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OPTIMAL CONTROLLER DESIGN FOR A RAILWAY VEHICLE
SUSPENSION SYSTEM USING PARTICLE SWARM

OPTIMIZATION

ARFAH SYAHIDA MOHD NOR1, HAZLINA SELAMAT2 &
AHMAD JAIS ALIMIN3

Abstract. This paper presents the design of an active suspension control of a two-axle railway
vehicle using an optimized linear quadratic regulator (LQR). The control objective is to minimize the
lateral displacement and yaw angle of the wheelsets when the vehicle travels on straight and curved
tracks with lateral irregularities. In choosing the optimum weighting matrices for the LQR, the Particle
Swarm Optimization (PSO) method has been applied and the results of the controller performance
with weighting matrices chosen using this method is compared with the commonly used, trial and
error method. The performance of the passive and active suspension has also been compared. The
results show that the active suspension system performs better than the passive suspension system. For
the active suspension, the LQR employing the PSO method in choosing the weighting matrices
provides a better control performance and a more systematic approach compared to the trial and error
method.

Keywords: active suspension control, two-axle railway vehicle, linear quadratic regulator, particle
swarm optimization

1.0 INTRODUCTION

Solid-axle wheelset is the most commonly used wheelset on nearly all modern railway
vehicles. It consists of two wheels rigidly connected by an axle, so that both wheels
rotate at the same angular speed, providing the wheelset with the ability to negotiate
curves naturally. This however becomes the primary reason of its instability [1] and
has caused a conflict in the design of the vehicle’s primary suspension system that
deals with its running stability. Longitudinal spring connection between the wheelset
and the vehicle body/bogie, which is required to stabilise the wheelset and forms part
of the primary suspension system, interferes with the wheelset natural curving action
causing poor steering when curves are negotiated. Various strategies have been
developed for the primary suspension system to solve the difficult design trade-off
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between maintaining the vehicle’s dynamic stability at high speeds and its curving
performance using mechanical elements, such as those discussed in [2], [3] and [4].
However, none of these developments have fundamentally overcome the problem.

To deal with the problems described above, active control must come into play.
The active control strategy developed in this paper is the linear-quadratic regulator
(LQR) that utilizes the Particle Swarm Optimization (PSO) method in selecting the
optimum values for the weighting factors for the LQR, which results in an optimised
LQR. LQR is chosen as a controller for this system since its design procedure is more
systematic and can cater for high order systems such as the railway vehicle system.
LQR design involves the selection of some weighting factors for the cost function to
be minimised. However, there is no specific technique in choosing these values. The
common approach to selecting these weighting matrices is via trial and error but this
method could be time consuming, cumbersome and result in a non-optimised
performance [5]. Therefore, a more systematic approach in selecting these values is
needed. This paper proposes the use of PSO to find the values of the LQR weighting
matrices based on a certain criterion that would ensure satisfactory control performance
of the two-axle railway vehicle system. The objective of the controller is to minimize
the lateral displacement of the wheelset relative to track centerline and its yaw angle,
on straight and curved tracks with lateral irregularities.

2.0 TWO-AXLE RAILWAY VEHICLE

Figure 1 shows a plan view diagram of the two-axle vehicle used in the study. This
particular vehicle configuration has drawn attention from the railway industry [6]. It
mainly consists of a vehicle body and two wheelsets, connected together via the primary
and secondary suspensions, resulting in a system of 12th order differential equation.

Figure 1 Plan view of a two-axle vehicle
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The wheelsets are mounted onto the vehicle body via the springs and dampers, whose
values have been chosen appropriately in order to provide good curving performance
and stability. The wheelset was controlled using an established technique of active
yaw damping in which a rotary actuator replaced the longitudinal springs to provide
yaw torque [7].

The mathematical description of the two-axle vehicle can be described by Eq.(1) to
Eq.(6) [8]. The symbols and parameters used in the equations are given in the Appendix.
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The mathematical equations can also be written in state-space form as in Eq.(7).

