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Abstract 
 

Supply chains face risks from various unexpected events that make disruptions almost inevitable. This paper presents a 

disruption recovery model for a single stage production and inventory system, where finished product supply is randomly 

disrupted for periods of random duration. A production facility that manufactures a single product following the Economic 

Production Quantity policy is considered. The model is solved using a search algorithm combined with a penalty function 

method to find the best recovery plan. It is shown that the optimal recovery schedule is dependent on the extent of the 

disruption, as well as the back order cost and lost sales cost parameters. The proposed model is seen to be a very useful tool 

for manufacturers to make quick decisions on the optimal recovery plan after the occurrence of a disruption. 

 

Keywords: Supply chain; disruption; inventory-production system; economic lot size 

 

Abstrak 

Risiko yang tidak menentu sangat memberi kesan kepada rantaian bekalan dan menyebabkan kepada gangguan dalam 

entiti rantaian tersebut. Risiko ini sukar untuk dielakkan kerana ia berlaku secara rambang. Dalam kajian ini, suatu model 

pemulihan daripada gangguan rawak bagi suatu tahap pembuatan tunggal dan sistem inventori diperkenalkan, dimana 

bekalan yang telah siap mengalami gangguan rawak dalam suatu tempoh masa yang rawak. Kajian ini mempertimbangkan 

satu kilang pembuatan tunggal yang mengeluarkan barangan mengikut dasar Lot Bersaiz Ekonomi. Model ini diselesaikan 

dengan menggabungkan antara dua kaedah iaitu kaedah pencarian algoritma dan fungsi penalti bagi merancang kaedah 

pemulihan yang terbaik. Hasilnya, dapat diperhatikan bahawa jadual optima bagi suatu fasa pemulihan dipengaruhi oleh 

tiga perimeter iaitu tempoh masa gangguan, kos tempahan tertangguh dan kos rugi jualan. Model yang dicadangkan ini 

sangat berguna kepada mana-mana kilang pembuatan untuk menentukan saiz lot yang sangat optima sebagai tindakbalas 

segera terhadap sesuatu gangguan. 

 

Kata kunci: Rantaian bekalan; gangguan; sistem inventori-pembuatan; lot bersaiz ekonomi 

 

© 2016 Penerbit UTM Press. All rights reserved 

 
 

1.0  INTRODUCTION 
 

The supply chain is a system that consists of facilities or 

entities that are involved in transferring goods from 

supplier to customer. The activities in a supply chain 

have the role of transforming raw materials into finished 

products that are delivered to the end customer. 

Conventional supply chains are often designed to 

operate smoothly in a problem-free environment. 

However, in the real world, unexpected events such as 
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machine breakdowns, transportation failures, labor 

strikes, and natural disasters are bound to happen and 

are often inevitable. This may cause disruptions at 

different levels of the supply chain, from the upstream 

to the downstream stages. Without a proper response 

to these events, a manufacturer would have to incur 

high additional costs to recover from the negative 

impacts of disruption. For instance, the 1995 earthquake 

that hit Kobe left vast damage to all transportation links 

in Kobe and nearly destroyed the world’s sixth-largest 

shipping port. The 7.2 scale Richter quake terribly 

affected Toyota, where an estimated production of 

20,000 cars, equivalent to $200 million worth of revenue 

was lost due to parts shortages [1]. 

   Realizing the potential losses from such events, 

enterprises have recently shown a growing interest to 

incorporate risk management into their operations. Two 

tactics to deal with the risk of disruption include 

mitigation and contingency tactics [2]. A commonly 

practiced strategy for protecting against disruption is to 

hold additional inventory in the system for the entire 

period. Various related studies have been conducted 

for inventory models under the continuous review 

framework [3,4,5] and the periodic review framework 

[2,6,7]. These studies mainly design their inventory 

models to incorporate supply uncertainty occurrences 

by modifying the original non-disruption models. 

However, the majority result in stationary higher 

ordering quantities or bigger stock levels that would 

incur unnecessarily high holding costs for the long run. 

Thus, this motivates us to focus on disruption recovery 

strategies in developing our model. 

   Studies on optimal recovery strategies for disruptions 

are rather scarce. In the production and inventory 

literature with regards to the Economic Lot Scheduling 

Problem (ELSP), Gallego [8] and Tang et al. [9] 

proposed methods on how to recover from a schedule 

disruption. Xia et al.[10] developed a recovery strategy 

for an EPQ system subject to disruption in the form of 

parameter changes. The main aim was to minimize the 

disruption costs by incorporating penalty costs for 

deviations in the objective function. The original plan is 

recovered within short time windows spanning two to 

three production cycles. The work presented here is 

very much related to this paper. 

