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Abstract 
 

The premise of this paper is providing a theoretical model for a novel way to portfolio 

optimization using generalized hyperbolic distribution during crisis with risk measures, 

expected shortfall and standard deviation. Getting good expected returns from 

investing in portfolio assets like stocks, bonds and currencies during crisis period chosen is 

harder where the risks cannot be diverted because of disruptive financial jolts i.e. sudden 

and unprecedented events like subprime mortgage crises in 2008. Multivariate 

generalized hyperbolic distribution on joint distribution of risk factors from stocks, bonds 

and currencies is used because it can simplify the risk factors calculation by allowing 

them to be linearized. The results show the premise is true. The contributions are 

discovering both the appropriate probability distribution and risk measure will determine 

whether the portfolio is optimal or not. The practical application will be taking care of the 

risk to take care of the profit. 
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1.0  INTRODUCTION 
 

During crisis, financial data do not follow the 

Gaussian distribution because of the large and 

frequent jumps. Mandelbrot [1] shares that 

logarithmic relative price changes on financial and 

commodity markets display heavy-tailed distributions.  

Barndorff-Nielsen [2] introduced the original 

generalized hyperbolic (GH) distribution where 

variance gamma is a special case.  Madan and 

Seneta [3] provide a lévy process with variance 

gamma distribution of increments to model 

logarithmic price processes. Barndorff-Nielsen [4] 

shows subclasses of GH distributions are excellent fits 

to empirically observe financial log price processes 

increments especially logarithmic return distributions.   

Eberlein and Keller [5] discuss about hyperbolic 

distribution and Barndorff-Nielsen [4] determines the 

canonical Levy kind decomposition of the process. 

Some examples of statistical properties of asset 

returns are distributional properties, tail properties 

and extreme fluctuations, and pathwise regularity. 

Cont [6] talks about empirical return distributions 

often display excess kurtosis and heavy tail. 

Generalized hyperbolic skew student’s t distribution 

has the important property of two tails exhibiting 

different behavior.  One is polynomial, while the other 

is exponential. Aas and Haff [7] discuss this is a 

perfect fit to skew financial data exhibiting such tail 

behaviors. Student’s t and Gaussian distributions are 

limit distributions of GH. Surya and Kurniawan [8] 

mention that GH family distributions are popularly 

used because they fit well to financial return data 

and extend to common student’s t and normal 

distributions. Robust and fast estimation procedures 

are rare in a limited data environment.  Its alternative 

class is with random vectors that are stochastically 

independent and generalized hyperbolic marginals 

affine-linearly changed. They have good 

approximation attributes and have appealing 
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reliance framework. Tail dependence of extreme 

events can be modelled with them. Schmidt et al. [9] 

talks about the essential approximation and arbitrary 

number creation methods. Surya and Kurniawan [8] 

talks about the reasons of using GH distribution as the 

appropriate distribution for the portfolio loss 

distribution. First, it is the linearity property of GH 

distribution.  Second, it encompasses the Generalized 

Inverse Gaussian and Multivariate Normal Mean 

Variance Mixture distributions with flexibility to model 

a wide range of portfolio loss distribution. Jarque and 

Bera [10] obtain the normality of observations and 

regression disturbances tests through Lagrange 

multiplier procedure or score test on the Pearson 

family of distributions. They have optimum asymptotic 

power properties and good finite sample 

performance. Gnanadesikan and Kettenring [11] 

address the commutativity of robust estimators of 

multivariate location by applying estimators after a 

preliminary transformation to principal components 

coordinates or to sphericized coordinates robustified 

with a data-dependent transformation when the 

sample covariance or correlation matrix is used for 

obtaining the transformation. The objectives of 

techniques for detecting multivariate outliers are 

intertwined with those methods of assessing the joint 

normality of multiresponse data. Gopikrishnan et al. 

[12] discovered an asymptotic power-law behavior 

for the cumulative distribution with an exponent α ≈ 3 

outside the Levy regime (0 < α < 2). A non-linear 

fractional covariance matrix is generalized by a non-

linear transformation with returns as Gaussian 

variables using covariance matrix to measure 

dependence between the non-Gaussian returns. It 

becomes the definite fat tail framework of the 

fundamental marginal distributions for firmness and 

good control. The portfolio distribution is a mapping 

to particle physics  field theory using Feynman 

diagrammatic approach and large divergence 

theory for multivariate Weinbull distributions. 