= + +x Ax Bu Gw (7)

where;
A = system matrix, with the matrix dimension of 12 × 12
B = control input matrix, with the matrix dimension of 12 × 2
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G = disturbance matrix, with the matrix dimension of 12 × 6
x = state vector of dimension 12 × 1
u = input or control vector od dimension 2 ×1
w = track disturbance input of dimension 6 × 1
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To study the performance of the active suspension system, the vehicle is subjected
to two types of track disturbance inputs: the track curvature with a certain degree of
cant angle and the lateral irregularities. The track inputs used in this study are as
depicted in Figure 2 through Figure 4. The radius of the track curvature is 1500 meter
and the cant is 0.12 radian (7 degree) [9]. The cant is the intentionally introduced
superelevation on the curved track, where the outer rail is raised above the level of the
inner rail by certain amount to reduce the centrifugal force transmitted by the vehicle
on the rail when it traverses the curve. The transition period is 1.5 second before and
after the curve, during which the track curvature and the cant are gradually increased
or decreased to reduce passenger’s discomfort when the vehicle entered (at t = 2
second) and left (at t = 7 second) the curve.

Figure 2 Curve input (1/Radius)
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3.0 LINEAR QUADRATIC REGULATOR (LQR)

The general active control scheme of the railway vehicle is shown in Figure 5 [10]. The
inputs of the system are the track inputs, which are the curve radius, the cant angle and
lateral track irregularities. Sensors are used to monitor the outputs of the system such
as the lateral displacement and yaw angle to provide measurements to the controller.
The controller calculates the suitable amount of control action to be applied to the
system and the actuators implement this control action. In this work, the wheelset was

Figure 4 Track irregularities

Figure 3 Cant input
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controlled using an established technique of active yaw damping in which a rotary
actuator replaced the longitudinal springs to provide yaw torque.

When designing the LQR for the railway vehicle system, the system is assumed to
be linear and has the state equation in the form below:

= +x Ax Bu (8)

=y Cx (9)

The controller determines a vector u(t), which will force the behavior of the system
under control to minimize the cost function given in Eqn.(10).

( ) ( ) ( ) ( )( )
∞

= +∫
0

T TJ x t Qx t u t Ru t dt (10)

The control law is given by Eqn.(11) and Eqn.(12).

( ) ( ) ( )= −u t K t x t (11)
where

( ) ( ) ( )−= − 1 ,TK t R B t P t (12)

Pr(t) is obtained by solving the Ricatti equation given in (13).

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )−= − − − + 1T T
r r r r rP t P t A t A t P t Q P t B t R B t P t (13)

The overall aim of the primary suspension control strategy is to avoid flange contact
in normal running because this is what causes high wear on the wheel and rail.
Therefore, the lateral displacement of the wheelset relative to the track and its yaw
angle are the main concern, and the cost function of the LQR needs be modified. For
these cases where direct control of certain states of the system state vector, yLQ, is
required, a performance index such Eq. (14) is minimized.

Figure 5 Active Control scheme
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( ) ( ) ( ) ( )( )
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where  [ ]ψ ψ= T
LQ F F R RJ y y . The weighting matrices, Q and R are important to

get a good optimal controller. In this paper, the particle swarm optimization (PSO) is
used to assist the selection of the most optimum weighting matrices.

4.0 PARTICLE SWARM OPTIMIZATION (PSO)

The idea on particle swarm optimization (PSO) was first introduced in 1995 [11]. It is
a population-based search algorithm inspired by the social behavior of birds, bees or
a school of fishes. Each individual within the swarm is represented by a particle in
search space. This particle has one assigned vector, which determines the next
movement of the particles, called the velocity vector. Each particle searches for global
optima by updating the velocity and position of each particle. The PSO algorithm is
initialized with iteration = 0, velocity = 0 and position = random position with population
optimization technique, in which individuals (particles) “fly” through a
multidimensional search space [12].

Each of the particles placed in the problem space has a fitness value evaluated by an
objective (fitness) function to be optimized at its current location at every iteration.
The particles in a local neighborhood share memories of their best visited positions.
Then, it will use those memories to adjust their own velocities and positions based on
the Eq. (15) and Eq. (16) [13]. All particles directly fly through the problem space by
following the current optimum particles.

