The Rate of Convergence Convergent Condition for the Method for Finding the Largest Singular Value of Rectangular Tensors

Nur Fadhilah Ibrahimaª, Nurul Akmal Mohamedb

aSchool of Informatics and Applied Mathematics, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia bMathematics Department, Faculty of Science and Mathematics, 35900 Universiti Pendidikan Sultan Idris, Proton City, Tanjung Malim, Perak, Malaysia

Article history

Received
12 August 2015
Received in revised form
14 December 2015
Accepted
11 January 2016
*Corresponding author
fadhilah@umt.edu.my

Abstract

The applications of real rectangular tensors, among others, including the strong ellipticity condition problem within solid mechanics, and the entanglement problem within quantum physics. A method was suggested by Zhou, Caccetta and Qi in 2013, as a means of calculating the largest singular value of a nonnegative rectangular tensor. In this paper, we show that the method converges under weak irreducibility condition, and that it has a Q-linear convergence.

Keywords: Rectangular tensor, iterative method, singular value, convergence © 2016 Penerbit UTM Press. All rights reserved

1.0 INTRODUCTION

Tensors can be considered a generalization of matrices. They are represented as a multidimensional array of numbers. The application of real rectangular tensors, amongst others, include part of the strong ellipticity condition problem within solid mechanics and entanglement problem within quantum physics [1-6].
Most properties of tensors are generalized from matrices. We have seen in these past few years that the study of the spectral radius for tensors has developed a great interest. Chang, Qi and Zhou [7] introduced the class of the real rectangular tensor, and have presented a method for calculating the largest singular value of a nonnegative rectangular tensor. This method was originally used in order to find the largest eigenvalue of a nonnegative matrix [8, 9]. Later the method was extended by Ng, Qi and Zhou [10] for square tensors and most recently for rectangular tensors [7]. Zhou, Caccetta and Qi [11] improved the method in [7] and have shown that the
algorithm converges for irreducible nonnegative rectangular tensors.

The largest singular value problems can also be solved through the use of metaheuristics optimization algorithms. Some of the novel recent works within the field of metaheuristics include the Enhanced Leader PSO [12,13], the Brainstorm Optimization Algorithm [14], the Chaotic-Based Big Bang-Big Crunch Algorithm [15], and the Chaotic Bat Swarm Optimization [16].
However the convergence of the method presented in [11] is limited to only irreducible nonnegative rectangular tensors. It is unknown whether the method is also convergence for a wider class of tensors.

There are two objectives of this paper. The first objective is to prove that the method presented in the study of Zhou et al. [11] for finding the largest singular value is convergent when the tensor is a weakly irreducible nonnegative rectangular tensor, and the second is to prove that the rate of convergence for the method in the study [11] is Q -
linear, when the tensor is a weakly irreducible nonnegative rectangular tensor.
In this paper, we introduce the class of the weakly irreducible rectangular tensor, which is a wider class than the irreducible rectangular tensor. We then establish the convergence of the method in the study of Zhou et al. [11] for weakly irreducible nonnegative rectangular tensors, and its rate of convergence. This research intends to contribute to the convergence properties for the method of finding the largest singular value of rectangular tensors.
In Section 2, we provide definitions and theorems to be used later. In Section 3, it is proved that the algorithm given in [11] converges for weakly irreducible nonnegative rectangular tensors. In Section 4, it is proven that the algorithm in [11] has Qlinear convergence, and lastly in Section 5 this paper is concluded.

2.0 PRELIMINERIES

Let R be the real field, let R_{+}be the set of nonnegative numbers, and let $R_{>0}$ be the set of positive numbers. Let $p, q, m, n \in R_{>0}$ and $m, n \geq 2$. We can say A is a real p, q-th order $m \times n$ dimensional rectangular tensor, where:

$$
\begin{align*}
& A=\left(A_{i_{1} \ldots i_{p} j_{1} \ldots j_{q}}\right), A_{i_{1} \ldots i_{p} j_{1} \ldots j_{q}} \in R, \tag{1}\\
& 1 \leq i_{1}, \ldots, i_{p} \leq m, 1 \leq j_{1}, \ldots, j_{q} \leq n
\end{align*}
$$

We call A a nonnegative rectangular tensor if $a_{i_{1} \ldots i_{p} j_{1} \ldots j_{q}} \geq 0$. When $m=n, \quad A$ is a square tensor and when $p=1, q=1$, matrix A is an $m \times n$ rectangular matrix.
The singular value of rectangular tensors is comparable to the eigenvalue of square tensors. Here we use the following definition for the singular value of rectangular tensors. See e.g. [7]. Let $\left(A x^{p-1} y^{q}\right) \in R^{m}$, where:

$$
\begin{gather*}
\left(A x^{p-1} y^{q}\right)_{i}=\sum_{i_{2}, \ldots, i_{p}=1 j_{1}, \ldots, j_{p}=1}^{m} A_{i i_{2} \ldots i_{p} j_{1} \ldots j_{q}} x_{i_{2}} \ldots x_{i_{p}} y_{j_{1} \ldots j_{q}}, \\
i=1, \ldots, m, \text { and let }\left(A x^{p} y^{q-1}\right) \in R^{n}, \text { where } \\
\left(A x^{p} y^{q-1}\right)_{j}=\sum_{i_{1}, \ldots, i_{p}=1 j_{2}, \ldots j_{p}=1}^{m} A_{i_{1} \ldots i_{p}, j_{2} \ldots j_{q}}^{n} x_{i_{1}} \ldots x_{i_{p}} y_{j_{2} \ldots j_{q}}, \\
j=1, \ldots, n . \text { We set } M=p+q \text { and } N=m+n . \text { Let } \\
A x^{p-1} y^{q}=\lambda x^{[M-1]}, A x^{p} y^{q-1}=\lambda y^{[M-1]} . \tag{2}
\end{gather*}
$$

We call $\lambda \in C$ a singular value of A, where C is the set of complex numbers. We can say $x \in C^{m} \backslash\{0\}$ and $y \in C^{n} \backslash\{0\}$ are left and right eigenvectors of A, paired with the singular value λ, if λ, x and y satisfy the equation (2). The following are some preliminaries:

Theorem 1 (p.20,[17]). An $n \times n$ complex matrix A is irreducible if and only if its directed graph $G(A)$ is strongly connected.