Substantial empirical tests on the foreign exchange 

market prove the theory. Sornette et al. [13] provides 

an ample prediction of risks of a portfolio hinges 

much more on the appropriate description of the tail 

structure not on their interdependence for fat tail 

distributions. 

Alternative risk measures have to be considered 

because financial return data are non-Gaussian with 

heavy tails and volatility cannot capture extreme 

large losses. Volatility only measures financial return 

deviations from its mean. Value-at-Risk (VaR) 

determines the point of relative loss level exceeded 

at a specified degree. It can measure the behavior 

of negative return distributions at a point far from the 

expected return when adjusted suitably. However, it 

has a serious disadvantage. Artzner et al. [14] says 

that it can lead to a centralized portfolio when 

applied to non-elliptical distributions violating the 

diversity principle. Portfolio optimization becomes an 

expensive computational problem. Artzner et al. [14] 

highlights expected shortfall (ES) as a risk measure 

responds to VaR’s disadvantage. It is a coherent risk 

measure which always results in a diversified portfolio. 

It shows how the distributions’ tails behave like VaR 

with a magnified scope. These attributes make it 

more favorable than VaR.   

Financial return commensurate with risk taken. 

During crisis, the financial risk escalates with 

diminishing returns and ballooning losses. Using the 

wrong distribution and risk measure can exacerbate 

the loss during crisis where certain huge losses in the 

financial markets happen at far higher frequencies. It 

is even more important to determine the right 

distribution and risk measure during crisis.  

The key difference in the approach to portfolio 

optimization during crisis is the portfolio loss is 

minimized given the targeted expected return 

because risk can be present in the entire loss 

distribution. On the contrary, in a non-crisis situation, 

maximizing the targeted expected return given the 

standard deviation is the key because risk may not 

be present in the entire loss distribution. 

Understanding the appropriate approach to 

portfolio optimization during crisis and non-crisis 

situations will allow the targeted expected return to 

be obtained given the risk measure taken. This has 

practical applications for both retail and institutional 

investors. 

The paper discusses the general properties of GH 

distribution, the expected shortfall as coherent risk 

measure and elaborates the asset structures of the 

portfolio, discusses the profit and loss (P & L) 

distribution on multivariate GH distribution, constructs 

the portfolio optimization problems and provides the 

conclusion of the paper.   

 

 

2.0  GENERALIZED HYPERBOLIC DISTRIBUTION 
 

McNeil et al. [15] talk about the Generalized 

Hyperbolic Distribution is built upon the Generalized 

Inverse Gaussian and Multivariate Normal Mean 

Variance Mixture Distributions.  

 

2.1 Definition Generalized Inverse Gaussian 

Distribution (GIG). 

 

The random variable, Z, is a GIG represented by Z∼ 

N−(λ,  χ, ψ) if its probability density function is: 

, z, , > 0,

    (1) 

 is a modified Bessel function of the third kind with 

index λ fulfilling the parameters:  

λ< 0  

λ = 0 

λ > 0 

 

2.2 Definition Multivariate Normal Mean Variance 

Mixture Distribution (MNMVM) 

 

A random variable Xϵ  is MNMVM if it is represented 

by the following: 
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γ +   (2) 

 

with γϵ and Aϵ , a matrix, as distribution 

parameters, Z ∼ Nk (0, Ik) is a standard multivariate 

normal random variable. W is non-negative, scalar 

mixing random variable independent of Z.  Σ := AA’ 

must be positive definite. In a univariate model, Σ is 

replaced by σ2.      

Barndorff-Nielsen [2] mentions this as a new class 

of distribution first proposed for multivariate GH 

distribution.  Barndorff-Nielsen et al. [16] mentions this 

was further developed. Its parameters are: μ, 

location parameter; γ, skewness parameter; Σ, scale 

parameter; , shock factor for skewness and scale.   

The GH distribution is defined from Equation (2) 

linked to the lévy process where the levy-ito 

decomposition allows the linear transformation of risk 

factors. 

