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Abstract 
 

Velocity tracking is one of the important objectives of vehicle, machines and mobile 

robots. A two wheeled inverted pendulum (TWIP) is a class of mobile robot that is open 

loop unstable with high nonlinearities which makes it difficult to control its velocity 

because of its nature of pitch falling if left unattended. In this work, three soft computing 

techniques were proposed to track a desired velocity of the TWIP. Fuzzy Logic Control 

(FLC), Neural Network Inverse Model control (NN) and an Adaptive Neuro-Fuzzy 

Inference System (ANFIS) were designed and simulated on the TWIP model. All the three 

controllers have shown practically good performance in tracking the desired speed and 

keeping the robot in upright position and ANFIS has shown slightly better performance 

than FLC, while NN consumes more energy.   

 

Keywords: Two wheeled inverted pendulum (TWIP), Fuzzy Logic Control (FLC), Neural 

Network Inverse Model control, Adaptive Neuro-Fuzzy Inference System (ANFIS) 
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1.0  INTRODUCTION 
 

Problems like pollution, congestion, parking availability, 

which are caused by conventional vehicles, have 

made life difficult these days. To overcome the 

situation, Two Wheeled Inverted Pendulum (TWIP) 

mobile robots (Figure 1) have been introduced [1-7] to 

overcome these problems. Due to its much smaller in 

size compared with conventional four wheeled 

vehicles, TWIPs can occupy less parking space than 

other vehicles, hence reducing congestion and solving 

availability of parking space issue. Also TWIP uses DC 

motors for operation hence eliminating carbon 

pollution, hence safer environment.  However, they are 

categorized as under actuated mobile robots which 

makes it difficult to control. Many researchers in the 

past two decades have been working in developing 

the controllers for balancing the robot and also for 

tracking the desired position and velocity [2, 4, 6, 8-30]. 

Among the recent works, linear controllers were 

implemented in [2, 8, 11, 16, 27, 31]. In [2] pole 

placement controller was applied at different 

linearized points and was used to balance and track a 

desired velocity for the robot. In [8], system decoupling 

control techniques with pole placement was used to 

control the velocity and yaw angle movement. A 

Linear Quadratic Regulator (LQR) was compared with 

partial feedback linearization for speed control in [11], 

while Proportional-Derivative (PD) control was used in 

[16] for position tracking and tilt balancing. Another 

LQR technique was investigated in [32] for velocity 

and position tracking.  

Nonlinear controllers were also investigated and 

studied by researchers [11, 12, 22, 33]. Partial feedback 
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linearization was demonstrated in [11, 33] for velocity 

tracking while Sliding Mode Control (SMC) method 

using LQR technique was used to control the robot 

behavior while driving on uniform slopes [12]. The SMC 

technique was also used and implemented in [22] for 

velocity tracking. To show the robustness of the 

controller, adaptive controllers were implemented not 

only for position and velocity tracking but also for tilt 

balancing [10, 18, 26]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Metaheuristic controllers, also known as intelligent 

controllers, have been used in controlling velocity of 

TWIP. Some works on Fuzzy Logic Control (FLC) were 

implemented in [15, 17, 20]. In [15, 20] FLC was used to 

balance the tilt position of the TWIP only, but in [17], 

the tilt angle, position control and orientation angle of 

the robot were all controlled using FLC. Adaptive 

intelligent controller like Adaptive Neuro-Fuzzy and 

Adaptive Neural Network, were shown in [14, 24, 28]. In 

[14], a T-S Adaptive Neural Network Fuzzy controller 

was used in balancing the robot and controlling the 

position movement, while Adaptive Neural Network for 

balancing and yaw angle motion control was 

investigated in [24]. The position tracking and tilt angle 

balancing using PID and Neural Network controller was 

shown in [28].  

Based on the review stated above, velocity 

tracking has been one of the major objectives of 

controlling the TWIP. Many works in the past years 

have been published in the area. Model based 

controllers like LQR [32, 34], and Pole placement 

controller [27], which are designed based on the 

linearized model of the robot making the model 

uncertainties to affect the controllers gain. Nonlinear 

controllers like partial feedback linearization [11, 19, 

33] and SMC [1, 12, 22] performs well in rejecting 

modelling inaccuracies, parameter variations and 

disturbances, but SMC has the problem of chattering. 