    In this paper, a recovery model for a single stage 

inventory system subject to disruption is presented. We 

consider a production facility that manufactures a 

single product in batches at a constant time interval 

following the Economic Production Quantity (EPQ) 

model. However, it is assumed that a random disruption 

occurs during a cycle, thus disabling the production to 

run as scheduled. After the disruption occurs, a 

specified duration, known as the recovery time window, 

is allocated to the production system to allow time to 

recover from the disruption. During the recovery 

duration, changes are made to the original production 

schedule to try to satisfy customer orders, where 

shortages may become a mix of backorders and lost 

sales. Similar to other disruption management models, 

the original production schedule is restored at the end 

of the recovery time window. 

   The production facility faces four types of costs: a 

setup cost, inventory holding cost, backorder cost, and 

lost sales cost. The objective of the model is to 

determine the optimal production quantity for the 

cycles in the recovery time window so that the 

expected total cost is minimized. The results show that 

the optimal length of the recovery duration is 

dependent on the length of the disruption, as well as 

the relationship between the backorder and lost sales 

cost.  

   The remainder of this paper is structured as follows. The 

model formulation is proposed in Section 2. Section 3 

suggests a possible method to solve the model and in 

Section 4, the related computational results are 

 
Figure 1 Production Inventory curve with disruption 
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provided in the form of several numerical examples and 

an analysis of the model. Finally, Section 5 summarizes 

the paper and provides directions for future research. 

 

 

2.0  MODEL FORMULATION 
 

We assume that the current production-inventory 

system is run based on the well-known Economic 

Production Quantity (EPQ) policy. Specifically, we 

consider the EPQ system similar to Sarker and Khan [11]. 

The system has a lot-for-lot delivery policy, where the 

optimal production lot size, (Q) is:  

 

𝑄 =  √
2𝐴𝑃

𝐻
  

(1) 

 

   The notations (A, P, H) are defined in the next column. 

In the next sub-sections, a similar model accounting for 

disruption will be developed. 

 

2.1  Disruption Recovery Model Formulation 

 

In this section, a general cost model is developed for a 

production facility that experiences disruption, as 

explained in section 1. The disruption recovery time 

window concept considered in this paper was adopted 

from the works of [10]. However, our model assumes 

that the pre-disruption period is zero and the disruption 

randomly occurs such that it is not known in advance. 

For simplicity, we set the recovery time window to be 

equal to n cycle times from the start of a disruption. 

During the recovery period, the production schedule is 

modified such that the length of n cycles in the 

recovery schedule is equal to n cycles in the original 

schedule. The only difference is that the recovery 

schedule includes the disruption length, Td. In our 

model, n is made as a decision variable. Like other 

disruption management models, the term recovery is 

defined as restoring the original production schedule 

within a considerably short time period, while minimizing 

overall costs. The model is capable of determining the 

optimal manufacturing batch size for the production 

run in the recovery time window, so as to minimize the 

total cost for recovery, while trying to fulfill customer 

demands and other system constraints. The problem is 

illustrated in Fig. 1. The notations used in developing the 

cost function are as follows: 

 

A: setup cost for a cycle ($/setup) 

D: demand rate for a product (units/year) 

H: annual inventory holding cost ($/unit/year) 

P: production rate (units/year) 

Q: production lot size in the original schedule (units),  

Td: disruption period 

u: production down time for a normal cycle (setup time 

+ idle time) 

te: start of recovery time window 

tf: end of recovery time window 

T: production cycle time for a normal cycle 

ρ: production up time for a normal cycle 

B: unit back order cost per unit time ($/unit/time) 

L: unit lost sales cost ($/unit) 

Xi: production quantity for cycle i in the recovery 

window (units) 

Ti: production up time for cycle i in the recovery window 

St: setup time for a cycle 

δ: idle time for a cycle 

 

   When a disruption occurs, this will create a production 

delay in the system. This delay is dependent on the total 

disruption duration, Td. Production can only resume 

after the disruption ends when the problem is rectified. 

Unsatisfied customer demand during this stock out 

period will be partially backlogged, where some will 

become backorders, which will be produced during 

the recovery time window, and the remainder will 

become lost sales. The backorder costs, B, will be a 

function of time delayed with units ($/unit/unit time). 

Additionally, lost sales may occur during any of the 

cycles in the recovery time window. One of the 

advantages of our model is the ability to decide on the 

amount of backorders and lost sales in each recovery 

cycle that provides the most cost effective solution. 