Theorem 2 (p.51,[17]). Let A be an irreducible matrix, with $G(A)$ being the associated directed graph. If the greatest common divisor (gcd) of the lengths of its closed paths is equal to one, then A is primitive.

The converse of Theorem 2 also holds.
Theorem 3 (Chapter 2,[17]). If A is an irreducible nonnegative square matrix, then:
(i) the spectral radius $\rho(A)$ is an eigenvalue;
(ii) there exists a nonnegative vector $x_{0}>0$, such that $A x_{0}=\rho(A) x_{0}$;
(iii) (uniqueness) if λ is an eigenvalue with a nonnegative eigenvector, then $\lambda=\rho(A)$;
(iv) $\rho(A)$ is a simple eigenvalue of A;
(v) if λ is an eigenvalue of A, then $|\lambda| \leq \rho(A)$. Furthermore, if a nonnegative matrix A is primitive, then $\rho(A)>|\lambda|, \forall \lambda \in \sigma(A) \backslash\{\rho(A)\}$, where $\sigma(A)$ is the spectrum of A.

Corollary 1 [18]. An irreducible matrix with a nonzero main diagonal is primitive.

Proposition 1 [19,20]. The spectral radius of an $n \times n$ matrix A is characterized by the equality

$$
\rho(A)=\inf _{\| \| \in N}\|A\|
$$

where N denotes the set of all possible spectral norms of A. For any $\epsilon>0$, there exists a spectral norm $\|\cdot\| \in N$ such that $\|A\| \leq \rho(A)+\epsilon$.

For any $j=1,2, \ldots, n$, let $A_{\cdot j}=\left(A_{i_{1} \ldots i_{p} j \ldots j}\right)$ be a p-th order, m dimensional square tensor. For any $i=1,2, \ldots, m$, let $A_{i}=\left(A_{i . \ldots i_{1} \ldots j_{q}}\right)$ be a q-th order n dimensional square tensor. In this paper we consider all polynomials to be monotone and homogeneous.

Definition 1 [7, 11]. A nonnegative rectangular tensor A is irreducible if all the square tensors $A_{j_{j}}=\left(A_{i_{1} \ldots i_{p} j \ldots j}\right)$,
$j=1,2, \ldots, n, \quad$ and $\quad A_{i \cdot}=\left(A_{i \ldots . . i_{j} \ldots j_{q}}\right), \quad i=1,2, \ldots, m, \quad$ are irreducible.

Let A be a nonnegative $p, q-$ th order $m \times n$ dimensional rectangular tensor. The graph $G(A)=(V, E(A))$ is the associated graph of tensor A. The vertex set is $V=\bigcup_{j=1}^{p} V_{j}+\bigcup_{j=p+1}^{M} V_{j}$, with $V_{j}=\{1,2, \ldots, m\}$ for $j=1,2, \ldots, p$ and $V_{j}=\{1,2, \ldots, n\}$ for
$j=p+1, \ldots, M, M=p+q$. An edge $\left(i_{k}, i_{l}\right) \in V_{k} \times V_{l}$ exists if and only if $A_{i_{1} \ldots i_{p} j_{1} \ldots j_{q}}>0$ for some $M-2$ indices $\left\{i_{1}, \ldots, i_{p}, j_{1}, \ldots, j_{q}\right\} \backslash\left\{i_{k}, i_{l}\right\}$. The tensor A is considered weakly irreducible, if the graph $G(A)$ is connected [21].
For a rectangular tensor A, let $\rho>0, x \in R_{+}^{m}, y \in R_{+}^{n}$ and:

$$
\begin{align*}
B_{x}(x, y) & =A x^{p-1} y^{q}+\rho x^{[M-1]} \tag{3}\\
B_{y}(x, y) & =A x^{p} y^{q-1}+\rho y^{[M-1]} \tag{4}
\end{align*}
$$

The following Theorem was given in the study of Zhou et al. [11].

Theorem 4 [11]. If A is an irreducible nonnegative rectangular tensor of the order p, q and the dimension $m \times n$, then there exists $\mu_{0}>0, x_{0} \in R_{>_{0}}^{m}$ and $y_{0} \in R_{>_{0}}^{n}$, such that:

$$
\begin{equation*}
B_{x}\left(x_{0}, y_{0}\right)=\mu_{0} x_{0}^{[M-1]}, \quad B_{y}\left(x_{0}, y_{0}\right)=\mu_{0} y_{0}^{[M-1]} \tag{5}
\end{equation*}
$$

Moreover, μ_{0} satisfies the following equalities:

$$
\begin{aligned}
\mu_{0} & =\min _{(x, y) \in\left(R_{+}^{m} \backslash\{0\}\right) \times\left(R_{+}^{n} \backslash\{0\}\right)} \max _{i, j}\left(\frac{B_{x}(x, y)_{i}}{x_{i}^{[M-1]}}, \frac{B_{y}(x, y)_{j}}{y_{j}^{[M-1]}}\right) \\
& =\max _{(x, y) \in\left(R_{+}^{m} \\
{0\}\right) \times\left(R_{+}^{n}\{\{0\})\right.} \min _{i, j}\left(\frac{B_{x}(x, y)_{i}}{x_{i}^{[M-1]}}, \frac{B_{y}(x, y)_{j}}{y_{j}^{[M-1]}}\right)
\end{aligned}
$$

and $\mu_{0}-\rho$ is the largest singular value of the rectangular tensor A.

3.0 WEAKER CONVERGENT CONDITION

An algorithm for finding the largest singular value of an irreducible nonnegative rectangular tensor was proposed by Chang et al. [7]. Later, it was updated by Zhou et al. [11]. In this section, we will prove that the algorithm is convergent for weakly irreducible nonnegative rectangular tensors.

