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1.0  INTRODUCTION 
 

In optimization, the nonlinear CG method is a useful 

method in finding the minimum value. Considering the 

form below; 

 

)(min xf
nRx

                      (1) 

 

where RRf n :  is a continuously differentiable 

function which is bounded from below. Starting from 

an initial guess at point 0x , a nonlinear conjugate 

gradient algorithm generates a sequence of points 

{ kx }, according to the following iterative formula: 

 

         ,...2,1,0,1  kdxx kkkk                      (2) 

 

Where kx  is the current iterate point whilst 0k is a 

step size, which is obtained by one dimensional search 

known as the search direction, kd . In this paper, exact 

line search is used as shown in (3) below   
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 The search direction, kd  is defined by 
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where kg  is the gradient of )(xf at the point kx . 

Some of the well known k   are given as follows: 
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where kg  and 1kg  denotes the gradients of )(xf at 

the point kx and 1kx  respectively. For the above 

corresponding methods, FR is known as Fletcher and 

Reeves [1], PR is Polak and Ribierre [2], HS is known as 

Hestenes and Steifel [3], DY is Dai and Yuan [4], CD is 

Conjugate Descent by Fletcher [5] and lastly RMIL 

denotes for Rivaie, Mustafa, Ismail and Leong [6]. The 

symbol of Euclidean norm of vectors is presented by 

∥.∥. According to Dai and Yuan [7] and Yuan and Sun 

[8], if )(xf is strictly convex quadratic function, all 

these methods are said to be equivalent, but they 

behave differently for general non quadratic 

functions. 

Based on the history of CG methods which can be 

seen in [9], in 1952, Hestenes and Stiefel [3] first time 

proposed a CG method to solve a linear system of 

equation with a symmetric positive definite matrix, or 

equivalently, for minimizing a strictly convex quadratic 

function. After that, in 1964 Fletcher and Reeves [1] 

applied the CG method to general unconstrained 

optimization problems. Nowadays CG methods are 

used as iterative methods for solving large-scale 

unconstrained optimization problems since the 

storage of matrices is not needed. 

In this decade, many other CG methods have 

been proposed. Some recent research aims at 

generating a search direction satisfying the descent 

condition 0k
T
k dg  for all k and sufficient descent 

condition; i.e., there exists a positive constant c such 

that  

 

 
2

kk
T
k gcdg   

 

for all k holds to show global convergence. For the 

global convergence properties, the earliest most well 

known research is by Zoutendijk [10]. In that paper the 

global convergence of FR method is proven by using 

exact line search. A general condition on scalar k  

which ensures the global convergence of nonlinear 

conjugate gradient method in the case of strong 

Wolfe inexact line searches could be found in [11]. 

When the function is a strong convex quadratic, 

the CG method is said to be identical where the line 

search is exact. The performances will vary when 

applied to general nonlinear functions with inexact 

line search, [12]. 

In this paper a new CG coefficient k  is proposed 

based on the already proven k with the exact line 

search. Section two will discuss the motivation and the 

new k  together with the new algorithm of CG 

method. Section three will continue with convergence 

analysis of this new k together with its proofs. This 

paper used small-scale data which consists of ten 

problem functions with various dimension. In result 

section, it shows a graphical comparison of the new 

k with other k  namely the RMIL, PR, HS, FR, DY and 

CD. The paper ended with a conclusion section. 
 

 

2.0  THE NEW CG COEFFICIENT 
 

In this section, the new k proposed is known as SMR
k . 

The motivation of this SMR
k comes from RMIL

k where 

the denominator of SMR
k  is retained as same as

RMIL
k , which is

2
1kd . From (10), the numerator of 

RMIL
k  is given as  1 kk

T
k ggg . This numerator is also 

same as the numerator used in (7) and (8). The 

numerator acts as a restart properties to avoid 

problems associated with jamming, [13]. By 

expanding this expression, we get 1 k
T
kk

T
k gggg which 

implies  1

2

 k
T
kk ggg . In preventing any negative 

value of k , some modifications has been proposed. 

Hence; 
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Based on this SMR
k , a complete algorithm of CG 

method could be generated as follows:  

   

 Step 1: Initialization. Set 0k and select 0x   

 Step 2: Compute 
SMR
k

   based on (11) 

 Step 3: Compute search directions kd based 

   on (4).  If 0kg , then stop. 

 Step 4: Solve k using the exact line search, 

   k based on (3).  