( ) ( ) ( )( ) ( )( )ϕ ϕ+ = + − + −1 1 2 21i i i i g iv t wv t c p x t c p x t (15)

( ) ( ) ( )+ = + +1 1i i ix t x t v t (16)

where;

1 2,c c = positive constant

ϕ ϕ1 2, = random variable with uniform distribution between 0 and 1.
w = inertia weight which shows the effect of previous velocity vector on the

new vector.
pi = The particle position (previous) that resulted in the best fitness so far.
pg = the neighborhood position that resulted in the best fitness so far.

Each particle remembers its previous best visited position, which is the position
obtained when the particle achieves the best fitness function. This position is designated
as personal best, pi, and the fitness value for this position is then stored. The PSO
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algorithm also tracks the best position obtained by the particle in the swarm. This
value is called the global best position, pg.

In this paper, the PSO technique is used to find the most optimum weighting matrices
(Q and R) for the linear quadratic controller to minimize the lateral displacement and
yaw angle of the railway wheelset described in section 2. Q and R are the entries that
form a particle in the PSO algorithm and are chosen to be diagonal matrices with
positive real elements, for simplicity. First, the position and velocity of each particle is
initialized. Then, for each particle, the value of Pr(t) is solved from the algebraic Ricatti
equation given in Eq.(13) and the feedback gain K is calculated based on Eq.(12). The
fitness of each individual in the population is then calculated using the current position
value. The fitness value calculation is based on the integrated absolute error (ISE)
between the desired and actual values of the states to be controlled,

Figure 6 Desired output for wheelset lateral displacement
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Figure 8 Flow chart for Particle Swarm Optimization

( ) ( )( )= −∑
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y  and 
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y  are the desired and

actual trajectory of the states to be controlled respectively. The desired trajectory are
shown in Figure 6 for the wheelset lateral displacement, and Figure 7 for the wheelset
yaw angle. If the present ISE value is less than the previous best ISE value, the current
position is set as the new pi. Otherwise, the position with the previous best ISE value
remains as pi. The particle with the minimum ISE value of all the particles is then
chosen as pg. For each particle, the velocity is calculated using Eq.(15) and the particle
position is updated according to Eq.(16). The PSO algorithm also can describe with
flow chart. The flow chart is shown in Figure 8. The process is iterated until the stopping
criteria, ISEmin = 6.615 × 10–3, is met.

Initialize position of particle, velocity,
constant, and population.

Evaluate fitness of each particle
Fitness=sum(sum(ydes-y)2)

Is this pbest of
the particle?

Update pbest

Is this gbest
of the swarm

Update gbest

-Update velocity
-update position

Is iteration
count > max iteration

Output

STOP



ARFAH SYAHIDA MOHD NOR, HAZLINA SELAMAT & AHMAD JAIS ALIMIN80

By running the PSO algorithm above, the optimal weighting matrices, QPSO and
RPSO, obtained are:

−

−

 
   
 = =  
     
 

13

13

5.67 0 0 0

0 0.157 0 0 10 0
,

0 0 5.543 0 0 10
0 0 0 0.236

PSO PSOQ R

The results of the linear quadratic controller performance with weighting factors
obtained from both the trial and error method and the PSO method are compared.

5.0 RESULTS AND DISCUSSIONS

The performance of the two-axle railway vehicle lateral suspension system controlled
by a linear quadratic regulator that employ the trial and error method and the PSO
method in choosing its weighting matrices, Q and R is discussed. A two-axle vehicle
travelling along a curved track having a curve radius of 1500m and cant angle of 7
degree with track irregularities, as shown in Figure 2, Figure 3 and Figure 4, is
considered. The curving performances of the passive and active suspension systems
are compared and the importance of improving this curving performance is discussed.
The curving performance is evaluated in terms of the railway wheelset lateral
displacement and yaw angle only. Minimization of these values are important in
ensuring that wheel flanges do not touch the rail track in any circumstances to reduce
noise and wear of wheels and rails, and more importantly, to prevent derailment from
occurring.