Intelligent controllers were used by researchers to track 

a desired speed of the TWIP, in [6] a direct adaptive 

model reference control scheme was used, fuzzy logic 

which is a non-model based controller, was used in 

[15, 20]. Adaptive neural SMC method for trajectory 

tracking was shown in [35]. In this paper, three 

intelligent metaheuristic control techniques will be 

investigated. Neural Network inverse model control 

strategy, Adaptive Neuro Fuzzy Inference System 

(ANFIS) used in mimicking another controller, and PD-

Fuzzy logic will be used and analyzed to track a 

desired velocity of the robot. The three schemes have 

the advantages of being none model dependent, 

hence there is no problem of model uncertainties [36]. 

The main contribution of this paper is developing 

intelligent controller, ANFIS controller, mimicking 

another intelligent controller, FLC, instead of mimicking 

any conventional controller for velocity tracking of the 

under actuated mobile robot. The performance will be 

compared with the original FLC and another intelligent 

controller NN in inverse model form. 

The rest of the paper is organized as follows; section 

II discuss the overview of the control strategies, section 

III presents the model description, section IV gives the 

details of the controllers design, and section V is where 

the results are discussed and analyzed, and finally 

section VI concludes the findings of the work. 

 

 

2.0  INTELLIGENT CONTROL STRATEGIES 
 
This section describes the concept of FLC, Neural 

Network Inverse Model Control as well as ANFIS 

controller. 

 

2.1  Fuzzy Logic Control 

 

It has been almost 50 years when the first paper on 

fuzzy sets was published by Zadeh [37]. Fuzzy sets differ 

from traditional classical set by omitting crisp 

boundaries that are essential with classic sets. It is this 

idea that evolved too many disciplines and has 

various applications [38]. Control using fuzzy logic is an 

algorithm based on a linguistic control strategy, which 

is achieved from expert knowledge and does not 

need any mathematical model [39]. Fuzzy logic used 

as a controller is of two forms; a PD type direct control 

strategy. The control strategy uses linguistic IF THEN 

rules that is originated from human knowledge and 

experience. The input to the FLC is usually two inputs. 

First is the error signal, that is the difference between 

the reference and the output signal, and the second is 

the derivative of the error. The inputs are also called 

antecedent, and the decision is made based on the 

human knowledge known as fuzzy rules, to evaluate 

the control output known as consequence. The 

combination of the antecedent, consequents, fuzzy 

rules and fuzzy reasoning, gives what is called a fuzzy 

inference system (FIS) [38]. The block diagram for FLC 

in a direct form is shown in Figure 2. The second form of 

controller for FLC is internal model control structure as 

shown in Figure 3 [39]. The inverse model of the plant 

and the internal model are developed by using fuzzy 

logic (concept of internal model control is explained in  

the next section). 

 

 

 

Figure 1 TWIP Mobile Robot 
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2.2  Neural Network Inverse Model 

 

The same structure used in fuzzy logic internal model 

control is applied in neural network inverse model 

control as shown in Figure 2. The difference is the 

inverse model is formulated using neural network 

rather than fuzzy logic. The concept behind inverse 

control is to place the inverse of the plant in series with 

the plant so the control action becomes feed forward. 

The aim is to make the plant nonlinearities handled 

efficiently by the use of the plant inverse model as 

controller [36]. Consider a nonlinear plant: 

 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢 
𝑦 = 𝐶𝑥 (1) 

The closed loop response is required to follow a 

certain input reference 𝑟, so the controller has to 

generate the control signal 𝑢(𝑡) such that 𝑦 = 𝑟. The 

output explicitly does not involve the input 𝑢(𝑘), 

therefore making the inverse very difficult to obtain 

[39]. To overcome this problem the control law is 

carried out using inputs and outputs measurements to 

get the inverse model. Problem arises when the model 

is invertible, many literature proposes several 

algorithms to find the inverse of plant models [39]. To 

find the inverse of a model, the input to the model is 

taken as the output and the output of the model as 

the input to the neural network learning process. The 

scheme is illustrated in Figure 4. Neural network inverse 

model control has been practiced by researchers [40-

44]. 

