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^Äëíê~ÅíK Application of ultrasonic waves as an unconventional enhanced oil recovery method 
has been a point of interest for some decades. However, despite number of researches on 
ultrasonic applications, the influencing mechanisms are not fully comprehended. The aim of this 
study is to experimentally investigate the effects of ultrasonic waves on recovery of waterflooding 
and to discuss the mechanisms involved. Series of straight (normal) and ultrasonic stimulated 
waterflooding experiments were conducted on a long unconsolidated sand pack using ultrasonic 
transducers. Kerosene, vaseline and engine oil were used as non wet phase in the system. 
Moreover, a series of supplementary experiments were conducted using ultrasonic bath in order 
to enhance the understanding about contributing mechanisms. 2-16% increase in the recovery of 
waterflooding was observed. Emulsification, viscosity reduction and cavitation were identified as 
contributing mechanisms. 
=

hÉóïçêÇë: Ultrasonic waves; enhanced oil recovery; waterflooding; emulsification 

 
 
NKM= fkqolar`qflk==
=
The interest in using seismic waves as an improved oil recovery (IOR) method 
starts in the early 50’s when noises from the railroad trains and earthquakes 
resulted in increasing oil recovery. Due to limited distance ultrasonic waves can 
travel in the reservoir, most of the field applications were limited to damage 
removal in near wellbore area. Application of ultrasonic waves on different 
processes such as gravity drainage, imbibitions and waterflooding has been 
investigated by several authors. Despite number of publications, patent and some 
field trials on the subject, the exact mechanisms of are not fully comprehended.  
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In the early work, Albert and Bodine (1948) invented a system for increasing the 
recovery by application of sonic waves. Duhon and Campbell (1965) conducted a 
comprehensive research on long and short cores to find out about the possible 
utilization of ultrasonic waves in waterflooding. They observed a considerable 
effect on displacement efficiency resulted from creating a more uniform 
displacement front as a result of sonication. Simkin Éí= ~ä. (1991) observed the 
major growth of oil droplets immediately after the beginning of excitation in a 
laboratory experiment. They attributed the growth to sonically induced 
coalescence. Poesio Éí= ~ä. (2002) investigated the influence of acoustic waves on 
liquid flow through Berea sandstone and found out that pressure gradient inside 
the cores decreases under acoustic energy the effect was attributed to the reduction 
of fluid viscosity. Amro Éí= ~ä. (2007) attributed the increase in the recovery of 
ultrasonic stimulated waterflooding to the changes of relative permeability of both 
phases. Guo (2009) discussed field application of ultrasonic waves in China. He 
also conducted experiments to show the effects of ultrasonic waves on viscosity 
and realized that the viscosity is temporarily reduced due to exposure to 
ultrasound waves. Najafi (2010) analytically and experimentally investigated the 
effect of ultrasound on gravity drainage and percolation of oil by using fluids of 
different viscosity. 20˚C rises in the temperature were observed during his 
experiments in 1000 minutes time. 
  A theory about the generation of ultrasonic waves was developed by 
Nikolaevskiy and Stepanova (2005). He postulated that as a result of nonlinear 
effects associated with seismic and low frequency acoustic waves in porous media 
saturated with fluid, under conditions of long-short-wave resonance, the nonlinear 
generation of high ultrasonic frequencies by seismic waves is possible. Based on 
this theory, ultrasonic energy (high frequency waves) could be the main reason of 
enhancement of oil recovery after artificial or natural seismic activities. Therefore, 
understanding the effects of high frequency waves on recovery of oil is of a great 
importance. One way to do so is direct application of high frequency waves to 
sandpack model and studying the results. This research concentrates on the 
involving mechanisms which lead to increase in the recovery of waterflooding 
stimulated by ultrasonic waves. Therefore dynamic experiments were conducted 
to see the effects of ultrasonic waves on the recovery of oil and supplementary tests 
were carried out to investigate the mechanisms of ultrasonic waves in more detail. 
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properties of the fluids used. The viscosity of the fluids was measured using 
Cannon-Fenske Routine Viscometer-100 at 25 and 40˚C. 

=
q~ÄäÉ=N Testing fluid properties 

 
k~ãÉ=çÑ=
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kçêã~ä=
ÄêáåÉ=
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OKP= mçêçìë=jÉÇá~=
 
The quartz grains of 225-300 μm size fractions were packed in a stainless steel 
sample holder of 92 cm× 3.8 cm to represents the porous media. The porosity 
and permeability of the sand pack were 32±2% and 4 Darcy, respectively. 
 
