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Abstract 
 

This paper looks in the effectiveness of bicubic B-spline surface fitting and radial basis 

function, specifically the thin plate spline surface fitting in constructing the surface from the 

set of scattered data three dimensions (3D) points. Modification of the B-spline 

approximation algorithm is used to determine the unknown B-spline control points, followed 

by the construction of the bicubic B-spline surface patch, which can be joined together to 

form the final surface. The non-interpolation scheme of thin plate spline is also used to fit 

the data points in this study. The sample of scattered data points is chosen from a specific 

region in the point set model by using k-nearest neighbour search method. Observation is 

further carried out to observe the effect of noise in the bicubic B-spline surface fitting and 

the thin plate spline surface fitting. From the visual aspect, non-interpolation scheme of thin 

plate spline fits the surface better than bicubic B-spline in the presence of noises.   
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1.0  INTRODUCTION 
 

Surface fitting can be considered as the regression 

problem, where the model is the surface 

representation and the data are the sampled points 

on the surface [1]. The example sources of scattered 

data points are obtained from the measured values 

of physical quantities, experimental results, and 

computational values, which are widely found in 

scientific and engineering applications [2]. However, 

the fitting for 3D scattered data points is a tough task 

due to the amount of data points, as well as its 

irregularity in distribution. 

The most commonly-used approximation methods 

are fitting methods, which include interpolation by 

spline, interpolation by radial basis function, and the 

least square approximation [3]. The tensor product of 

B-splines surfaces is widely used because of its 

advantages inherent in working with tensor products 

[4]. Radial basis function (RBF) is an example of 

global basis function method, where the concept of 

a global method is described as the interpolant, 

which is dependent on all data points [5]. Any 

addition or deletion of a data point or a change of 

one of the coordinates of a data point will 

propagate throughout the domain of definition [6]. 

RBF is widely used in mesh repair and surface 

reconstruction such as in range scanning, 

geographic surveys and medical data, field 

visualisation in 2D and 3D, image warping, morphing, 

registration, as well as artificial intelligence [7].   
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2.0  MATERIALS AND METHODS 
 
In this section, some required mathematical 

background will be provided as follows to enhance 

the understanding of this work. 

 

2.1  B-spline Surface 

 
The rectangular B-spline surface patch ( , )f u v  is 

constructed by applying tensor product technique to 

the B-spline curve, which is described as a linear 

combination of B-spline basis functions in two 

topological parameter u  and v   [8]. Furthermore, it is 

defined by a topological rectangular set of control 

points 
,i jP  for 0 i m  , 0 j n  , and the two knot 

vectors: 0 1 2( , , ,..., )m kU u u u u  and 0 1 2( , , ,..., )m kV v v v v  . B-

spline surface patch is given by 

,

0 0

( , ) ( ) ( )
m n

k l

i j i j

i j

f u v P N u N v
 

  

, where ( )k

iN u and ( )l

jN v are the B-spline basis 

functions of order k and l respectively. The 

parameters u and v are the global parameter. 

 

2.2  Radial Basis Function 

 

Radial basis function (RBF) is an example of global 

basis function method. It is invariant to translations 

and rotations of the coordinate systems over n . The 

concept of a global method is described as the 

interpolant, which is dependent on all data points, 

where any addition or deletion of a data point or a 

change of one of the coordinates of a data point, 

will propagate throughout the domain of definition 

[6]. Besides the interpolating scheme, RBF has a non-

interpolating scheme. The general RBF is in the form 

shown in [9]: 

  
1

( ) ( ) | |
N

j j

j

s X p X X X 


                                        (1)                                                                        

, where p is a polynomial of low degree, N is the total 

number of distinct data points, i  is the weight of 

center iX , the Euclidean norm on n-dimensional n  

is denoted as | | 0r     , basic function ϕ  is a real 

valued function on the interval [0, ) ,  which is usually 

unbounded and of non-compact support.  

The good choice of polyharmonic for fitting smooth 

function of two variables is thin-plate 

spline
2( ) log( )r r r  , which has C1. Suppose we want 

to interpolate the data of two variables and set the 

polynomial p as linear form, then the interpolant in 

equation (1) is defined as 2:s  , we have 

 2 2

1 2 3

1

( , ) ( ) ( )
N

i i i i j i j i j i

j

s x y a a x a y x x y y f 

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. Since there is N +3 unknown, three additional 

solution constraints are added, such that  

1 1 1

0
N N N

j j j j j

j j j

x y  
  

      

, which yield the linear system as written in 

( 3) ( 3)N N    matrix form as follows: 

  
00 T aP

fP A 

    
    

    
        (2)                                                                                                                      

, where P is the matrix with ith row 

(1, , )i ix y ,
1 2( , ,..., )T

N    , 
1 2 3( , , )Ta a a a , and 

1 2( , ,..., )T

Nf f f f . By solving the linear system, the 

value of    and a can be uniquely determined and 

hence, the function is obtained. It is appropriate to 

use the direct method to solve the above matrix 

when the problem occurs at most few thousand 

points that is N < 2000. If 2000N   , then the matrix will 

be conditionally poor and the solution seems 

unreliable. However, this problem is resolved by the 

fast method as proposed by [9], therefore fitting and 

evaluating the large number of data points with a 

single RBF now is becoming the possible task. 