         Step 5: Updating new initial point using (2)  
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 Step 6: Convergent test and stopping criteria.  

   If )()( 1 kk xfxf   and kg  then 

   stop. Otherwise go to Step 2 with 

   1 kk . 
 

 

3.0  CONVERGENCE ANALYSIS 
 

This section will discuss about the convergence 

properties of SMR
k where the sufficient descent 

condition and the global convergence properties 

must hold in order for an algorithm to converge.  Some 

of the proof is almost similar to the proof of RMIL
k , see 

[14]. 
 

3.1  Sufficient Descent Condition 
 

For the sufficient condition to hold, then 

 

           0 and 0for   
2

 CkgCdg kk
T
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(12) 

 

Theorem 1 

Consider a CG method with search direction (4) and 

SMR
k defined as (11), then, condition (12) will holds for 

all 0k  

 

Proof: 

From (4), if, 0k then
2

000 gCdgT  . Hence, 

condition (12) hold. In order to show condition (12) 

also hold for 1k , multiply (4) by T
kg . Then, 
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Since the line search is exact, it implies 01 k
T
k dg . Thus, 

     
2

kk
T
k gdg  . 

 

Hence, the descent condition holds, 
2

kk
T
k gCdg  . 

Proof completed.  
 

 

3.2  Global Convergence Properties 
 

Next, a new coefficient of CG methods with SMR
k  

must converges globally to fulfil the convergence 

properties. Before any step is proceeding, SMR
k  need 

to be simplified to make proving step much easier. 

From (11),  
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Hence,  
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In order to prove (14), the following assumptions are 

needed in the analysis of CG methods global 

convergence properties.  

 

Assumption 1 

(i) f is bounded below on the level set 
nR and is 

continuous  and differentiable in a neighbourhood 

N of the level set   )()(| 0xfxfRx n  at the 

initial point 0x  

(ii) The gradient )(xg is Lipschitz continuous in N , so 

there  exists a constant 0L such that 

 

  yxLygxg  )()( for any Nyx ,  

 

Under this assumptions, the following lemma is 

obtained, which was proved by Zoutendijk [15]. This 

lemma also holds for exact minimization rule, 

Goldstein and Wolfe rule shown in [16]. 

 

Lemma 1 

Suppose the Assumption 1 holds. Consider any CG 

methods of the form (4) where kd is a descent search 

direction and k satisfy the exact minimization rules. 

Then the following conditions know as Zoutendijk 

conditions holds 
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By using this lemma, the following convergence 

theorem of the conjugate gradient method can be 

obtained by using (14). 

 

Theorem 2 

Suppose that Assumption 1 holds. Consider any CG 

methods in the form of (4) and (2) where k is 

obtained by the exact minimization rules. Suppose 

that Assumption 1 and the descent condition hold. 

Then either 
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Proof 

Theorem 2 is proved by using contradiction. That is, if 

Theorem 2 is not true then, there exists a constant 

0c such that  
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(15) 

 

Rewriting (4),  
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Squaring both side   

 

  2
111

22
1

2
1 2   kk

T
kkkk gdgdd                

(16) 

 

Dividing both side with  211  k
T
k dg  

 

 
 

  11

2
1

11
2

11

22
1

2

11

2
1 2














k
T
k

k

k
T
kk

T
k

kk

k
T
k

k

dg

g

dgdg

d

dg

d 
 

 

By using completing the square,   
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Applying (14) yield 
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Therefore from (18) and (15), it follows that 

 

 
 




0
2

2

k k

k
T
k

d

dg
 

 

This contradicts the Zoutendijk condition in Lemma 2. 

Therefore the proof is completed.  
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This contradicts the Zoutendijk conditions. Hence the 

corollary holds.  

 
 

4.0  NUMERICAL RESULTS AND DISCUSSIONS 
 

In this section, the efficiency of the new algorithm is 

analysed. Considering the test functions proposed by 

Andrei [2], the performance of SMR is tested 

comparing with RMIL, PR, FR, HS, DY and CD. Stopping 

criteria is set to be
610kg  where .10 6 testing an 

algorithm on a relatively large set of test functions is 

bothersome because it requires the coding of the 
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functions. However, cynical observer can easily 

obtained if the algorithm is not tested on a large 

number of functions. It tends to conclude that the 

algorithm was tuned to particular functions. Even 

aside from the cynical observer, the algorithm is just 

not well tested, [17]. According to Hillstrom [18], for 

each of the test functions, random starting point must 

be choose from a box surrounding the standard 

starting point.  
 

