𝑘−𝑖

This would imply that 𝑏𝑘−𝑖 − 𝑏
′
𝑘−𝑖 = 0. Thus,

𝑏𝑘−𝑖 = 𝑏
′
𝑘−𝑖. This is a contradiction. Hence,

assumption is false and the decoding process

provides a unique output.∎

3.2 Decryption Algorithm

Multiply [𝐴]𝑘×𝑘
−1 with the following ciphertexts([𝐶2]𝑘×1).

i. Do the following matrix multiplication:

[𝐶1]𝑘×1 = [𝐴]𝑘×𝑘
−1 × [𝐶2]𝑘×1(5),

ii. This would result in a list of integer.

iii. Use each integer to iterate the logistic

map. Start iterating the logistic maps until

it falls in the corresponding phase space

of the first character and continue

iterating until the final character to get

the original plaintext.

4.0 RESULTS AND DISCUSSIONS

Example 1

Let us use a 26-alphabets source, 𝑆 = {𝑎, 𝑏, … , 𝑧}. For

illustrative purposes the key 𝑋0=0.232323 and

parameter 𝑏 = 4. The text message is given by 𝑃 =

𝑎𝑡𝑡𝑎𝑐𝑘𝑎𝑡𝑑𝑎𝑤𝑛. Table 2 represents the Phase Space for 𝑆 =

{𝑎, 𝑏, … , 𝑧} while Table 3 shows the Ciphertext appears after

Baptista Cryptosystem (a).

64 Muhamad Azlan Daud et al. / Jurnal Teknologi (Sciences & Engineering) 78:6–4 (2016) 61–66

Table 2 Phase Space for 𝑆 = {𝑎, 𝑏, … , 𝑧}.

Site Associated interval (phase space)

a [0, 0.038462)

b (0.038462, 0.076923)

c (0.076923, 0.115385)

d (0.115385, 0.153846)

e (0.153846, 0.192308)

f (0.192308, 0.230769)

g (0.230769, 0.269231)

h (0.269231, 0.307692)

i (0.307692, 0.346154)

j (0.346154, 0.384615)

k (0.384615, 0.423077)

l (0.423077, 0.461538)

m (0.461538, 0.5)

n (0.5, 0.538462)

o (0.538462, 0.576923)

p (0.576923, 0.615385)

q (0.615385, 0.653846)

r (0.653846, 0.692308)

s (0.692308, 0.730769)

t (0.730769, 0.769231)

u (0.769231, 0.807692)

v (0.807692, 0.846154)

w (0.846154, 0.884615)

x (0.884615, 0.923077)

y (0.923077, 0.961538)

z (0.961538, 1]

1. Encryption.

i. Choose 𝑘 = 2.

ii. Preparing matrix key, let 𝐴 = (
1 1
0 1

),

iii. Each character 𝑃, was encrypted via

Baptista cryptosystem.

iv. The following Plaintexts:

Table 3 Ciphertext appears after Baptista Cryptosystem (a)

Plaintext, 𝑷 Ciphertext, 𝑪𝟏

a 8

t 63

t 25

a 19

c 1

k 1

a 55

t 4

d 33

a 3

w 4

n 134

v. Next, group each integer of 𝐶1 into

matrix of dimension 𝑘 × 1. Then do the

following matrix multiplication:

[𝐶2]𝑘×1 = [𝐴]𝑘×𝑘 × [𝐶1]𝑘×1(6),

vi. From the following Cihertexts, 𝐶1. Do the

matrix multiplication procedure.

vii.

(
1 1
0 1

) (
8
63
) = (

71
63
),

(
1 1
0 1

) (
25
19
) = (

44
19
),

(
1 1
0 1

) (
1
1
) = (

2
1
),

(
1 1
0 1

) (
55
4
) = (

59
4
),

(
1 1
0 1

) (
33
3
) = (

36
3
),

(
1 1
0 1

) (
4
134

) = (
138
134

).

viii. The following Ciphertexts,𝐶2: 71, 63, 44,

19, 2, 1, 59, 4, 36, 3, 138, 134.

ix. Apply the compression algorithm from

2.2. Consider that data transmission

with the ability to transfer 1 bit data per

second and transmit the data by text in

each transmission. The Table 4 below

shows that the data size after

transmission.

Table 4 Comparison Data Bit Size after Transmission (a)

Ciphertext Ciphertext

Original

Size

Ciphertext

Compressed

Size

71 7 7

63 6 3

44 6 5

19 5 4

2 2 2

1 1 1

59 6 6

4 3 3

36 6 4

3 2 2

4 3 3

134 8 8

65 Muhamad Azlan Daud et al. / Jurnal Teknologi (Sciences & Engineering) 78:6–4 (2016) 61–66

Example 2

Let us use a 26-alphabets source, 𝑆 = {𝑎, 𝑏, … , 𝑧}, refer

Table 5. For illustrative purposes, we assume the key

𝑋0=0.383838 and parameter 𝑏 = 4. The text message is

given by 𝑃 = 𝑎𝑡𝑡𝑎𝑐𝑘𝑎𝑡𝑑𝑎𝑤𝑛.

2. Encryption.

i. Choose 𝑘 = 2.

ii. Preparing matrix key, let A = (
1 1
0 1

),

iii. Each character 𝑃, was encrypted via

Baptista cryptosystem.

iv. The following Plaintexts:

Table 5 Ciphertext appears after Baptista Cryptosystem (b)

Plaintext, 𝑷 Ciphertext, 𝑪𝟏

a 30

t 127

t 1

a 15

c 12

k 89

a 16

t 172

d 44

a 3

w 45

n 9

v. Next, group each integer of 𝐶1 into matrix

of dimension 𝑘 × 1. Then do the following

matrix multiplication:

[𝐶2]𝑘×1 = [𝐴]𝑘×𝑘 × [𝐶1]𝑘×1(7),

vi. From the following Ciphertexts𝐶1. Do the

matrix multiplication procedure.

vii.