 

2.3  ANFIS Controller 

 

The combination of fuzzy logic and neural network in 

applications give rise to neuro fuzzy systems [36, 38]. 

Among the most common neuro fuzzy is the adaptive 

neuro-fuzzy inference system (ANFIS). ANFIS is a fuzzy 

logic system where the rules, membership function 

ranges are computed automatically using neural 

network, in fuzzy logic all the tunings are done 

manually. Full concept and the principles of ANFIS can 

be found in [38]. ANFIS can be used as a controller in 

two forms, either as inverse controller just like the 

neural network previously discuss as shown in Figure 4, 

or mimicking another working controller. Using the 

input/output data, ANFIS can refine the working rule of 

the controller and provide better performance, this 

mode are shown in [45-49]. 

 

 
 
3.0  MODEL DESCRIPTION OF THE TWIP 
 
The dynamics equation used to develop the robot is 

derived using Kane’s method of modelling in [3]. The 

free body diagram is shown in Figure 5. The three 

direction of movement of the robot are x transitional 

motion, ϕ tilt angle, and 𝜓 yaw angle, the dashed line 

on the free body diagram present the robot straight 

position when tilt angle = 0. The dynamics equations of 

the TWIP are given in equation (2-4), where the 

parameters used are listed in Table 1. The TWIP is 

based on the assumption that the wheels of the robot 

always stay in contact with the ground and the wheels 

do not slip.   

 

 

 

𝑥̈ =
𝑀𝑏𝑑𝑠𝑖𝑛𝜙(𝑀𝒃𝑑2𝑐𝑜𝑠2𝜙 − (𝑀𝒃𝑑2 + 𝐼𝑧))

𝑀𝒃𝑑2𝑐𝑜𝑠2𝜙 − (𝑀𝑏 + 3𝑀𝑤)(𝑀𝒃𝑑2 + 𝐼𝑧)
𝜓̇2 

+
𝑀𝑏

2𝑑2𝑔𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜙

𝑀𝒃𝑑2𝑐𝑜𝑠2𝜙 − (𝑀𝑏 + 3𝑀𝑤)(𝑀𝒃𝑑2 + 𝐼𝑧)
 

−
(𝑀𝒃𝑑2 + 𝐼𝑧)𝑀𝑏𝑑𝑠𝑖𝑛𝜙

𝑀𝒃𝑑2𝑐𝑜𝑠2𝜙 − (𝑀𝑏 + 3𝑀𝑤)(𝑀𝒃𝑑2 + 𝐼𝑧)
𝜙̇2 

(2) 

Figure 3 Internal Model Controller Block Diagram 
Figure 4 Neural network Learning 

Figure 5 Schematic diagram of TWIP 

Figure 2 Direct FLC Block Diagram 
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+
(𝑀𝒃𝑑2 + 𝐼𝑥) + 𝑀𝑏𝑑𝑅𝑐𝑜𝑠𝜙

𝑀𝒃𝑑2𝑐𝑜𝑠2𝜙 − (𝑀𝑏 + 3𝑀𝑤)(𝑀𝒃𝑑2 + 𝐼𝑧)
(𝜏1 + 𝜏2) 

𝜓̈

=
𝐿

𝑅 [𝑀𝑤 (3𝐿2 +
1
2

𝑅2) + 𝑀𝒃𝑑2𝑠𝑖𝑛2𝜙 + 𝐼𝑦]
(𝜏1

− 𝜏2)

−
 𝑀𝒃𝑑2𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜙 

[𝑀𝑤 (3𝐿2 +
1
2

𝑅2) + 𝑀𝒃𝑑2𝑠𝑖𝑛2𝜙 + 𝐼𝑦]
 𝜓̇ 𝜙̇   

(3) 