Algorithm 1 [11]

Step 0: Choose $\rho>0, x^{(1)}>0$ and $y^{(1)}>0$. Set $k=1$.
Step 1: Calculate $\xi^{(k)}=B_{x}\left(x^{(k)}, y^{(k)}\right)$ and

$$
\begin{aligned}
& \eta^{(k)}=B_{y}\left(x^{(k)}, y^{(k)}\right) \text {. Let } \\
& \qquad \underline{\mu}_{k}=\min _{x_{i}^{(k)}>0, y_{j}^{(k)}>0}\left(\frac{\xi_{i}^{(k)}}{\left(x_{i}^{(k)}\right)^{M-1}}, \frac{\eta_{j}^{(k)}}{\left(y_{j}^{(k)}\right)^{M-1}}\right) \\
& \bar{\mu}_{k}=\max _{x_{i}^{(k)}>0, y_{j}^{(k)}>0}\left(\frac{\xi_{i}^{(k)}}{\left(x_{i}^{(k)}\right)^{M-1}}, \frac{\eta_{j}^{(k)}}{\left(y_{j}^{(k)}\right)^{M-1}}\right)
\end{aligned}
$$

Step 2: If $\underline{\mu}_{k}=\bar{\mu}_{k}$, then stop. Otherwise, compute

$$
x^{(k+1)}=\frac{\left(\xi^{(k)}\right)^{\left[\frac{1}{M-1}\right]}}{\left\|\left(\xi^{(k)}, \eta^{(k)}\right)^{\left[\frac{1}{M-1}\right]}\right\|} \quad \text { and } y^{(k+1)}=\frac{\left(\eta^{(k)}\right)^{\left[\frac{1}{M-1}\right]}}{\|\left(\xi^{(k)}, \eta^{(k)}\right)^{\left.2^{\frac{1}{M-1}}\right]}}
$$

replace k with $k+1$ and go to Step 1 .
Let $\mu_{0}=\underline{\mu}_{k}=\bar{\mu}_{k}$. The largest singular value of A is $\mu_{0}-\rho$. Zhou et al. [11] have shown that this algorithm is convergent, if A is an irreducible nonnegative rectangular tensor. We will now show that Algorithm 1 is convergent if A is a weakly irreducible nonnegative rectangular tensor.
We define the polynomial map $P=\left(P_{1}, \ldots, P_{N}\right)^{T}: R_{+}^{N} \rightarrow R_{+}^{N}$ through:

$$
P(z)=\binom{A x^{p-1} y^{q}}{A x^{p} y^{q-1}}
$$

where $N=m+n, \quad z=\binom{x}{y}$. Let P_{i} be a polynomial with degree, $d_{i}>1$. Suppose that the coefficient of each monomial in P_{i} is nonnegative. The associated graph of P is the directed graph $G(P)=(V, E(P))$, where the vertices $V=\{1,2, \ldots, N\}$ and the edge $(i, j) \in E(P)$ if the coefficient of variable z_{j} appears in the expression of P_{i}.

Definition 2: Let $P=\left(P_{1}, \ldots, P_{N}\right)^{T}: R_{+}^{N} \rightarrow R_{+}^{N}$ be a polynomial map, where each P_{i} is a homogeneous polynomial of the degree $d \geq 1$ with nonnegative coefficients. We call P weakly irreducible if $G(P)$ is strongly connected. If the directed graph $G(P)$ is strongly connected, and the great common divisor (gcd) of the lengths of its circuits is equal to one, then we say P is weakly primitive.

Another way to check the ged of a graph's lengths of is to observe the diagonal of its associated matrix. An irreducible matrix has a nonzero main diagonal entry if and only if the associated directed graph has a loop, a closed path with length equals to one.

We can show that P is weakly primitive by proving that the associated matrix of its graph is primitive. Let $M(G(P))$ be the associated matrix of graph $G(P)$. We can say that $M(G(P))$ is primitive if the graph is strongly connected, and if the gcd of its lengths is equal to one.

Definition 3: A rectangular tensor A is weakly irreducible if P is weakly irreducible.

Let $B(z)=\binom{A x^{p-1} y^{q}+\rho x^{[M-1]}}{A x^{p} y^{q-1}+\rho y^{[M-1]}}$ and let $I(z)=\binom{\rho x^{[M-1]}}{\rho y^{[M-1]}}$. Hence we have $B(z)=P(z)+I(z)$. Now we prove that Algorithm 1 is convergent, if tensor A is weakly irreducible.

We can now present our results for this section.
Lemma 1: If A is a weakly irreducible nonnegative rectangular tensor with the order p, q and the $m \times n$ dimension, then $B(z)$ is a weakly primitive polynomial.
Proof. Since A is weakly irreducible then $P(z)$ is a weakly irreducible polynomial. By Definition 2, the graph of $P(z), \quad G(P(z))$ is strongly connected. By Theorem 1, the matrix of $G(P(z))$ is irreducible. We know that $G(I(z))$, the graph of $I(z)$, has a self-loop at each vertices. Therefore the matrix of $G(I(z))$ is a diagonal matrix. Hence, by Corollary 1, the matrix of $G(B(z))$ is primitive. By Theorem 2, $G(B(z))$ is strongly connected, and has a gcd that is equal to one. This implies by Definition 2 that $B(z)$ is a weakly primitive polynomial.

The following theorem is the main result of this paper.
Theorem 6. Let A be a weakly irreducible rectangular tensor of the p, q-th order and the $m \times n$ dimension. Suppose that $\left(\mu_{0}, x_{0}, y_{0}\right)$ is the solution of equation (5). Then, Algorithm 1 yields the value of μ_{0} through a finite number of steps, or generate two convergent sequences $\left\{\underline{\mu}_{k}\right\}$ and $\left\{\bar{\mu}_{k}\right\}$, both of which converge to μ_{0}. The largest singular value of A is $\mu_{0}-\rho$.
Proof. By Lemma 1 and Corollary 5.1 [21], Algorithm 1 converges when the rectangular tensor A is weakly irreducible.

4.0 RATE OF CONVERGENCE

In this section, we will show that Algorithm 1 has Q linear convergence, when A is a nonnegative weakly irreducible rectangular tensor of p, q-th order and $m \times n$ dimensional. We use the same argument as Zhou, Qi and Wu's study [22].
Define:

$$
F(z)=B(z)=\binom{A x^{p-1} y^{q}+\rho x^{[M-1]}}{A x^{p} y^{q-1}+\rho y^{[M-1]}}
$$

$$
D(z)=F(z)^{\left[\frac{1}{M-1}\right]}, \quad H(z)=\frac{D(z)}{\phi(D(z))}
$$

where $\phi: R_{+}^{N} \rightarrow R_{+}$is defined as:

$$
\phi(z)=z_{1}=\sum_{i=1}^{N} z_{i}
$$

for any nonnegative $z \in R_{+}^{N}$. We can see that the sequence $\left\{z^{(k)}\right\}$ in Algorithm 1 is generated by