The lateral displacement of the front wheelset at v =18 ms–1 are shown in Figure 9.
It can clearly be seen that the passive suspension system is unable to maintain the
wheelset/vehicle stability when the vehicle encounters the curve, even at a low speed.
Passive suspension system is a traditional suspension that utilizes passive components
inside a railway vehicle’s suspension system. These conventional passive components
consist of coil or leaf springs, viscous dampers and several mechanical parts, such as
linkages to support the vehicle mass and the load carried inside the vehicle body. The
amplitude of oscillations of the lateral displacement increases with time. This could
cause railway derailment unless the suspension parameters are chosen extremely
carefully and the vehicle travels at very low speeds. On the other hand, the active
suspension system employing the LQR is able to maintain the stability of the vehicle
during curving. This shows that the two-axle vehicle configuration requires active
primary suspension system in its operation.

The performance of the controller applying the trial and error method and the PSO
method in choosing the LQR weighting matrices (Q and R) for the active suspension
system are compared. Table 1 shows the Q and R values chosen for each method. For
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trial and error method, Q and R the values have been chosen so that satisfactory
overall control performance is obtained for the system. The values have been obtained
after a cumbersome process of trial and error method. On the other hand, the values
for the PSO method are obtained after simply running the PSO algorithm in section 4
of this paper.

Figure 9 Lateral displacement for the front wheelset at v = 18 ms–1
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Figure 10 and Figure 11 show the lateral displacement and yaw angle of the leading
and trailing wheelsets for the two-axle vehicle travelling at 60 ms-1.  It can clearly be
seen from Figure 10 that the PSO method is able to provide better curving performance
in response to the vehicle encountering the track curvature and lateral track irregularities.
From Figure 10, the lateral displacement at steady curve is about 33% less than that
produced by the trial and error method.  In fact, the improvement can be further
increased by reducing the stopping criteria of the PSO algorithm.  Figure 11 shows
that there is no significant difference in terms of the wheelset yaw angle for both
methods.

Table 2 compares the curving performance of the railway vehicle for the two LQR
weighting matrices selection methods, for different vehicle speeds.  It can be seen

Table 1 LQR weighting matrices value

Approach Q R

Trial and error diag[0.1 0.01 0.1 0.01] diag[10–12 10–12]
PSO diag[5.67 0.157 5.543 0.236] diag[10–13 10–13]
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Figure 10   Wheelset lateral displacement at v = 60 ms–1

Figure 11 Wheelset yaw angle at v = 60 ms–1

Table 2 Comparison of PSO and trial and error method

Trial and Error PSO
Vehicle

velocity, Maximum lateral Maximum Maximum lateral Maximum
v (ms–1)  displacement yaw angle displacement yaw angle

(mm) (mrad) (mm)  (mrad)

60 1.1 0.48 0.8 0.48
70 1.2 0.82 0.9 0.82
80 1.3 1.2 1.0 1.2

trial and error

PSO

desired

desired

PSO & trial
and error
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from Table 2 that for all speed values used in the simulation work, LQR with PSO
method provides better curving performance in terms of wheelset lateral displacements.
Since the maximum speed for normal railway vehicle is approximately 80 ms–1 (or
300 kmh–1) it is chosen as the upper limit for this system.

6.0 CONCLUSION

The results presented in this paper have shown that the two-axle railway vehicle
configuration requires active control of its suspension system to maintain its stability
when traversing round a curved track, especially when the vehicle is to travel at high
speeds.

The results for the active suspension system employing the LQR also show that, by
using the Particle Swarm Optimization (PSO) technique to determine the optimum
values for the LQR weighting matrices, the performance of active suspension system
gives better result compare to the trial and error approach.  Although the trial and
error method is still generally acceptable, it could be time consuming and cumbersome,
as well as not guaranteeing the selection of the most optimum LQR performance.  On
the other hand, PSO approach is more systematic and the control performance can be
further improved by restricting various criteria in the algorithm.

ACKNOWLEDGMENT

The authors would like to thank Universiti Teknologi Malaysia and the Ministry of
Higher Education Malaysia for their supports.