 

2.2  Mathematical Representation 

 

Let Td be the disruption period occurring at the 

beginning of a cycle (see Fig. 2). It is assumed that Td is 

less than the normal production cycle time, T, for this 

model. After a disruption of Td occurs, recovery takes 

place by utilizing the production idle times, δ, in the 

original schedule. The recovery time window will be n 

normal production cycle times from the start of 

disruption. We define the decision variable Xi as the 

production quantity for cycle i in the recovery time 

window and Ti as its respective production time, where 

i = 1, 2, …, n. However, in this paper we assume:  X1 = X2 

= … = X, thus T1 = T2 = … = Tx 

   The setup cost equation is rather straight forward and 

can be obtained by: 

 

A ∙ n (2) 

   The inventory holding cost is equal to the unit 

inventory holding cost, H, multiplied by the total 

inventory during the recovery time, which is the area 

under the curve. This is calculated as: 

𝐻

2𝑃
 ∙ 𝑛 ∙ 𝑋2 

 

(3) 

 

   Next, the backorder cost formulation can be derived 

as follows:    

 

𝐵[𝑋 ∙  ∑ 𝐷𝑒𝑙𝑎𝑦𝑖

𝑛

𝑖=1

] 
 

(4) 

The delay for backorders in each cycle is calculated 

below: 
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𝐷𝑒𝑙𝑎𝑦 𝑖 =  𝑇𝑑 + 𝑖 ∙ 𝑆𝑡 + 𝑖 ∙ (
𝑋

𝑃
) − 𝑖 ∙ (

𝑄

𝑃
) − 𝑢(𝑖 − 1) 

 

(5) 

   

 where all delays are non-negative. Thus the backorder 

cost is: 

 

𝐵𝑋 [∑ (𝑇𝑑 + 𝑖 ∙ 𝑆𝑡 + 𝑖 ∙ (
𝑋

𝑃
) − 𝑖 ∙ (

𝑄

𝑃
) − 𝑢(𝑖 − 1))

𝑛

𝑖=1

] 
 

(6) 

 

Finally, the lost sales cost is obtained as: 

𝐿𝑛 (𝑄 − 𝑋) (7) 

   The sum of all the cost components above gives the 

total relevant costs of the recovery plan. The total cost 

function, model (P1), can be derived as follows: 
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(8) 

Subject to: 

 

𝑋 ≤ 𝑄 (9) 

𝑛𝑋 ≤ 𝑃 (𝑛𝑇 − 𝑁𝑆𝑡 − 𝑇𝑑) (10) 

(Q -X)𝑛𝑋 ≥ 𝑛𝑇𝐷 − 𝑛(𝑄 − 𝑋) (11) 

 

   The objective function (8) comprises of the four cost 

components mentioned earlier, each separated in 

parenthesis. Constraint (9) requires that the production 

quantities in the recovery time window be less than the 

production quantity under the original schedule due to 

the delivery and transportation requirements. 

Constraint (10) represents the available production 

capacity and constraint (11) ensures that all the 

demand is accounted for. 

   By solving the above model for X subject to the 

constraints (9)-(11), one can obtain the optimal 

recovery plan for the production system under 

disruption. Without disruption, this model will reduce to 

the original EPQ model as presented earlier. 

 

 

3.0  SOLUTION APPROACH 

 

In this model, the number of recovery cycles, n, has 

been set as an integer. It may be given as a user input 

or can be determined as part of the solution process. 

However, if one can fix the value of n, the solution 

process for Model P1 will be easier. Our solution 

approach can be summarized as follows: 

 

Step 0: Initialize the parameters 

Step 1: Find n using (15) and set   

Step 2: Solve Model P1 for X using   

Step 3: If B<<L, record the solution and go to Step 5 

Step 4:  a) Set K = 1 

 b) Set n = n – K 

 c) Solve Model P1 

d) If  set K = K+1, go to (b). Otherwise, record 

the solution and go to Step 5. 

Step 5: Stop 

 

The Model P1 can be categorized as a non-linear 

constrained integer optimization problem and is solved 

using the penalty function method to find the optimal 

values of X. 

The penalty method has been used widely in the 

literature for solving constrained optimization problems. 

The basic idea behind this method is to approximate a 

constrained optimization problem with a sequence of 

unconstrained problems that are easier to solve. This is 

achieved by adding a penalty in the objective function 

for infeasibility, which will increase the objective for any 

given constrained violation [12]. The technique used for 

solving our model is known as the dynamic penalty 

function, where the penalty parameter for a given 

violation increases as the search progresses. This 

property allows highly infeasible solutions at the 

beginning of the search, but eventually approaches to 

an optimal solution as the penalty parameter becomes 

larger [13]. A summary of the penalty function method 

proposed by Bazaraa and Shetty [13] is provided 

below. 

 

Initialization Step: Let ε> 0 be a termination scalar. 

Choose an initial point X1, a penalty parameter µ> 0, 

and a scalar β> 0. Let k =1 and proceed to the main 

step. 