(
1 1
0 1

) (
30
127

) = (
157
127

),

(
1 1
0 1

) (
1
15
) = (

16
15
),

(
1 1
0 1

) (
12
89
) = (

101
89
),

(
1 1
0 1

) (
16
172

) = (
188
172

),

(
1 1
0 1

) (
44
3
) = (

47
3
),

(
1 1
0 1

) (
45
9
) = (

54
9
).

viii. The following Ciphertexts,

𝐶2: 157, 127, 16, 15, 101, 89,
188, 172, 47, 3, 54, 9.

ix. Apply the compression algorithm from

section 2.2. Consider that data

transmission with the ability to transfer 1

bit data per second and transmit the

data by text in each transmission. Table

6 below shows the data size after

transmission.

Table 6 Comparison Data Bit Size after Transmission (b)

Ciphertext Ciphertext Original

Size

Ciphertext Compressed

Size

157 7 7

127 6 3

16 6 5

15 5 4

101 2 2

89 1 1

188 6 6

172 3 3

47 6 4

3 2 2

54 3 3

9 8 8

5.0 COMPRESSION RATIO AND

TRANSMISSION SPEED

Compression ratio is defined as,

Compression

ratio, 𝐶𝑅 =

Uncompressed

 size

−

Compressed

Size

Uncompressed size

Remark 1

From section 2.2, it implies that if 𝐶𝑅 → 1 (i.e.

Compressed size → 0), the algorithm has an excellent

compression rate.

For data transmission speed, we consider that data

transmission with the ability to transfer 1 bit data per

second. See the following table (Table 6 and 7).

6.0 CONCLUSION

In this paper we have applied our new proposed

compression algorithm on the Baptista cryptosystem.

The result proves that our compression algorithm works

on Baptista cryptosystem.

Table 7 Conclusion of Experiment 1

Data length before compression 50 bits

Compression Ratio 0.120

Speed (without compression) 50

Speed (with compression) 44

Table 8 Conclusion of Experiment 2

Data length before compression 72 bits

Compression Ratio 0.181

Speed (without compression) 72

Speed (with compression) 59

From Tables 7 and 8 the speed of the compression

are different. The compression ratio for experimental

66 Muhamad Azlan Daud et al. / Jurnal Teknologi (Sciences & Engineering) 78:6–4 (2016) 61–66

example 1 is 0.120 and in example 2 is 0.181. This is

because we changed the initial value (i.e. seed) in

example 2 were changed. Also take note that

experimental example 2 suffers from the ciphertext

(data length before compression) expansion, but the

new compression ratio is better than before. That is, to

achieve better speed by making a small change in a

Baptista cryptosystem in order to achieve better

compression. Hence, from the above table (Table 8),

it is clear that in some cases, by making a small

change in the Baptista cryptosystem, the data will

actually produce better compression ratio and speed.

Through this work, the scheme can easily be

visualized on current transmission technology and

would be efficient for live data streaming. This newly

developed algorithm has facilitated practical

deployment of the Baptista cryptosystem. Future

research can continue to be conducted, mainly to

facilitate another algorithm to make it more efficient

in terms of compression ratio and speed for the

deployment of the Baptista cryptosystem.

Acknowledgement

We would like to thank University Malaysia Sabah for

supporting our participation and scholarship.

References

[1] Alvarez, Montoya, G., Romera, F. M. and Pastor. 2000.

Cryptanalysis of a chaotic encryption system from Phys.

Lett. A. 276: 191-196.

[2] Ferreira, A. J., Oliveira, A. L. and Figueiredo, M. A. T. 2009.

On the Suitability of Suffix Arrays for Lempel-Ziv Data

Compression. DCC. 2009: 444.

[3] Baptista, M. S. 1998. Cryptography with Chaos from Phys.

Lett. A. 240: 50-54.

[4] Daud, M. A. and Ariffin M. R. K. 2013. A New Efficient

Analytically Proven Lossless Data Compression for Data

Transmission Technique. Malaysian Journal of Mathematical

Sciences. 7(S): 117-129.

[5] Burrows, M. and Wheeler, D. J. 1994. A Block-sorting Lossless

Data Compression Algorithm. SRC Research Report. 124: 1-

18.

[6] Ward, M. D. 2005. Exploring Data Compression via Binary

Trees. 143-150.

[7] Ariffin, M. R. K., Al-Saidi, N. M. G., Said, M. R. M., Mahad, Z.

and Daud, M. A. 2012. A New Direction in Utilization of

Chaotic Fractal Functions for Cryptosystems. Book Chapter

in Applications of Chaos and Nonlinear Dynamics in

Science and Engineering – Vol 2. Understanding Complex

System. Berlin Heidelberg: Springer-Verlag. 233-248.

[8] Ahmadi, O. and Menezes. 2005. Irreducible Polynomials of

Maximum Weight. CACR Technical Reports.

[9] Hellebrand, S. and Wurtenberger, A. 2002. Alternating Run-

Length Coding- A Technique for Improved Test Data

Compression. Handout IEEE International Workshop on Test

Resource Partitioning. USA: Baltimore, MD.

[10] Pathak, S., Singh S., Singh S., Jain M. and Sharma A. 2011.

Data Compression Scheme of Dynamic Huffman Code for

Different Languages. 2011 International Conference i=on

Information and Network Technology. 4: 201-205.

[11] Roman S. 1997. Introduction to Coding and Information

Theory. Springer.