REFERENCES
[1] Wickens, A.H. 1998. “The dynamics of railway vehicles - from Stephenson to Carter”, Proc.  Instn. Mech.

Engnrs. Part F. 212. 209-217.
[2] Dukkipati, R.V. and R.R. Guntur. 1984. “Design of a longitudinal railway vehicle suspension system to

ensure the stability of a wheelset” Int. Jnl. of Vehicle Design. 5-4: 451-466.
[3] Horak, D., C. E. Bell, and J. K. Hedrick 1981. “A comparison of the stability and curving performance of

radial and conventional rail vehicle trucks”, Jnl. of Dynamic Systems, Measurement and Control, 103: 191-
200.

[4] Wickens, A.H. 1988. “Stability optimisation of multi-axle railway vehicles possessing perfect steering”, Jnl.
of Dynamic Systems, Measurement and Control. 110: 1-7.

[5] Bay, J.S. 1999. “Fundamentals of Linear State Space Systems”, McGraw Hill, Singapore.
[6] Goodall, R. 1999. “Tilting Trains and Beyond - The Future for Active Railway Suspension Part 2: Improving

Stability and Guidance”, Computing & Control Engineering Journal, October. 221-230.
[7] Mei, T.X., and R.M. Goodall. 1999. “Optimal Control Strategies for Active Steering of Railway Vehicles”,

Proc. IFAC. 215-256.
[8] Selamat, H., R. Yusof, and R.M. Goodall, 2008. “Self-Tuning Control for Active Steering of a Railway

Vehicle with Solid-Axle Wheelsets”, IET Control Theory Appl. 2-5: 374-383.
[9] Selamat, H., A. J. Alimin, and M.A. Zawawi. 2009. “Optimal Control of Railway Vehicle System”, Proc.

IEEE International Conference on Industrial Technology, Churchill, Victoria, Australia. 17-22.
[10] Goodall, R.M. and W. Kortüm. 2000. “Mechatronic Developments for Railway Vehicles of the Future”,

Proc. 1st IFAC Conference on Mechatronic Systems, Darmstadt, Germany. 1: 21-32.



ARFAH SYAHIDA MOHD NOR, HAZLINA SELAMAT & AHMAD JAIS ALIMIN84

[11] Kennedy, J. and R. Eberhart. 1995. “Particle Swarm Optimization”, Proc. IEEE Int. Conference on Neural
Networks, Perth, Australia. 1942-1948.

[12] Wang, L., X. Wang, J. Fu, and L. Zhen 2008. “A Novel Probability Binary Particle Swarm Optimization
Algorithm and Its Application”, Journal of Software. 3-9: 28-35.

[13] Iruthayarajan, M.W. and S. Baskar. 2007. “Optimization of PID Parameters Using Genetic Algorithm and
Particle Swarm Optimization”, Proc. IET-UK Int. Conf. on Information and Communication Technology in
Electrical Sciences. 81-86.

APPENDIX

Two-axle railway vehicle parameters

  Symbol                             Description Value

yF, yR, yB Lateral displacement of front, rear wheelset and body
ψF, ψR, ψB Yaw displacement of front, rear wheelset and body
v Vehicle speed 60 m/s
m, mv Wheelset and vehicle mass 1250 kg, 13,500 kg
Iw, Iv Wheelset and vehicle yaw inertia 700 kgm2,   kgm2

lB Half spacing between two wheelset 3.7 m
Kw Lateral stiffness per wheelset 230 kN/m
Cw Lateral damping per wheelset 50 kN s/m
r Wheel radius 0.45 m
λ Conicity 0.2
l Half gauge of wheelset 0.7 m
f11 Longitudinal creep coefficient 10 MN
f22 Lateral creep coefficient 10 MN
RF, RR Radius of the curved track at the front and rearwheelsets 1500 m
θCF, θCR Cant angle of the curved track at the front and rear wheelsets
g Gravity
ytF, ytR Track Lateral displacement irregularities at front (leading) and rear -

(trailing) wheelsets.
uF, uR Controlled torque input for the front (leading) and rear (trailing) -

wheelsets.