OKQ= aáëéä~ÅÉãÉåí=qÉëí=
 
Oil saturated sandpack was waterflooded until the residual oil saturation was 
obtained. Ultrasonic radiation (40 KHz and 250 Watts) began at this point 
simultaneous with water flooding. The same volumes of water (as in waterflooding) 
were injected and the recovery was calculated for each case. The graphs of 
recovery versus time were plotted for straight and ultrasonic stimulated 
waterflooding. 
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OKR= pìééäÉãÉåí~êó=bñéÉêáãÉåíë=
 
Two types of supplementary experiments were conducted, namely: one phase flow 
experiment and temperature experiments. One phase flow experiments conducted 
using the same setup of displacement tests. In this experiment the core was 
saturated with brine (normal and de-aerated) and exposed to ultrasonic waves and 
the pressure changes for the system were recorded. 
  Temperature experiments were conducted using both ultrasonic transducers 
and ultrasonic bath. Using ultrasonic transducer, the saturated sample (with oil and 
brine) was exposed to ultrasonic waves of different power outputs and temperature 
rises for the system were measured via a thermometer installed in the sand pack. 
Temperature experiment was also conducted in an ultrasonic bath as well. The 
sand was packed and saturated with kerosene, vaseline and engine oil. The 
temperature rises of the system were recorded regularly. 
 
 
PKM= obpriqp=^ka=afp`rppflk=
 
PKN= qÉãéÉê~íìêÉ=bñéÉêáãÉåíë=
 
Temperature rises during stimulation with ultrasonic were reported by some 
authors. However the methods they used were sometimes too simplistic to show 
the real changes of temperature in the system, therefore the magnitude of the 
effect is not sufficiently discussed. The temperature rises of the system (normal 
brine-saturated sand pack) were 4˚C, 12˚C and 16˚C for the respective power 
outputs of 100, 250 and 400 Watts (Figure 2). In the second part of the 
experiment temperature rises for vaseline, kerosene and engine oil was measured 
in the ultrasonic bath. Due to the same conductivity coefficient in three of the 
cases the temperature rise was almost the same as expected. Figure 3 illustrates the 
temperature rise for different fluids. 
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is not able to contribute in reduction of residual oil saturation. It should be noted 
that above mentioned discussion is only related to IFT reduction as a 
consequence of temperature rises and the direct effect of ultrasonic waves on 
reduction of IFT is excluded in this section. Hence it can be concluded that, if the 
waves have any effects on reduction of IFT, it cannot be related to temperature 
rises of the system. 
  Temperature rises as much as 24˚C will largely affect viscosity of fluids. 
Viscosity of water and oil will be reduced as a result of temperature rise. Since the 
viscosity of fluid at different temperatures was needed it was calculated via proper 
formulas i.e. Meehan and Glaso's relations. The measured values of viscosity 
(using Cannon-Fenske viscometer as shown in Table 1) have 5% variance from 
calculated values using Glaso’s formula. Figures 4, 5, and 6 illustrate viscosity 
reduction for each case together with a third degree polynomial trend line drawn 
for each fluid to facilitate the comparison between slopes of the graphs.  
 

q~ÄäÉ=O= IFT reduction for different fluids versus time 

 
qEç`F hÉêçëÉåÉ=

EÇóåÉLÅãOF=
s~ëÉäáåÉ

EÇóåÉLÅãOF=
båÖáåÉ=láä=
EÇóåÉLÅãOF=

OP 31.0 38.0 18.0 

OT 30.5 37.4 17.7 

PN 30.0 36.8 17.4 

PR 29.5 36.2 17.1 

PV 29.0 35.6 16.8 

QP 28.6 35.0 16.6 

QT 28.1 34.5 16.3 

RN 27.7 33.9 16.1 

RR 27.3 33.4 15.8 
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cáÖìêÉ=T Pressure gradient versus time for various intensities (watts/cm2) of waves for one phase 
flow using normal brine 

 
 
Rearranging Darcy formula, as in Eq. 1 below; 

∆ܲ ൌ ொμ௅
௄஺

         (1) 