$$
\begin{equation*}
z^{(k+1)}=H\left(z^{(k)}\right), \quad k=1,2, \ldots \tag{6}
\end{equation*}
$$

and $\phi\left(z^{(k)}\right)=1$ for all $k=1,2, \ldots$.
Lemma 2. Let A, μ_{0}, x_{0} and y_{0} be as in Theorem 6 and let $H^{\prime}\left(z_{0}\right)$ be the Jacobian of the function H at z_{0}. Then, $\rho\left(H^{\prime}\left(z_{0}\right)\right)<1$.
Proof. Let μ_{0} be the largest singular value of B and z_{0} be the corresponding eigenvector. We have $H\left(z_{0}\right)=D\left(z_{0}\right) / \phi\left(D\left(z_{0}\right)\right)$. We want to show that:

$$
\rho\left(H^{\prime}\left(z_{0}\right)\right)=\rho\left(\frac{D^{\prime}\left(z_{0}\right) \phi\left(D\left(z_{0}\right)\right)-D\left(z_{0}\right) \phi^{\prime}\left(D\left(z_{0}\right)\right)}{\phi^{2}\left(D\left(z_{0}\right)\right)}\right)<1 .
$$

We already have $F\left(z_{0}\right)=B\left(z_{0}\right)=\mu_{0} z_{0}^{[M-1]}$ and $\phi\left(z_{0}\right)=1$. Hence, $D\left(z_{0}\right)=\left(F\left(z_{0}\right)\right)^{\left[\frac{1}{M-1}\right]}=\mu_{0}^{\left[\frac{1}{M-1}\right]} z_{0}$. Let $\mu_{1}=\mu_{0}^{\left[\frac{1}{M-1}\right]}$, so we have $D\left(z_{0}\right)=\mu_{1} z_{0}$.
Now we compute $D^{\prime}\left(z_{0}\right)$, i.e. the Jacobian of D at z_{0}. Let

$$
\begin{aligned}
& \left.D\left(z_{0}\right)=\left(F\left(z_{0}\right)\right)^{\left[\frac{1}{M-1}\right.}\right]=\left[\begin{array}{c}
\left(F_{1}\left(z_{0}\right)\right)^{\left[\frac{1}{M-1}\right]} \\
\left(F_{2}\left(z_{0}\right)\right)^{\left[\frac{1}{M-1}\right]} \\
\vdots \\
\left(F_{N}\left(z_{0}\right)\right)^{\left[\frac{1}{M-1}\right]}
\end{array}\right], \\
& \nabla\left(\left(F_{1}\left(z_{0}\right)\right)^{\left[\frac{1}{M-1}\right]}\right)=\frac{1}{M-1}\left(F_{1}\left(z_{0}\right)\right)^{\left[\frac{2-M}{M-1}\right]} \nabla F_{1}\left(z_{0}\right) .
\end{aligned}
$$

By the same method, we can get:

$$
\nabla\left(\left(F_{i}\left(z_{0}\right)\right)^{\left[\frac{1}{M-1}\right]}\right)=\frac{1}{M-1}\left(F_{i}\left(z_{0}\right)\right)^{\left[\frac{2-M}{M-1}\right]} \nabla F_{i}\left(z_{0}\right), i=1, \ldots, N
$$

Thus the Jacobian of D at z_{0} is given below:

$$
\begin{aligned}
D^{\prime}\left(z_{0}\right) & =\nabla\left(\left(F\left(z_{0}\right)\right)^{\left[\frac{1}{M-1}\right]}\right) \\
= & {\left[\begin{array}{c}
\nabla\left(\left(F_{1}\left(z_{0}\right)\right)^{\left[\frac{1}{M-1}\right.}\right] \\
\left.\nabla\left(\left(F_{2}\left(z_{0}\right)\right)\right)^{\left[\frac{1}{M-1}\right]}\right) \\
\vdots \\
\nabla\left(\left(F_{N}\left(z_{0}\right)\right)^{\left[\frac{1}{M-1}\right]}\right]
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{M-1}\left(F_{1}\left(z_{0}\right)\right)^{\left[\frac{2-M}{M-1}\right]} \nabla F_{1}\left(z_{0}\right) \\
\frac{1}{M-1}\left(F_{2}\left(z_{0}\right)\right)^{\left[\frac{2-M}{M-1}\right]} \nabla F_{2}\left(z_{0}\right) \\
\vdots \\
\frac{1}{M-1}\left(F_{N}\left(z_{0}\right)\right)^{\left[\frac{2-M}{M-1}\right]} \nabla F_{N}\left(z_{0}\right)
\end{array}\right] }
\end{aligned}
$$

$$
\begin{aligned}
&=\left[\begin{array}{ccc}
\frac{1}{M-1}\left(F_{1}\left(z_{0}\right)\right)^{\left[\frac{2-M}{M-1}\right]} & & 0 \\
& \ddots & \\
0 & & \frac{1}{M-1}\left(F_{N}\left(z_{0}\right)\right)^{\left[\frac{2-M}{M-1}\right]}
\end{array}\right]\left[\begin{array}{c}
\nabla F_{1}\left(z_{0}\right) \\
\nabla F_{2}\left(z_{0}\right) \\
\vdots \\
\nabla F_{N}\left(z_{0}\right)
\end{array}\right] \\
&=\operatorname{diag}\left(\frac{1}{M-1}\left(F\left(z_{0}\right)\right)^{\left[\frac{2-M}{M-1}\right]}\right) F^{\prime}\left(z_{0}\right) \\
&= \frac{1}{M-1} \operatorname{diag}\left(\left(\mu_{1} z_{0}\right)^{[2-M]}\right) F^{\prime}\left(z_{0}\right),
\end{aligned}
$$

where $\frac{1}{M-1} \operatorname{diag}\left(\left(\mu_{1} z_{0}\right)^{[2-M]}\right)$ is a constant with $\mu_{1}>0$, and z_{0} is a positive vector. Therefore $G\left(D^{\prime}\left(z_{0}\right)\right)=G\left(F^{\prime}\left(z_{0}\right)\right)$. For the graph of B, by definition, there exists an edge between i and j, if variable z_{j} appears in the expression of B_{i}. Notice that the graph of B is similar to the graph of $D^{\prime}, G\left(D^{\prime}\left(z_{0}\right)\right)=G\left(F^{\prime}\left(z_{0}\right)\right)=G\left(B\left(z_{0}\right)\right)$. Lemma 1 states that B is weakly primitive, therefore, the graph of B is strongly connected. Hence the graph of D^{\prime} is also strongly connected, and D^{\prime} is therefore irreducible. The term $I(z)$ in B ensures that the diagonal is nonzero, and that implies D^{\prime} be primitive matrix. Since $D^{\prime}\left(z_{0}\right)$ is a primitive matrix, by Theorem 3, the eigenvalues $v_{1}, v_{2}, \ldots, v_{N}$ of $D^{\prime}\left(z_{0}\right)$ can be ordered as follows:

$$
v_{1}=\rho\left(D^{\prime}\left(z_{0}\right)\right)>\left|v_{2}\right| \geq\left|v_{3}\right| \geq \ldots \geq\left|v_{N}\right| .
$$