Main Step: 

1. Starting with Xk , solve the following problem: 

Minimize   𝑓 (𝑋) + 𝜇𝑘𝛼 (𝑋) 

Subject to  𝑥̃ ∈ 𝑋 

Let Xk+1 be an optimal solution, and go to step 2. 

2. If 𝜇𝑘𝛼 (𝑋𝑘=1) < 𝜀 stop; Let,  𝜇𝑘+1 = 𝛽𝜇𝑘, 

replace k by k+1, and go to step 1. 

 

   Based on the above method, the parameters to run 

the solution procedure were chosen with µ1= 0.1 and β 

= 10. The starting point was taken as X1 = Q. The penalty 

method procedure was coded in MATLAB and 

executed on an Intel Core Duo processor with 1.99 GB 

RAM and a 2.66 GHz CPU. 

 

 

4.0  COMPUTATIONAL EXPERIENCE 

 
Some numerical examples are presented in this section 

to demonstrate the applicability of the model 

developed in this paper. Test problems were generated 

by arbitrarily changing the cost parameters (setup, 

holding, back order, and lost sales cost) as well as the 

disruption duration (see Table 1). For a backorder cost 

that is significantly lower than the lost sales cost, it is 

found that all shortages will be backordered and the  
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optimal X value is found to be equal to Q. However, 

when the backorder cost is significantly higher than lost 

sales costs, it is shown that there will be some amount of 

lost sales. In addition, the optimal production quantities 

in the recovery schedule, X, is found to be less than that 

of the original schedule, Q. The recovery duration,n, will 

be shorter for the second scenario compared to the 

first. A comparison of the solutions was made by solving 

the same test problems using the LINGO 10.0 

optimization software, where both X and n are 

variables. From the comparison results in Table I, it can 

be observed that the differences are negligible for all 

cases.    

   An analysis has been carried out to show the effect of 

increased backorder cost, B, on X, TC, backorder 

quantity and lost sales quantity when lost sales cost, L, is 

significantly low (see Fig. 2). With L fixed at $1/unit and 

B increasing from $10 to $5000, it can be observed that 

the value of X decreases from Q to zero. In addition, the 

lost sales quantity is found to increase, while the 

backorder quantity decreases to zero. An explanation 

for this is that as the backorder cost becomes larger, it 

is more optimal to have lost sales rather than 

backorders in the recovery schedule. Thus, when a 

portion of the demand becomes lost sales, the quantity 

to be produced, X, becomes lower and the recovery 

duration, n, will become shorter. 

 

 

 

5.0  CONCLUSION 

 
A recovery model for a single stage inventory system 

subject to disruption has been presented in this paper. 

The model determines the optimal production quantity 

and the number of cycles for recovery in order to 

minimize the total cost for recovery including setup 

costs, inventory holding costs and shortage costs. The 

problem was formulated as a nonlinear constrained 

integer programming problem for which we chose the 

penalty function method as the solution technique. The 

results of several test problems were compared to that 

of a standard optimization software to examine the 

quality of the solution. Computational results were 

presented for different sets of examples and an analysis 

of the model was incorporated to provide better 

understanding of the model’s applicability. From the 

analysis, it is shown that the optimal recovery schedule 

is dependent on the length of the disruption, as well as 

the relationship between the backorder and lost sales 

cost. The proposed model is believed to be a very useful 

tool to help manufacturers make prompt and accurate 

decisions on the optimal recovery plan when a 

disruption occurs in the production system. Additionally, 

the model may be applied to any type of industry that 

has batch production, such as manufacturers of 

automotive components. For future research, it would 

be interesting to consider  assembly-type production 

systems and integrate sustainability factors into the 

model.   

Table 1 Comparison of the results between the Penalty Method and LINGO for five test problems 

 

         X TC  

Example A H B L Td St n Q 
Penalty 

Method 
LINGO 

Penalty 

Method 
LINGO Error 

1 50 2.4 10 15 0.003 0 4 14433.76 14433.76 14433.76 1623.40 1623.40 0.00000 

2 50 2.4 10 15 0.003 0.000057 4 14433.76 14433.76 14433.76 1746.81 1746.81 0.00000 

3 20 1.2 10 15 0.003 0.000057 5 12909.94 12909.94 12909.94 1468.32 1468.32 0.00000 

4 20 1.2 100 1 0.003 0.000057 2 12909.94 8352.43 8352.43 11502.93 11502.93 0.00136 

5 50 2.4 100 1 0.003 0.000057 2 14433.76 10257.20 10257.20 11522.70 11522.70 0.00029 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Effect of B on X, backorder quantity, lost sales quantity and TC when L is fixed at $1/unit 
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