Terms Q, L, A, K and ߮ are considered constant. As there is only one phase 
flowing in the system, the term μ stands for viscosity of water. The increase in 
temperature leads to viscosity reduction; since ∆ܲ is proportional to μw, any 
reduction in the viscosity decreases the pressure drops by the same magnitude. 
Due to existence of cavitation as a result of using aerated water, quantification of 
the effect becomes difficult. But as in all of the one phase flow experiment the 
pressure reaches to a value lower than its initial value, it could be concluded that 
the reduction of pressure is due to reduction in viscosity of water (Mohammadian, 
2010). 
  The second series of one phase flow experiments were conducted using de-
aerated brine to remove effects of cavitation. The same procedure was performed 
and the pressure responses were recorded. Once the ultrasonic radiation started, 
the pressure started to decline and finally stabilized to a value at the end of each 
experiment. Figure 8 shows pressure response versus time for various power 
outputs. Considering the results from temperature effect experiment and one 
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In the case of vaseline, the viscosity ratio at 27˚C is 23.9. The recovery for normal 
water flooding is 56% ultrasonic stimulated waterflooding added 11% to the 
recovery. Figure 10 shows total recovery of vaseline. Viscosity reduction is known 
as one of the significant mechanisms in case of vaseline as viscosity ratio reduces to 
13.9 from initial value of 23.9 as result of 10˚C temperature rise. Therefore, it can 
be concluded that ultrasonic stimulation increases the recovery by reducing 
mobility ratio and improving sweep efficiency. In the case of vaseline also, 
formation of emulsion was observed. Assuming the IFT value of 38 dyne/cm2 for 
vaseline and brine, the capillary number for waterflooding is in orders of 10-7. It 
can be concluded that increase in the oil recovery cannot be attributed to 
reduction of IFT from temperature rise. 
 

 
 

cáÖìêÉ=NM Recovery of vaseline as result of straight and sonicated waterflooding  
 
 

  Engine oil was chosen due to its high viscosity (243 cp at 23oC). The amount of 
oil produced by waterflooding was 38%. The sonication added 2% to the recovery 
(Figure 11). 10˚C increase in the temperature (around 23˚C increase in the 
temperature was observed by temperature experiment), is changing viscosity of 
fluids to a large extent. Viscosity ratio reduces to 97.1 from initial value of 255.0. 
Therefore one of the effective mechanisms in improving the recovery is viscosity 
reduction. One may expect higher recoveries considering huge reduction in 
viscosity ratio. But an unexpected result was deposition of paraffin as results of 
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sonication. It was observed during emulsification experiment which was part 
author’s previous work (Mohammadian, 2010). In this case also the IFT reduction 
from temperature increase is not large enough to reduce capillary number 
effectively and reduce the residual oil saturation. 
 

 
=

cáÖìêÉ=NN  Recovery of engine oil by straight and sonicated waterflooding 

 
 

QKM= `lk`irpflkp=

 
A series of displacement and supplementary experiments were conducted in this 
study and following conclusions were made: 
 
(1) The recovery of waterflooding increases as a result of sonication for all the 
cases (from 2-16%). The recovery of ultrasonic assisted waterflooding was higher 
for less viscous fluid being kerosene. Where normal brine was used the recovery 
was higher in comparison with the cases where de-aerated brine was used. This 
could be explained through the existence of cavitation in the system when using 
normal brine instead of de-aerated brine. 
 
(2) Severe temperature rises was observed in the experiments. This leads to 
reduction in viscosity of fluids as well as reduction in the interfacial tension. The 
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production. On the other hand, the temperature rises is not high enough to 
reduce the IFT to a large extent, in other word IFT reduction from temperature 
rises is so small that cannot contribute in improving the recovery.  

(3) The one phase flow experiments were conducted using normal and de-aerated 
brine. The initial increase in the pressure in one phase flow experiments (using 
normal brine) can be attributed to cavitation. Conducting one phase flow 
experiments with de-aerated brine proved that the reduction in pressure is cause 
by reduction in viscosity of water as a result of ultrasonic stimulation. 
 
(4) Formation of emulsion was observed during displacement experiments for 
vaseline and kerosene. The generated emulsion was unstable and the phases were 
completely separated after 3 hours. It could be concluded that viscosity reduction 
and emulsification are contributing mechanisms in the application of ultrasonic 
waves to waterflooding.  
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