If noise is present in the data points, the parameter   

controls the quality of approximation or in other 

words, it controls the trade-off between smoothness 

and fidelity to the data [10]. The solution for this 

problem is also a RBF of form in equation (1). A 

smaller value of     will provide a better 

approximation and will be an exact interpolation if  

  tends to be 0 [11]. By modifying the equation (2), 

we have the following: 

00 T aP

fP A I 

    
    

     
       (3)                                                                                                  

, where I is an identity matrix. By solving the system of 

linear equation in equation (3), we will get a and  , 

then plug in the equation (1), a RBF in form of 

approximation is obtained. 

 

2.3  Effect of Noisy Data on Surface Fitting 

 

In this study, we use the proposed algorithm from 

[12], which is a modification of B-spline 

approximation from the existing algorithm as can be 

found in [2]. The existing B-spline approximation 

algorithm is undergoing a modification in order to 

minimise the distance between the scattered data 

points and the approximated bicubic B-spline 

surface. The distance is the problem in the existing 

algorithm. The presence of noise will contribute to the 

bad fitting of the surface. Moreover, the accuracy of 

the 3D model will be reduced during the surface 

reconstruction due to the set of data points being 

contaminated by the noise. Therefore, we will look at 

the effect of noisy data on the B-spline surface patch 

in [12] with radial basis function surface, specifically 

the non-interpolating scheme of thin plate spline 

surface. We assume that the sets of sample scattered 

data points, P that are used earlier are noise free. For 

the experimental purpose, twenty noisy data are 

added randomly in positive and negative direction 

to P and then, we construct the surface. The noise 

levels to be considered are 0.0, 0.3, 0.5, and 0.7. 
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3.0  RESULTS  
 
We test our model with Stanford bunny as shown in 

the coming figures. The scattered data points are 

denoted as green dots, whereas the control points 

are denoted as red dots. To select the sample of 

scattered points, P from Bunny point set model, we 

set k = 100, that is 100-nearest neighbour. 

 

 
 

Figure 1 The two sets of selected red sample regions from 

the Stanford bunny mesh model 

 

  
 

Figure 2 (From left to right) Comparison between bicubic B-

spline surface fitting and thin plate spline fitting for set 1 

 

   
 

Figure 3 (From left to right) Comparison between bicubic B-

spline surface fitting and thin plate spline fitting for set 2 

 

 
 

 

 

 

 

 

(a)                                                   (b) 

  
(c)                                                   (d) 

 

Figure 4 (From (a) to (d)) Set 1: Reconstruction with noise 

level at 0.0, 0.3, 0.5, and 0.7 by bicubic B-spline surface 

patch 1 

 

 

   
(a)                                                 (b) 

   
(c)                                                  (d) 

 

Figure 5 (From (a) to (d)) Set 1: Reconstruction with noise 

level at 0.0, 0.3, 0.5, and 0.7 by thin plate spline surface 

patch 1 

 

   
(a)                                                  (b) 

 

  
(c)                                               (d) 

 

Figure 6 (From (a) to (d)) Set 2: Reconstruction with noise 

level at 0.0, 0.3, 0.5, and 0.7 by bicubic B-spline surface 

patch 2 
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(a)                                                 (b) 

  
(c)                                                 (d) 

 

Figure 7 (From (a) to (d)) Set 2: Reconstruction with noise 

level at 0.0, 0.3, 0.5, and 0.7 by thin plate spline surface 

patch 2 

 

 

4.0  DISCUSSION 
 
The two sets of selected sample regions in the 

Stanford bunny point set model are marked and 

shown in Figure 1. The two bicubic B-spline surface 

patches are fitted with the modified B-spline 

approximation algorithm after resolving the distance 

issue in the existing algorithm and the thin plate spline 

surface fitting. They are shown in Figure 2 and Figure 

3. The value of  , which can be seen from the 

equation (3) is known as smoothing parameter. In our 

study, we choose the smaller value for equation (3). 

The optimum value will be our future work. The value 

we choose is sufficient to observe the effect of noisy 

data towards the non-interpolating scheme of the 

thin plate spline surface fitting. 

The effect of noisy data towards the accuracy of 

surface is inspected visually.  Noise levels at 0.0, 0.3, 

0.5, and 0.7 are considered in this study.  The effect of 

noise for the bicubic B-spline surface is not obvious as 

shown in Figure 4, but it is obvious in Figure 6 when 

the noise level is increasing. Therefore, the accuracy 

of the bicubic B-spline surfaces is quite sensitive to 

the presence of noise even at a low level of noise. 

However, non-interpolating thin plate spline surface is 

uneasily affected by the presence of the noisy data 

compared with the bicubic B-spline surface as shown 

in Figure 5 and Figure 7.  In this study, noise level at 

0.3 is a good indication of the result as it is neither too 

low nor too high, whereas the noise level at 0.5 and 

0.7 can be considered quite noisy. Therefore, the 

bad fitting of the surface is expected not due to the 

fact that b-spline surface fails to estimate, but rather 

than the case of bad data points given. 

 

 

 

 

5.0  CONCLUSION 
 

This paper shows the bicubic B-spline surface fitting 

by using the modified B-spline approximation 

algorithm and the thin plate spline fitting. For the 

effects of noisy data, the experimental results show 

that the accuracy and the smoothness of B-spline 

surfaces can be easily influenced by the presence of 

noise, which mean that they are sensitive to the 

noise. However, the non-interpolating scheme of thin 

plate spline surfaces fits the surface better than 

bicubic B-spline surface in the presence of the noise. 

We note that our observation is done visually, which 

may be prone to a subjective opinion. For future 

research, we will use an objective inspection, such as 

statistical methods to search for the optimum 

smoothing parameter of thin plate spline, as well as 

the accuracy of the fitting in the presence of noisy 

data. 
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