 

2.3 Definition Generalized Hyperbolic Distribution 

(GH) 

 

A random variable Xϵ  is GH-distributed if it is 

represented by  

 

X∼GH(λ,  χ, ψ, )  (3) 

 

if and only if it has Equation (2) with  ∼ N−(λ,  χ, ψ) is 

a scalar GIG distributed random variable.  X is 

symmetric if and only if  

 (4) 

 

Barndorff-Nielsen [2] mentions the above pdf is 

consistent with the definition of GH first proposed.  It 

has the following normalizing constant: 

  (5) 

 

Equation (2) contributes significantly to the linearity 

property of GH distribution.  The following theorem is 

central to solving optimal portfolio selection problems 

discussed more in Section 6. 

 

2.4  Theorem  

 

If X∼ GHd (λ,  χ, ψ, ) and Y = BX + b given Bϵ  

and bϵ , then 

 

Y∼ GHk (λ,  χ, ψ, )  (6) 

 

McNeil et al. [15] provide the theoretical proof for 

Theorem 2.4 is found in Proposition 3.13 showing the 

parameters coming from the generalized inverse 

Gaussian distribution stays the same under linear 

operations. 

 

3.0  WEAKER CONVERGENT CONDITION 
 

An algorithm for finding the largest singular value of 

an irreducible nonnegative rectangular tensor was 

proposed by Chang et al. [7]. Later, it was updated 

by Zhou et al. [11]. In this section, we will prove that 

the algorithm is convergent for weakly irreducible 

nonnegative rectangular tensors. 

 

Algorithm 1 [11] 

 

Step  0: Choose 
 1

0,  0x    and  
 1

0y  . Set 1.k    

Step 1: Calculate          ,
k k k

xB x y    and        

                     ,
k k k

yB x y  . Let  

 
   

 

  

 

     

1 1
0, 0

   

min ,
k k

i j

kk
ji

k M M
k kx y

i jx y




 
 

 
 

  
 
 

  

, 

   

 

  

 

     

1 1
0, 0

   

max ,
k k

i j

kk
ji

k M M
k kx y

i jx y




 
 

 
 

  
 
 

 . 

Step 2: If ,k k   then stop. Otherwise, compute  

 

  
    

1

1

1

1

1

 

  ,

k M

k

k k M

x


 

 
  



 
  

    and   

  
    

1

1

1

1

1

 

  ,

k M

k

k k M

y


 

 
  



 
  

 , 

 replace k  with 1k   and go to Step 1. 

 

 Let 
0 . k k     The largest singular value of A  is 

0 .   Zhou et al. [11] have shown that this algorithm 

is convergent, if A  is an irreducible nonnegative 

rectangular tensor. We will now show that Algorithm 1 

is convergent if A  is a weakly irreducible 

nonnegative rectangular tensor.  

 We define the polynomial map  

 1, , :  
T N N

NP P P R R     through: 

  
1

1
,

p q

p q

Ax y
P z

Ax y





 
  
 

  

where    ,N m n    .
x

z
y

 
  
 

 Let iP  be a polynomial 

with degree, 1id  . Suppose that the coefficient of 

each monomial in iP  is nonnegative. The associated 

graph of P  is the directed graph     , ,G P V E P  

where the vertices   1,2, ,V N   and the edge 

   ,i j E P  if the coefficient of variable 
jz  appears 

in the expression of .iP   

 

Definition 2: Let  1, , :  
T N N

NP P P R R     be a 

polynomial map, where each iP  is a homogeneous 

polynomial of the degree 1d   with nonnegative 
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coefficients. We call P  weakly irreducible if  G P  is 

strongly connected. If the directed graph  G P  is 

strongly connected, and the great common divisor 

(gcd) of the lengths of its circuits is equal to one, then 

we say P  is weakly primitive.  

 

Another way to check the gcd of a graph’s 

lengths of is to observe the diagonal of its associated 

matrix. An irreducible matrix has a nonzero main 

diagonal entry if and only if the associated directed 

graph has a loop, a closed path with length equals 

to one.  

We can show that P  is weakly primitive by 

proving that the associated matrix of its graph is 

primitive. Let   M G P  be the associated matrix of 

graph  G P . We can say that   M G P  is primitive if 

the graph is strongly connected, and if the gcd of its 

lengths is equal to one. 