𝜙̈

=
3𝑀𝑤𝑀𝒃𝑑2𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜙 

𝑀𝒃𝑑2𝑐𝑜𝑠2𝜙 − (𝑀𝑏 + 3𝑀𝑤)(𝑀𝒃𝑑2 + 𝐼𝑧)
𝜓̇2

−
𝑀𝑏

2𝑑2𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜙

𝑀𝒃𝑑2𝑐𝑜𝑠2𝜙 − (𝑀𝑏 + 3𝑀𝑤)(𝑀𝒃𝑑2 + 𝐼𝑧)
𝜙̇2

+
(𝑀𝑏 + 3𝑀𝑤)𝑀𝑏𝑔𝑑𝑠𝑖𝑛𝜙

𝑀𝒃𝑑2𝑐𝑜𝑠2𝜙 − (𝑀𝑏 + 3𝑀𝑤)(𝑀𝒃𝑑2 + 𝐼𝑧)

−
𝑅(𝑀𝑏 + 3𝑀𝑤) + 𝑀𝑏𝑑𝑐𝑜𝑠𝜙

𝑀𝒃𝑑2𝑐𝑜𝑠2𝜙 − (𝑀𝑏 + 3𝑀𝑤)(𝑀𝒃𝑑2 + 𝐼𝑧)
(𝜏1

+ 𝜏2) (4) 
 

Table 1 TWIP parameters and variables 

 

Parameter Symbol Value 

Mass of Main Body Mb 13. 3 kg 

Mass of Each Wheel Mw 1.89 kg 

Center of Mass (gravity) of the 

whole body from Base 

d 0.13 m 

Diameter of Wheel R 0.130 m 

Distance between the Wheels L 0.325 m 

Mass moments of Inertia of Body 

WRT x-axis 

Ix 0.1935 kgm2 

Mass moments of Inertia of Body 

WRT z-axis 

Iz 0.3379 kgm2 

Mass moments of Inertia of Wheel 

about the center 

Ia 0.1229 kgm2 

Acceleration due to gravity g 9.81 ms-2 

 

 

4.0  CONTROLLERS DESIGN 
 

This section describes the design of fuzzy logic 

controller, the neural network inverse model controller 

and ANFIS controller for the velocity tracking of the 

TWIP robot. A simple PID controller was used for the tilt 

balancing of the robot, while the proposed controller 

were used for the velocity tracking. The PID gains for 

the tilt balancing are kp = 10, ki = 5, kd = 1. The overall 

control scheme is shown in Figure 6. 

 

 

4.1  Fuzzy Logic Controller 

 

The steps of fuzzy logic controller design include 

selection of type and number of membership function, 

selection of rule base, inference mechanism and 

defuzzification process. For tracking velocity of the 

TWIP, triangular membership function is used. The rules 

are developed using fuzzy AND rules only with velocity 

error and error rate as the input. The rules for DC motor 

position control where used initially and further 

adjusted by trial and error to suit the given task. 

Combinations of these rules are used to generate 49 

fuzzy rules. Table 2 shows the fuzzy rules. 

 

Table 2 TWIP parameters and variables 

 

𝑒̇/𝑒 NB NM NS ZE PS PM PB 

NB PB PB PB PB PM PS ZE 

NM PM PM PM PM PS ZE NS 

NS NB NB NM NS ZE PS PM 

ZE NB NM NS ZE PS PM PB 

PS NM NS ZE PS PM PB PB 

PM NS ZE PS PM PB PB PB 

PB ZE PS PM PB PB PB PB 

 

 

The membership functions of the error, error rate 

and output are implemented with seven membership 

function [NB, NM, NS, ZE, PS, PM, PB] and after tuning, 

the range of [-20 20] was used for the error, [-100 100] 

for the error rate, and [-200 200] for the output. A 

triangular membership function is used due to the 

nature of the robot [17]. 

 

4.2  Neural Network Inverse Model Controller 

 

The TWIP mobile robot has many outputs, tilt angle, tilt 

rate, position and velocity. Yaw angle and the yaw 

rate are also considered depending on the 

application. The horizontal velocity of the robot is 

taken as the output of the robot since it is the desired 

manipulated variable. The data was taken when in 

closed loop form since the robot is open loop 

unstable. Simple PID controller was used for balancing 

and the model was simulated in MATLAB Simulink 

environment and the data for the neural network 

training was acquired and use for training the inverse 

model as shown in Figure 4. A two layered 

feedforward back propagation network with 10 

weights was used. A sigmoid transfer function in the 

first layer and purelin transfer function in the last layer 

were chosen. Levenberg-Marquardt back 

propagation algorithm was used in the training of the 

network. An MSE of 0.16779 was achieved after 252 

iterations. 