For all $t>1$, we expand $D\left(t z_{0}\right)$ about z_{0} by using Taylor's Series, and obtains:

$$
\begin{aligned}
t \mu_{1} z_{0} & =D\left(t z_{0}\right) \\
& =D\left(z_{0}\right)+D^{\prime}\left(z_{0}\right)\left(t z_{0}-z_{0}\right)+o\left(\left\|t z_{0}-z_{0}\right\|\right) \\
& =\mu_{1} z_{0}+(t-1) D^{\prime}\left(z_{0}\right) z_{0}+o(t-1) \\
(t-1) \mu_{1} z_{0} & =(t-1) D^{\prime}\left(z_{0}\right) z_{0}+o(t-1),
\end{aligned}
$$

which implies that $D^{\prime}\left(z_{0}\right) z_{0}=\mu_{1} z_{0}$. Since $D^{\prime}\left(z_{0}\right)$ is a primitive matrix, and $z_{0}>0$, by referring to the Theorem $3, z_{0}$ is an eigenvector of $D^{\prime}\left(z_{0}\right)$ associated with the largest eigenvalue $\mu_{1}=v_{1}$. Therefore, $\phi\left(D\left(z_{0}\right)\right)=\phi\left(\mu_{1} z_{0}\right)=\mu_{1}$.
We also have $\phi\left(D\left(z_{0}\right)\right)=D_{1}\left(z_{0}\right)+D_{2}\left(z_{0}\right)+\ldots+D_{N}\left(z_{0}\right)$, and $\quad \phi^{\prime}\left(D\left(z_{0}\right)\right)=D_{1}^{\prime}\left(z_{0}\right)+D_{2}^{\prime}\left(z_{0}\right)+\ldots+D_{N}^{\prime}\left(z_{0}\right)=e D^{\prime}\left(z_{0}\right)$, where e is the row vector of ones with N dimension. From $H\left(z_{0}\right)=D\left(z_{0}\right) / \phi\left(D\left(z_{0}\right)\right)$, and after some manipulations we attain:

$$
\begin{aligned}
H^{\prime}\left(z_{0}\right) & =\frac{D^{\prime}\left(z_{0}\right) \phi\left(D\left(z_{0}\right)\right)-D\left(z_{0}\right) \phi^{\prime}\left(D\left(z_{0}\right)\right)}{\phi^{2}\left(D\left(z_{0}\right)\right)} \\
& =\frac{D^{\prime}\left(z_{0}\right)-z_{0} e D^{\prime}\left(z_{0}\right)}{\mu_{1}} .
\end{aligned}
$$

Let $S=D^{\prime}\left(z_{0}\right)$ and $Q=S-z_{0} e S$. Therefore the above equation can be written as $H^{\prime}\left(z_{0}\right)=Q / \mu_{1}$. Here let it
be reminded that we want to prove that $\rho\left(H^{\prime}\left(z_{0}\right)=\rho\left(Q / \mu_{1}\right)<1\right.$. We can achieve this by showing that the spectral radius of Q is equal to $\left|v_{2}\right|$. We can also show that the spectrum of Q is $\left\{0, v_{2}, v_{3}, \ldots, v_{N}\right\}$.
We have $1=\phi\left(z_{0}\right)=\left(z_{0}\right)_{1}+\left(z_{0}\right)_{2}+\ldots+\left(z_{0}\right)_{N}=e z_{0}$, so $e z_{0}=1 \quad$ and $\quad Q=S-z_{0} e S, Q^{T} e^{T}=\left(S-z_{0} e S\right)^{T} e^{T}=0$. We can conclude that e^{T} is an eigenvector of Q^{T}, associated with the eigenvalue 0 .

There are two possible cases of S^{T}.
Case 1: The matrix $S^{T}=D^{\prime}\left(z_{0}\right)^{T}$ is diagonizable, that is, S^{T} is semisimple. For $i=2,3, \ldots, N$, we assume $S^{T} w^{i}=v_{i} w^{i}$, where w^{i} is an eigenvector of S^{T} that is associated with the eigenvalue v_{i}. Suppose that the set of eigenvector $\left\{w^{1}, w^{2}, \ldots, w^{N}\right\}$ is linearly independent.
We can write $v_{i} z_{0}^{T} w^{i}=z_{0}^{T} v_{i} w^{i}=z_{0}^{T} S^{T} w^{i}$, for $i=2,3, \ldots, N$.
We already have $D^{\prime}\left(z_{0}\right) z_{0}=S z_{0}=\mu_{1} z_{0}$. So, $\left(S z_{0}\right)^{T}=\left(\mu_{1} z_{0}\right)^{T}$, and

$$
\begin{equation*}
z_{0}^{T} S^{T}=\mu_{1} z_{0}^{T} . \tag{7}
\end{equation*}
$$