 

Definition 3: A rectangular tensor A  is weakly 

irreducible if P  is weakly irreducible. 

 

Let  
 

 

11

11

 

 

Mp q

Mp q

Ax y x
B z

Ax y y









 
 
  

 and let  
 

 

1

1

 

 

M

M

x
I z

y









 
 
 
 

. 

Hence we have      .B z P z I z   Now we prove 

that Algorithm 1 is convergent, if tensor A  is weakly 

irreducible.  

 

We can now present our results for this section. 

 

Lemma 1: If A  is a weakly irreducible nonnegative 

rectangular tensor with the order ,p q  and the m n  

dimension, then  B z  is a weakly primitive 

polynomial. 

Proof. Since A  is weakly irreducible then  P z  is a 

weakly irreducible polynomial. By Definition 2, the 

graph of  P z ,   G P z  is strongly connected. By 

Theorem 1, the matrix of   G P z  is irreducible. We 

know that   G I z , the graph of  I z , has a self-loop 

at each vertices. Therefore the matrix of   G I z  is a 

diagonal matrix. Hence, by Corollary 1, the matrix of 

  G B z  is primitive. By Theorem 2,   G B z  is strongly 

connected, and has a gcd that is equal to one. This 

implies by Definition 2 that  B z  is a weakly primitive 

polynomial. 

 

The following theorem is the main result of this paper. 

 

Theorem 6. Let A  be a weakly irreducible 

rectangular tensor of the ,p q -th order and the m n  

dimension. Suppose that  0 0 0,  , x y  is the solution of 

equation (5). Then, Algorithm 1 yields the value of 0  

through a finite number of steps, or generate two 

convergent sequences  k   and  k , both of which 

converge to 0 . The largest singular value of A  is 

0  .  

Proof. By Lemma 1 and Corollary 5.1 [21], Algorithm 1 

converges when the rectangular tensor A  is weakly 

irreducible. 

 

 

4.0  RATE OF CONVERGENCE 
 

In this section, we will show that Algorithm 1 has Q-

linear convergence, when A  is a nonnegative 

weakly irreducible rectangular tensor of ,p q -th order 

and m n  dimensional. We use the same argument 

as Zhou, Qi and Wu’s study [22]. 

 Define:  

    
 

 

11

11

 
'

 

Mp q

Mp q

Ax y x
F z B z

Ax y y









 
  
  

  

   
1

1  ,MD z F z
 
              

 

  
  ,

D z
H z

D z
   

where :  NR R    is defined as: 

   1

1

,
N

i

i

z z z


    

for any nonnegative .Nz R  We can see that the 

sequence   k
z  in Algorithm 1 is generated by  

     1
,     1,2, ,

k k
z H z k


     (1) 

and    1
k

z   for all 1,2,k    . 

 

Lemma 2. Let 0 0, , A x  and 0y  be as in Theorem 6 and 

let  0H z  be the Jacobian of the function H  at 0.z  

Then,    0   1.H z     

Proof. Let 0  be the largest singular value of B  and 

0z  be the corresponding eigenvector. We have 

      0 0 0/  .H z D z D z  We want to show that:  

  
         

  
0 0 0 0

0 2

0

' '
1.

D z D z D z D z
H z

D z

 
 



 
  

 
 

  

We already have      1
0 0 0 0

M
F z B z z


   and  0 1.z   

Hence,     
11

11
0 0 0 0.

MMD z F z z
  
        Let

1

1

1 0

M 
 
   , so 

we have  0 1 0.D z z   

Now we compute  0  'D z , i.e. the Jacobian of D  at 

0.z   Let  
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    

  

  

  

1

1
1 0

1
1

1
1 2 0

0 0

1

1
0

  ,

M

M
M

M
N

F z

F zD z F z

F z

 
  

 
      

 
  

 
 
 
 

   
 
 
 
 

  

        
1 2

1 1
1 0 1 0 1 0

1
    .