  
Figure 6 TWIP control scheme 
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4.3  ANFIS Controller 

 

The fuzzy logic controller designed in the previous 

section was obtained via lengthy and time consuming 

trial and error process, therefore to enhance the 

performance, numerical information was taken from 

the fuzzy controller and used to train and refine the 

membership functions in systematic way using ANFIS. 

Just like the neural network controller, the input to the 

FLC and the output was acquired and then used to 

train the ANFIS controller. Two membership function 

and a Sugeno type output were used. After training, 

the ANFIS controller generated has two rules, two 

triangular membership function in the input and two 

linear membership function in the output. 

 

 

5.0  RESULTS AND DISCUSSION 
 

The results and analysis of the proposed controllers are 

examined in this section. MATLAB and Simulink were 

used to simulate and test the controllers. A speed of 

2m/s, which is considered as averagely fast, was used 

for the tracking purpose. Figures 7-9 shows the velocity 

response, tilt angle position and the control signal 

respectively. The control signal is shown for 1 second to 

see the initial response clearly. 

 

 

 

 

 

A slightly better performance is observed by the 

ANFIS controller as compared to FLC, it has less 

overshoot than the FLC, with the neural network 

having the less overshoot but in the expense of higher 

tilt angle initial swing compared to the other two. The  

 

 

 

NN has higher energy consumption. The summary 

of the step tracking performance is shown in Table 3. 

 
Table 3 Comparative assessment of controllers to step input 

 
Controller Rise  

time (s) 

   Settling  

   time (s) 

% 

OS 

Torque  

(NM)  

[Max] 

Tilt 

angle 

 (deg) 

[Max] 

ANFIS 11     30 12 0.4 2.4 

NN 11     32 11 2.1 2.4 

FLC 10     17.5 20 0.4 3.4 

 

 

To test the robustness of the controllers, a sinusoidal 

input signal of frequency 0.2 rad/sec and amplitude of 

1 is used. Figures 10-12 shows the results. 
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Figure 7 Velocity Response for step input 

0 20 40 60
-1

0

1

2

3

4

time (sec)

A
ng

le
 (

de
gr

ee
)

Tilt Position

 

 

ANFIS

NN

FLC

Figure 8 Tilt angle for step input 
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Figure 10 Velocity Response for sine input 
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Figure 11 Tilt angle for sine input 

Figure 12 Control signal for sine input 
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Figure 9 Control signal for step input 
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The ANFIS controller and FLC almost have similar 

responses, the neural network have faster tracking 

response as compared to the other two and less 

overshoot but less tracking smoothness. The NN seems 

to have higher energy consumption. This is because, 

the inverse model obtain by the NN is not exactly 100% 

the inverse of the robot model, this discrepancy 

brought the need of high input energy to achieve 

desired results. The summary of the sine input tracking 

performance is shown in Table 4 

 

Table 4 Comparative assessment of controllers to sine input 

 

Controller % OS Torque 

(NM) 

[Max] 

Tilt angle 

(deg) [Max] 

ANFIS 5 0.2 0.8 

NN 0 2.1 1.8 

FLC 5 0.2 0.8 

 

 

Further testing reveals that the three controllers 

have a bandwidth of 0.6 rad/sec, meaning the 

controllers can perform up to expectation when the 

input is sine wave signal with input frequency less than 

or equal to 0.6 rad/sec. Above that, the output of the 

robot will be less than 70% of the desired input. 

 

 

6.0  CONCLUSION 
 

Three soft computing techniques were proposed to 

track a desired velocity of a two wheeled inverted 

pendulum mobile robot. Fuzzy logic controller, NN and 

ANFIS were investigated in this work and have shown 

great performance in velocity tracking and 

maintaining the balance of the robot in simulations. A 

slight improvement was shown by ANFIS when 

compared to FLC, this is because the ANFIS controller 

was trained from the FLC to enhance the trial and 

error work of the FLC controller. Neural network 

controller has high energy consumption due to 

discrepancy in obtaining the exact inverse model of 

the nonlinear plant. All controllers are acceptable and 

the real time implementation of the controllers on real 

robot can be considered for future work.   
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