Hence, $v_{i} z_{0}^{T} w^{j}=z_{0}^{T} S^{T} w^{j}=\mu_{1} z_{0}^{T} w^{i},\left(v_{i}-\mu_{1}\right) z_{0}^{T} w^{i}=0$. So, for $i=2,3, \ldots, N$, it is either $v_{i}=\mu_{1}$ or $z_{0}^{T} w^{i}=0$. However $v_{i} \neq \mu_{1}$ for $i=2,3, \ldots, N$. Therefore $z_{0}^{T} w^{i}=0$.
Now we have $Q^{T} w^{i}=\left(S-z_{0} e S\right)^{T} w^{i}=S^{T} w^{i}-0$. Since we assume that $S^{T} w^{j}=v_{i} w^{j}$, so then $Q^{T} w^{j}=v_{i} w^{j}$. The vector w^{i} is an eigenvector of Q^{T} associated with the eigenvalue v_{i} for $i=2,3, \ldots, N$.
Now we prove that the set of eigenvectors of Q, $\left\{e^{T}, w^{2}, w^{3}, \ldots, w^{N}\right\}$ is linearly independent. Suppose
that:

$$
\begin{equation*}
\alpha_{1} e^{T}+\alpha_{2} w^{2}+\ldots+\alpha_{N} w^{N}=0 \tag{8}
\end{equation*}
$$

and $v_{i} \neq 0$ for $i=2,3, \ldots, p$ and $v_{j}=0$ for $j=p+1, \ldots, N$. We know that $Q^{T} e^{T}=0 e^{T}$ and $Q^{T} w^{i}=v_{i} w^{i}$ for $i=2,3, \ldots, N$. Adding these two equations on LHS and RHS respectively yield:

$$
Q^{T} e^{T}+Q^{T} w^{2}+\ldots+Q^{T} w^{N}=0 e^{T}+v_{2} w^{2}+\ldots+v_{p} w^{p}
$$

Now, substitute $\quad e^{T}, w^{2}, w^{3}, \ldots, w^{N} \quad$ with $\alpha_{1} e^{T}, \alpha_{2} w^{2}, \alpha_{3} w^{3}, \ldots, \alpha_{N} w^{N}$ of equation (8) and obtain

$$
\begin{gather*}
\alpha_{1} Q^{T} e^{T}+\alpha_{2} Q^{T} w^{2}+\ldots+\alpha_{N} Q^{T} w^{N} \tag{9}\\
=\alpha_{2} v_{2} w^{2}+\ldots+\alpha_{p} v_{p} w^{p} \\
Q^{T}\left(\alpha_{1} e^{T}+\alpha_{2} w^{2}+\ldots+\alpha_{N} w^{N}\right)=\alpha_{2} v_{2} w^{2}+\ldots+\alpha_{p} v_{p} w^{p}=0,
\end{gather*}
$$

Since we consider the set $\left\{w^{2}, w^{3}, \ldots, w^{N}\right\}$ to be linearly independent, we then get $\alpha_{2}=\alpha_{3}=\ldots=\alpha_{p}=0$, and we can now write equation (8) as:

$$
\begin{equation*}
\alpha_{1} e^{T}+\alpha_{p+1} w^{p+1}+\ldots+\alpha_{N} w^{N}=0 \tag{10}
\end{equation*}
$$

$$
\begin{aligned}
S^{T}\left(\alpha_{1} e^{T}+\alpha_{p+1} w^{p+1}+\ldots+\alpha_{N} w^{N}\right) & =0, \\
\alpha_{1} S^{T} e^{T}+\alpha_{p+1} S^{T} w^{p+1}+\ldots+\alpha_{N} S^{T} w^{N} & =0 .
\end{aligned}
$$

Since $S^{T} w^{i}=v_{i} w^{i} \quad$ for $j=p+1, \ldots, N$, we then get

$$
\alpha_{1} S^{T} e^{T}+\alpha_{p+1} v_{p+1} w^{p+1}+\ldots+\alpha_{N} v_{N} w^{N}=0
$$

Since $v_{j}=0$ for $j=p+1, \ldots, N$, it yields

$$
\alpha_{1} S^{T} e^{T}=0
$$

We then get $\alpha_{1}=0$ since $S^{T} e^{T}>0$ and S is diagonalizable. From equation (10), we have

$$
\begin{equation*}
\alpha_{p+1} w^{p+1}+\ldots+\alpha_{N} w^{N}=0 \tag{11}
\end{equation*}
$$

We know that the set $\left\{w^{p+1}, w^{p+2}, \ldots, w^{N}\right\}$ is linearly independent, so $\alpha_{p+1}=\ldots=\alpha_{N}=0$. So we get $\alpha_{1}=\ldots=\alpha_{N}=0$. This means that the set $\left\{e^{T}, w^{2}, w^{3}, \ldots, w^{N}\right\}$ is linearly independent and the spectrum of Q is $\left\{0, v_{2}, v_{3}, \ldots, v_{N}\right\}$.
Case 2: Consider that S^{T} is not diagonalizable or defective. We know that a defective matrix has less than N different eigenvalues. Assume that S^{T} has $q<N$ different eigenvalues where $v_{1}=\mu_{1}, v_{2}, \ldots, v_{q}$, and these eigenvalues can be written as follows:

$$
\begin{equation*}
v_{1}=\mu_{1}>\left|v_{2}\right| \geq\left|v_{3}\right| \geq \ldots \geq\left|v_{q}\right| . \tag{12}
\end{equation*}
$$

So, S^{T} has the form $S^{T}=X J X^{-1}$, where the $J=\operatorname{diag}\left\{J_{1}, J_{2}, \ldots, J_{q}\right\}$ is in a canonical form. Suppose that the square matrices $J_{i}, i=1,2, \ldots, q$ be the Jordan blocks with various sizes, in the form of:

$$
J_{i}=\left[\begin{array}{ccccc}
v_{i} & 1 & 0 & \cdots & 0 \\
0 & v_{i} & 1 & \ddots & \vdots \\
\vdots & \ddots & v_{i} & \ddots & 0 \\
\vdots & 0 & \ddots & \ddots & 1 \\
0 & \cdots & \cdots & 0 & v_{i}
\end{array}\right],
$$

where v_{i} is an eigenvalue of S^{T}. Let $J_{1}=\left[\mu_{1}\right]$, and X_{i} is the i th column vector of $X, i=1,2, \ldots, N$. Let l_{i} be the size of J_{i} of each Jordan block, where $i=1,2, \ldots, q$. We now have $S^{T}=X J X^{-1}$, and therefore $S^{T} X=X J$,
$S^{T}\left[\begin{array}{lllll}X_{1} & X_{2} & X_{3} & X_{4} & \cdots\end{array}\right]$

$$
=\left[\begin{array}{lllll}
X_{1} & X_{2} & X_{3} & X_{4} & \cdots
\end{array}\right]\left[\begin{array}{ccccc}
\mu_{1} & 0 & 0 & \cdots & 0 \\
0 & v_{2} & 1 & \ddots & \vdots \\
\vdots & \ddots & v_{2} & \ddots & 0 \\
\vdots & 0 & \ddots & v_{2} & 1 \\
0 & \cdots & \cdots & 0 & \ddots
\end{array}\right] .
$$