1

M

M MF z F z F z
M

   
       

 
   

 
  

By the same method, we can get:  

       
1 2

1 1
0 0 0

1
   

1

M

M M
i i iF z F z F z

M

   
       

 
   

 
 , 1, , .i N   

Thus the Jacobian of D  at 0z  is given below: 

    
1

1
0 0     MD z F z

 
  


 


 
 

  

 

  

  

  

    

    

    

1
2

1
1 0 1

1 0 1 0

1 2

1 1
2 0 2 0 2 0

2
1

1
1 0 0

0

1 
 

1

1
   

1

1
  

1

M
M

M

M

M M

M

M
M N N

N

F z
F z F z

M

F z F z F z
M

F z F zF z
M

 
      

   
      

 
       

  
          

               
  
  

           

  

  

  

 

 

 

2 1 0
1

1 0
2 0

2
0

1
0

1
  0

1

1
0  

1

M

M

M
N

M
N

F z
F z F zM

F z
F z

M

 
  

 
  

  
      
   
  
  
     

  

    
2

1
0 0

1
    '

1

M

Mdiag F z F z
M

 
  

 
  

 
  

 
    
2

1 0 0

1
      ' ,

1

M
diag z F z

M






  

where  
  2

1 0

1
   

1

M
diag z

M





 is a constant with 1 0  , 

and 0z  is a positive vector. Therefore 

     0 0 .G D z G F z  For the graph of B , by 

definition, there exists an edge between i  and j , if 

variable 
jz  appears in the expression of iB . Notice 

that the graph of  B  is similar to the graph of 

'D ,         0 0 0G D z G F z G B z  . Lemma 1 states 

that B  is weakly primitive, therefore, the graph of B  

is strongly connected. Hence the graph of 'D  is also 

strongly connected, and 'D  is therefore irreducible. 

The term  I z  in B  ensures that the diagonal is 

nonzero, and that implies  'D  be primitive matrix. 

Since  0D z  is a primitive matrix, by Theorem 3, the 

eigenvalues 1 2,  , , Nv v v  of  0  D z  can be ordered as 

follows:  

   1 0 2 3 .Nv D z v v v      

For all 1,t   we expand  0D tz  about 0z  by using 

Taylor's Series, and obtains: 

 

 

      
     

       

1 0 0

0 0 0 0 0 0

1 0 0 0

1 0 0 0

1 1

1 1 1 ,

t z D tz

D z D z tz z o tz z

z t D z z o t

t z t D z z o t









    

    

   









    

which implies that  0 0 1 0.D z z z  Since  0D z  is a 

primitive matrix, and 0 0z  , by referring to the 

Theorem 3, 0z  is an eigenvector of  0D z   associated 

with the largest eigenvalue 1 1.v    Therefore, 

    0 1 0 1D z z      . 

 We also have         0 1 0 2 0 0 ,ND z D z D z D z     

and           0 1 0 2 0 0 0 ,ND z D z D z D z eD z          

where e  is the row vector of ones with N  dimension. 

From       0 0 0/  ,H z D z D z  and after some 

manipulations we attain: 

 
 

         
  

   

0 0 0 0

0 2

0

0 0 0

1

' '
'

' '
.

D z D z D z D z
H z

D z

D z z eD z

 











  

 Let  0S D z   and 0Q S z eS  . Therefore the above 

equation can be written as  0 1/H z Q  . Here let it 

be reminded that we want to prove that  

   0 1( / 1.H z Q     We can achieve this by 

showing that the spectral radius of Q  is equal to 2 .v  

We can also show that the spectrum of Q  is 

 2 30,  , , , . Nv v v   

 We have        0 0 0 0 01 2
1 ,

N
z z z z ez      so 

0 1ez   and  0 0,   0. 
TT T TQ S z eS Q e S z eS e      We 

can conclude that Te  is an eigenvector of 
TQ , 

associated with the eigenvalue 0 . 

 There are two possible cases of TS . 

Case 1: The matrix  0

TTS D z   is diagonizable, that is, 

  TS  is semisimple. For 2,3, ,i N  , we assume 

,T i i

iS w v w  where iw  is an eigenvector of TS  that is 

associated with the eigenvalue .iv   Suppose that the 

set of eigenvector  1 2, , , Nw w w  is linearly 

independent.  