Table 1 List of test functions used 
 

No Function n  Initial Points 

1 Three Hump 2  

)2,2(),2,2(

),1,1(),1,1(




 

2 Six Hump 2  

)10,10(),10,10(

),8,8(),8,8(




 

3 Goldstein-

Price 
2  

)13,13(),10,10(

),5,5(),2,2(




 

4 Himmelblau 

1000,500

,100,10,4,2

 

  200) ,… 200, (200,

 100), ,… 100, (100,

50), ,… 50, (50,

 10), ,… 10, (10,

 

5 Rosenbrock 

1000,500

,100,10,4,2

 

30) ,… 30, (30,

 20), ,… 20, (20,

16), ,… 16, (16,

13), ,… 13, (13,

 

6 Denschnb 

1000,500

,100,10,4,2

 

25) ,… 25, (25,

13), ,… 13, (13,

8), ,… 8, (8,

5), ,… 5, (5,

 

7 Beale 

1000,500

,100,10,4,2

 

10) ,… 10, (10,

8), ,… 8, (8, 

5), ,… 5, (5,

2), ,… 2, (2,

 

8 Tridiagonal 1 

1000,500

,100,10,4,2

 

20) ,… 20, (20,

17), ,… 17, (17, 

12), ,… 12, (12,

10), ,… 10, (10,

 

9 Generalized 

Quartic 1000,500

,100,10,4,2

 

  200) ,… 200, (200,

 100), ,… 100, (100,

50), ,… 50, (50,

10), ,… 10, (10,

 

10 Diagonal 4 

1000,500

,100,10,4,2

 

  200) ,… 200, (200,

 100), ,… 100, (100,

50), ,… 50, (50,

10), ,… 10, (10,

 

 

 

A list of ten test functions and its initial points 

involved are shown in Table 1. All test functions 

mentioned above is solved using MATLAB subroutine 

program with an Intel Core i7-3470 CPU processor .The 

comparison of our new algorithm numerical results are 

based on the number of iterations and CPU time.  

The numerical results of SMR, RMIL, PR, FR, HS, DY 

and CD will be compared based on number of 

iterations and CPU time. The performances are  

 

presented graphically in Figure 1 and Figure 2 by using 

performance profile initiated by Dolan and More [19]. 

Performance profile is used to find how well the solvers 

perform relative to the other solvers. In general, )(tPs

is the fraction of problems with performance ratio t , 

thus, a solver are said to be preferable when it has the 

higher values of )(tPs . In a set of problems P and a set 

S of optimization solvers, performance on problem 

Pp  is compared by a particular algorithm Ss with 

the best performance by any solver. Let 𝑡𝑝,𝑠 denotes 

the number of iterations or CPU time required when 

solving problem Pp by the method Ss . The 

performance ratio is defined by  Sst

t
r

sp

sp
sp




:min ,

,
, . 

It is assumed that ],1[, Msp rr  and Msp rr , only when 

problem p  is not solved by solver s . Define,

 trPp
n

tP sp
p

s  ,: size 
1

)(  as uniform fraction of 
pn

1
. 

Then the graph )(tPs versus ],1[ Mrt  is plotted. Since 

the smallest performance ratio is 1 and it will be 

located at the most left of t - axis, hence in a graph of 

performance profile, the top curve represents the 

most efficient method. 

 

 

 

 

 

 

 

 

 

 

 

 

        
Figure 1 Performance profile based on number of iterations 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
Figure 2 Performance profile based on CPU time 
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Figure 1 and Figure 2, show clearly that this new 

algorithm is better than other methods in term of 

number of iterations and CPU time. Table 2 shows the 

comparison of the effectiveness for each of the 

methods based on percentage analysis.  
 

Table 2 Percentage analysis 

 

Method Percentage (%) 

RMIL 93.28% 

PRP 97.09% 

FR 78.29% 

HS 84.76% 

DY 71.52% 

CD 79.76% 

SMR 99.75% 

 

 

5.0  CONCLUSIONS 
 

In this paper a new k is proposed and have been 

have proved that it is globally convergence under 

descent condition. Numerical results have shown that 

the new k performs better than other methods. For 

future study, numerical testing should be done for 

large-scale problems so that the new CG algorithm 

will become a new conjugate gradient family. 
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