From the above equation, we get:

$$
\begin{aligned}
S^{T} X_{2} & =v_{2} X_{2} \\
S^{T} X_{3} & =X_{2}+v_{2} X_{3} \\
S^{T} X_{4} & =X_{3}+v_{2} X_{4} \\
& \vdots \\
S^{T} X_{l_{2}+1} & =X_{l_{2}}+v_{2} X_{l_{2}+1}
\end{aligned}
$$

$$
\begin{aligned}
& S^{T} X_{l_{2}+2}=v_{3} X_{l_{2}+2}, \\
& S^{T} X_{l_{2}+3}=X_{l_{2}+1}+v_{3} X_{l_{2}+2},
\end{aligned}
$$

Just like in Case 1, $S^{T} X_{2}=v_{2} X_{2}$ and based on the equation (7), $v_{2} z_{0}^{T} X_{2}=z_{0}^{T} v_{2} X_{2}=z_{0}^{T} S^{T} X_{2}=\mu_{1} z_{0}^{T} X_{2}$, $\left(v_{2}-\mu_{1}\right) z_{0}^{T} X_{2}=0$. From equation (12), $v_{2} \neq \mu_{1}$. So $z_{0}^{T} X_{2}=0$. Hence,

$$
\begin{gathered}
Q^{T}=\left(S-z_{0} e S\right)^{T}, \\
Q^{T} X_{2}=\left(S-z_{0} e S\right)^{T} X_{2}=S^{T} X_{2}-S^{T} e^{T} z_{0}^{T} X_{2}=S^{T} X_{2}-0,
\end{gathered}
$$

which means that $Q^{T} X_{2}=v_{2} X_{2}$. This implies that X_{2} is an eigenvector of Q^{T} associated with the eigenvalue v_{2}.
From the equation $S^{T} X_{3}=X_{2}+v_{2} X_{3}$, we get

$$
v_{2} z_{0}^{T} X_{3}=z_{0}^{T} v_{2} X_{3}=z_{0}^{T}\left(S^{T} X_{3}-X_{2}\right)=z_{0}^{T} S^{T} X_{3}-0
$$

By equation (7), we get $v_{2} z_{0}^{T} X_{3}=\left(\mu_{1} z_{0}^{T}\right) X_{3}$. Consequently, $\left(v_{2}-\mu_{1}\right) z_{0}^{T} X_{3}=0$. By equation (12), and since $v_{2} \neq \mu_{1}$, we obtain $z_{0}^{T} X_{3}=0$. Therefore,

$$
\begin{aligned}
Q^{T} & =\left(S-z_{0} e S\right)^{T}, \\
Q^{T} X_{3} & =\left(S-z_{0} e S\right)^{T} X_{3}=S^{T} X_{3}-S^{T} e^{T} z_{0}^{T} X_{3} \\
& =S^{T} X_{3}=X_{2}+v_{2} X_{3} .
\end{aligned}
$$

Likewise, we obtain:

$$
\begin{aligned}
Q^{T} X_{2} & =v_{2} X_{2} \\
Q^{T} X_{3} & =X_{2}+v_{2} X_{3} \\
Q^{T} X_{4} & =X_{3}+v_{2} X_{4} \\
& \vdots \\
Q^{T} X_{l_{2}+1} & =X_{l_{2}}+v_{2} X_{l_{2}+1} \\
Q^{T} X_{l_{2}+2} & =v_{3} X_{l_{2}+2} \\
Q^{T} X_{l_{2}+3} & =X_{l_{2}+1}+v_{3} X_{l_{2}+2}
\end{aligned}
$$

Like in Case 1, we want to show that the set $\left\{e^{T}, X_{i}, i=2,3, \ldots, N\right\}$ is linearly independent. Let $Y=\left[e^{T}, X_{i}, i=2,3, \ldots, N\right]$. Therefore, $Q^{T} Y=\operatorname{Ydiag}\left\{[0], J_{2}, \ldots, J_{q}\right\}$. We now have the spectrum of $Q, \quad\left\{0, v_{2}, v_{3}, \ldots, v_{q}\right\}$ which is similar to the spectrum of Q^{T}. The spectral radius of Q is $\left|v_{2}\right|$. Therefore we get the following result:

$$
\rho\left(H^{\prime}\left(z_{0}\right)\right)=\rho\left(\frac{Q}{\mu_{1}}\right)=\frac{\left|v_{2}\right|}{\mu_{1}}<1,
$$

since $\mu_{1}>\left|v_{2}\right|$.
Now we can determine the convergence rate of Algorithm 1.

Theorem 7. Let A and $\left\{z_{0}^{(k)}\right\}$ be as in Theorem 6. Then the convergence rate of the sequence $\left\{z_{0}^{(k)}\right\}$ is Q -
linear, which means, there exists a vector norm \|•\| such that

$$
\limsup _{k \rightarrow \infty} \frac{\left\|z^{(k+1)}-z_{0}\right\|}{\left\|z^{(k)}-z_{0}\right\|}<1
$$

Proof. By Proposition 1, there exist an $\epsilon>0$ and a spectral norm $\|\cdot\|$ such that $\left\|H^{\prime}\left(z_{0}\right)\right\|_{\epsilon} \leq \rho\left(H^{\prime}\left(z_{0}\right)\right)+\epsilon$. By Lemma 2:

$$
\begin{equation*}
\left\|H^{\prime}\left(z_{0}\right)\right\|_{\epsilon} \leq \rho\left(H^{\prime}\left(z_{0}\right)\right)+\epsilon<1 \tag{13}
\end{equation*}
$$

Hence, by equation (6), we have $z^{(k+1)}=H\left(z^{(k)}\right), \quad k=1,2, \ldots, \quad$ and $\quad z_{0}=H\left(z_{0}\right)$. Therefore, $z^{(k+1)}-z_{0}=H\left(z^{(k)}\right)-H\left(z_{0}\right)$. Expand $z^{(k)}$ at z_{0} by using the Taylor expansion, we get:

$$
\begin{aligned}
H\left(z^{(k)}\right) & =H\left(z_{0}\right)+H^{\prime}\left(z_{0}\right)\left(z^{(k)}-z_{0}\right)+o\left(\left\|z^{(k)}-z_{0}\right\|_{\epsilon}\right) \\
z^{(k+1)}-z_{0} & =H^{\prime}\left(z_{0}\right)\left(z^{(k)}-z_{0}\right)+o\left(\left\|z^{(k)}-z_{0}\right\|_{\epsilon}\right) \\
\frac{\left\|z^{(k+1)}-z_{0}\right\|_{\epsilon}}{\left\|\left(z^{(k)}-z_{0}\right)\right\|_{\epsilon}} & =\left\|H^{\prime}\left(z_{0}\right)\right\|_{\epsilon}
\end{aligned}
$$

From equation (13), we can get

$$
\underset{k \rightarrow \infty}{\limsup } \frac{\left\|z^{(k+1)}-z_{0}\right\|}{\left\|z^{(k)}-z_{0}\right\|}<1
$$

Therefore Algorithm 1 is Q -linear convergence.