We can write 
0 0 0 ,T i T i T T i

i iv z w z v w z S w    for 2,3, , .i N    

We already have  0 0 0 1 0.D z z Sz z   So, 

   0 1 0

T T
Sz z , and 

 
0 1 0

T T Tz S z . (2) 

Hence,  0 0 1 0 1 0,     0.T i T T i T i T i

i iv z w z S w z w v z w      So, for 

2,3, , , i N   it is either 1iv   or 
0 0T iz w  . However 

1iv   for  2,3, , .i N   Therefore 
0 0.T iz w    

 Now we have  0 0.
TT i i T iQ w S z eS w S w     Since 

we assume that , T i i

iS w v w   so then .T i i

iQ w v w  The 
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vector iw  is an eigenvector of 
TQ  associated with 

the eigenvalue iv   for 2,3, , .i N    

 Now we prove that the set of eigenvectors of Q , 

 2 3, , , ,T Ne w w w  is linearly independent.  Suppose 

that: 

 2

1 2 0,T N

Ne w w       (3) 

and 0iv   for 2,3, ,i p   and 0jv   for 1, , .j p N    

We know that 0T T TQ e e  and T i i

iQ w v w  for 

2,3, , .i N   Adding these two equations on LHS and 

RHS respectively yield:   

 
2 2

20 .T T T T N T p

pQ e Q w Q w e v w v w       

Now, substitute 
2 3, , , ,T Ne w w w  with 

2 3

1 2 3, , , ,T N

Ne w w w     of equation (8) and obtain 

 
2

1 2

2

2 2                                  

T T T T N

N

p

p p

Q e Q w Q w

v w v w

  

 

 

 
  (4) 

   2 2

1 2 2 2 ,0T T N p

N p pQ e w w v w v w          

Since we consider the set  2 3, , , Nw w w  to be linearly 

independent, we then get 
2 3 0,p      and 

we can now write equation (8) as:  

 1

1 1  0,T p N

p Ne w w  

     (5) 

 
 1

1 1

1

1 1

0,

0.

T T p N

p N

T T T p T N

p N

S e w w

S e S w S w

  

  









  

  
  

Since T i i

iS w v w    for 1, , ,j p N    we then get 

 1

1 1 1 0.T T p N

p p N NS e v w v w  

      

Since 0jv    for  1, , ,j p N    it yields 

1 0.T TS e   

We then get 1 0   since 0T TS e    and S  is 

diagonalizable. From equation (10), we have 

 1

1 0.p N

p Nw w 

     (6) 

We know that the set  1 2, , ,p p Nw w w     is linearly 

independent, so 
1 0.p N     So we get 

1 0.N    This means that the set 

 2 3, , , ,T Ne w w w  is linearly independent and the 

spectrum of Q  is  2 30,  , , , .Nv v v   

Case 2: Consider that TS  is not diagonalizable or 

defective. We know that a defective matrix has less 

than N  different eigenvalues. Assume that TS  has 

q N  different eigenvalues where 
1 1 2, , , ,qv v v   

and these eigenvalues can be written as follows: 

 
1 1 2 3 .qv v v v      (7) 

So, TS  has the form 1TS XJX  , where the 

 1 2, , , qJ diag J J J   is in a canonical form. Suppose 

that the square matrices ,   1,2, ,iJ i q   be the Jordan 

blocks with various sizes, in the form of: 

 

1 0 0

0 1

  0 ,

0 1 

  0 0

i

i

i i

i

v

v

J v

v

 
 
 
 
 
 
 
 

  

where iv  is an eigenvalue of TS . Let  1 1 ,J   and iX  

is the i th column vector of ,   1,2, , .X i N   Let il  be 

the size of iJ  of each Jordan block, where 

1,2, , .i q   We now have 1TS XJX   , and therefore 

,TS X XJ  

 

 

1 2 3 4

1

2

1 2 3 4 2

2

0 0 0

0 1

                        .0

0 1

0 0

TS X X X X

v

X X X X v

v

 
 
 
 
 
 
 
 

  

From the above equation, we get:  

 

2 2 2

2 2 2

3 2 2 3

4 3 2 4

1 2 1

,

,

,

,

T

T

T

T

l l l

S X v X

S X X v X

S X X v X

S X X v X 



 

 

 

  

 

2 2

2 2 2

2 3 2

3 1 3 2

,

,

T

l l

T

l l l

S X v X

S X X v X

 

  



    

 Just like in Case 1, 
2 2 2

TS X v X  and based on the 

equation (7), 
2 0 2 0 2 2 0 2 1 0 2,T T T T Tv z X z v X z S X z X    

 2 1 0 2 0.Tv z X   From equation (12), 2 1.v   So 

0 2 0.Tz X    Hence,  

 0 ,
TTQ S z eS   

  2 0 2 2 0 2 2 0,
TT T T T T TQ X S z eS X S X S e z X S X        

which means that 
2 2 2.

TQ X v X  This implies that 2X  is 

an eigenvector of 
TQ  associated with the 

eigenvalue 2.v   

 From the equation 
3 2 2 3,

TS X X v X    we get  

2 0 3 0 2 3 0 3 2 0 3( ) 0.T T T T T Tv z X z v X z S X X z S X      

By equation (7), we get  2 0 3 1 0 3. 
T Tv z X z X   

Consequently, 
2 1 0 3( ) 0.Tv z X   By equation (12), and 

since 2 1, v   we obtain 
0 3 0.Tz X   Therefore,  

 

 

 

0

3 0 3 3 0 3

3 2 2 3

,

.

TT

TT T T T T

T

Q S z eS

Q X S z eS X S X S e z X

S X X v X

 

   

  

  

Likewise, we obtain: 
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2 2 2

2 2

2 2 2

2 2 2

3 2 2 3

4 3 2 4

1 2 1

2 3 2

3 1 3 2

T

T

T

T

l l l

T

l l

T

l l l

Q X v X

Q X X v X

Q X X v X

Q X X v X

Q X v X

Q X X v X

 

 

  



 

 

 



 

  

Like in Case 1, we want to show that the set 

 ,  ,  2,3, ,T

ie X i N   is linearly independent. 

Let , ,  2,3, ,T

iY e X i N     . Therefore, 

  20 , ,TQ Y Ydiag J  , qJ . We now have the 

spectrum of ,Q    2 30, , , ,  qv v v  which is similar to the 

spectrum of .TQ  The spectral radius of Q  is 2 .v  

Therefore we get the following result: 

    2

0

1 1

1, 
vQ

H z 
 

 
   

 
   

since 1 2v   . 

Now we can determine the convergence rate of 

Algorithm 1. 

 

Theorem 7. Let A  and   0

k
z  be as in Theorem 6. Then 

the convergence rate of the sequence   0

k
z  is Q-

linear, which means, there exists a vector norm  

such that  

 

 

 

1

0

 
0

limsup 1.

k

k
k

z z

z z









  

Proof. By Proposition 1, there exist an 0  and a 

spectral norm  such that     0 0     .H z H z     

By Lemma 2:  

     0 0     1.H z H z      (8) 

Hence, by equation (6), we have 
    1

,     1,2, ,
k k

z H z k

    and  0 0 .z H z  Therefore, 

      1

0 0 .    
k k

z z H z H z

    Expand 

 k
z  at 0z  by using 

the Taylor expansion, we get: 

 

            
         

 

  
 

0 0 0 0

1

0 0 0 0

1

0

0
  

0

,

,

,

k k k

k k k

k

k

H z H z H z z z o z z

z z H z z z o z z

z z
H z

z z





    

    












  

From equation (13), we can get 

 

 

 

1

0

 
0

limsup 1.

k

k
k

z z

z z









  

Therefore Algorithm 1 is Q-linear convergence. 

5.0  CONCLUSION 
 

Within this paper, we proved that the algorithm for 

finding the largest singular value of nonnegative 

rectangular tensors, as proposed by Zhou et al. [11], is 

convergent under weak irreducibility condition and 

has a Q-linear rate of convergence. This paper only 

presents the convergence properties of Algorithm 1. 

In regards to numerical tests, the reader can refer to 

the referenced studies [7, 11].  

The study of rectangular tensors is relatively new. 

Another method for determining the largest singular 

value of rectangular tensors can be found in Zhang’s 

study [23], and it has been proven to be convergent 

under some assumptions. Algorithm 1 has also been 

generalised to nonnegative polynomials, as 

presented in Ibrahim’s study [24]. The method is also 

convergent.     
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