5.0 CONCLUSION

Within this paper, we proved that the algorithm for finding the largest singular value of nonnegative rectangular tensors, as proposed by Zhou et al. [11], is convergent under weak irreducibility condition and has a Q-linear rate of convergence. This paper only presents the convergence properties of Algorithm 1. In regards to numerical tests, the reader can refer to the referenced studies $[7,11]$.
The study of rectangular tensors is relatively new. Another method for determining the largest singular value of rectangular tensors can be found in Zhang's study [23], and it has been proven to be convergent under some assumptions. Algorithm 1 has also been generalised to nonnegative polynomials, as presented in Ibrahim's study [24]. The method is also convergent.

Acknowledgement

The second author is thankful to the Universiti Pendidikan Sultan Idris (UPSI) and the Ministry of Higher Education (Malaysia) for financial support throughout this study, under the RAGS grant Vot 2014-0122-10172.

References

[1] Knowles, J. K. and Sternberg, E. 1975. On The Ellipticity of The Equations of Nonlinear Elastostatics for A Specialmaterial. J. Elasticity. 5: 341-361.
[2] Knowles, J. K. and Sternberg, E. 1977. On The Failure of Ellipticity of The Equations for Finite Elastostatic Plane Strain. Arch. Ration. Mech. Anal. 63: 321-336.
[3] Rosakis, P. 1990. Ellipticity and Deformations with Discontinuous Deformation Gradients in Finite Elastostatics. Arch. Ration. Mech. Anal. 109: 1-37.
[4] Wang, Y. and Aron, M. 1996. A Reformulation of The Strong Ellipticity Conditions for Unconstrained Hyperelasticmedia. J. Elasticity. 44: 89-96.
[5] Dahl, D., Leinass, J. M. Myrheim, J. and Ovrum, E. 2007. A Tensor Product Matrix Approximation Problem in Quantum Physics. Linear Algebra Appl. 420: 711-725.
[6] Einstein, A., Podolsky, B. and Rosen, N. 1935. Can Quantum-Mechanical Description of Physical Reality be Considered Complete? Phys. Rev. 47: 777-780.
[7] Chang, K., Qi, L. and Zhou, G. 2010. Singular Values of a Real Rectangular Tensor. Journal of Mathematical Analysis and Applications. 370: 284-294.
[8] Wood, R. J. and O'Neill, M. J. 2007. Finding The Spectral Radius of A Large Sparse Non-Negative Matrix. ANZIAM J. 48: C330-C345.
[9] Wood, R. J. and O'Neill, M. J. 2007. An Always Convergent Method for Finding The Spectral Radius of An Irreducible Non-Negative Matrix. ANZIAM J. 45: C474-C485.
[10] Ng, M., Qi, L. and Zhou, G. 2009. Finding The Largest Eigenvalue of A Nonnegative Tensor. SIAM J. Matrix Anal. Appl. 31: 1090-1099.
[11] Zhou, G., Caccetta, L. and Qi, L. 2013. Convergence of An Algorithm for The Largest Singular Value of A Nonnegative Rectangular Tensor. Linear Algebra and its Applications. 438: 959-968.
[12] Jordehi, A.R. 2015. Enhanced Leader PSO (ELPSO): A New PSO Variant for Solving Global Optimisation Problems. Applied Soft Computing. 26: 401-417.
[13] Jordehi, A. R., Jasni, J., Wahab, N. A., Kadir M. Z., and Javadi, M. S. 2015. Enhanced Leader PSO (ELPSO): A New Algorithm for Allocating Distributed TCSC's in Power Systems. International Journal of Electrical Power \& Energy Systems. 64: 771-784.
[14] Jordehi, A.R. 2015. Brainstorm Optimisation Algorithm (BSOA): An Efficient Algorithm for Finding Optimal Location and Setting of FACTS Devices in Electric Power Systems. International Journal of Electrical Power \& Energy Systems. 69: 48-57.
[15] Jordehi, A. R. 2014. A Chaotic-Based Big Bang-Big Crunch Algorithm For Solving Global Optimisation Problems. Neural Computing and Applications. 25: 1329-1335.
[16] Jordehi, A. R. 2015. Chaotic Bat Swarm Optimisation (CBSO). Applied Soft Computing. 26: 523-530.
[17] Varga, R. 1965. Matrix Iterative Analysis. Englewood Cliffs, New Jersey: Prentice-Hall, Inc.,
[18] Minc, H. 1988. Nonnegative Matrices. New York: John Wiley and Sons.
[19] Golub, G. H. and Loan, C. F. V. 1996. Matrix Computations. Baltimore: Johns Hopkins University Press.
[20] Horn, R. A. and Johnson, C. R. 1985. Matrix Analysis. Cambridge University Press.
[21] Friedland, S., Gaubert, S. and Han, L. 2011. PerronFrobenius Theorem for Nonnegative Multilinear Forms and Extensions. Linear Algebra Appl. 438: 738-749.
[22] Zhou, G., Qi, L., and Wu, S. 2013. Efficient Algorithms for Computing The Largest Eigenvalue of A Nonnegative Tensor. Front. Math. China. 8: 155-168.
[23] Zhang, L. 2013. Linear Convergence of An Algorithm for Largest Singular Value of A Nonnegative Rectangular Tensor. Front. Math. China. 8: 141-153.
[24] Ibrahim, N. F. 2014. An Algorithm for The Largest Eigenvalue of Nonhomogeneous Nonnegative

