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1.0  INTRODUCTION 
 

The three-parameter lognormal distribution (LN3) is one 

of the most versatile distributions. Its application can 

be seen in various fields such as agriculture, 

entomology, economics, geology, industry, quality 

control and hydrology. In finance, Levy and Kroll [1] 

used the three-parameter lognormal distribution (LN3) 

to derive an efficient investment rule. The lognormal 

distribution is also useful in modeling data which would 

be considered normally distributed except for the fact 

that it may be more or less skewed. Such skewness 

occurs frequently when means are low, variances are 

large and values cannot be negative [2].  

 In literature, the studies on lognormal distribution are 

relatively scarce. Some studies applied this distribution 

on the L-moment method with historical flood [3–7] 

and wage [8-10]. From these studies, L-moments 

method was shown as the superior method for 

parameter estimation method of LN3 distribution 

whether in wage and income area and historical 

flood. L-moments sometimes bring even more efficient 

parameter estimations of the parametric distribution 

than those estimated by the maximum likelihood 

method for small samples in particular [11]. 

Bilkova [8] had done the application of L-moments 

in the case of larger samples for wage and the 

comparison of the precision of L-moments with other 

methods (moment, quantile and maximum likelihood 

method) of parameter estimation the case of larger 

samples. She used two types of data, namely data sets 

of individual data and data ordered to the form of 

interval frequency distribution and the LN3 distribution 

was used as the theoretical model. From her studies, 

the method of L-moments provides the most accurate 

results, which are even more accurate than the results 

obtained using the maximum likelihood method.  

Jurnal 

Teknologi 

 
 

Full Paper 

  

 

  

 

Graphical abstract 

 

 

Abstract 
 

The three-parameter lognormal (LN3) distribution has been applied to the 

frequency analysis of flood events. L-moment and TL-moment methods are 

applied in estimating parameters of the LN3 distribution which are L-moment, η = 0 

and TL-moment, η = 1, 2, 3, and 4 to the LN3 distribution. A simulation study is 

conducted in this paper by fitting this distribution to generate LN3 and non LN3 

samples. Relative Root Mean Square Error (RRMSE) and relative bias are evaluated 
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approach was compared with L-moments based on the streamflow data from Sg. 

Trolak and Sg. Slim which are located in Perak, Malaysia. The results showed that 

TL-moments approach produced a better result at high quantile estimation 

compared to L-moments.   
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Other researchers applied the parameter estimation of 

LN3 distribution on historical flood [7]. They compared 

the ordinary moment method; the curve-fitting 

method with absolute norm and the L-moment 

estimation were also carried out using Monte-Carlo 

experiments. The results showed that L-moment 

estimation is the preferred method and therefore 

recommended to be used in their practice. 

Similarly, this study will use L-moment method as 

estimation parameter method of LN3 distribution. Since 

severe literatures proved that L-moment method 

produces a better result than maximum likelihood 

method [8], moment method [7-9], this paper will 

choose Trimmed L-moments (TL-moments) method to 

compare with L-moment method in estimating 

parameter of LN3 distribution.  

TL-moment was introduced by Elamir and Seheult 

[12] with a view to increase the awareness towards the 

outliers. The TL-moments give zero weight to the 

extreme value, are easy to compute and are said to 

be more robust than the L-moments in the presence of 

outliers. A few studies have been done regarding on 

TL-moments method for several distributions.13-21 

Bilkova [22-25] presented her papers that deal with 

an alternative approach to the construction of an 

appropriate parametric distribution for the considered 

data set using order statistics L-moment and TL-

moment method of generalized Pareto (GPA) and LN3 

distribution. The research variable is the net annual 

household income per capita (in CZK) in the Czech 

Republic (nominal income). As a conclusion, she 

found out that some theoretical and practical aspects 

of TL-moments are still the subject of research or they 

are remain for future research. 

However, there is no further research investigating 

on flood frequency analysis on estimation parameter 

of LN3 distribution by L-moment and TL-moment 

method. This paper will deal to derive the expressions 

of TL-moments from the annual streamflows data and 

to fit the parameters of the LN3 distribution using TL-

moments approach. Monte Carlo simulation study is 

conducted to compare the performance of L-

moment and TL-moment approach for the LN3 

distribution. More specifically, we develop the method 

of TL-moment for the LN3 distribution, which is often 

employed in statistical analyses of hydrological data. 

The performance of the proposed estimators of the 

LN3 distribution was compared with the estimators 

based on L-moment estimators for various sample sizes 

and return periods.  

 

 

2.0 THREE-PARAMETER LOG-NORMAL (LN3) 
DISTRIBUTION 
 

The lognormal distribution finds its beginning in 1879 by 

F. Galton. The probability density function of three-

parameter log-normal (LN3) distribution is: 
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where y = ln( x – α ) has a normal distribution with 

mean, µ and standard deviation, σ of the random 

variable’s logarithm while α is scale or lower bound 

parameter. Additionally, µ is said to be a location 

parameter and σ is said to be a shape parameter of 

the lognormal density function. The corresponding 

cumulative distribution function is: 
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Hosking [26] used a modification of the Munro and 

Wixley [27] parameterization,   ,  e , and 
 e . In this case, the LN3 distribution is also 

called the Generalized Normal distribution. It is often 

more advantageous to use a parameterization of the 

lognormal distribution. The advantage of this 

parameterization is that the LN3 distribution can fit 

data with positive skewness and a lower limit   and 

negative skewness and an upper limit, while it also 

includes the normal distribution as a special case [28]. 

 
 
3.0  METHOD OF PARAMETER ESTIMATION 
 

3.1  L-Moment Method 

 

Let x1 ≤ x2 ≤ … ≤ xn be the ordered sample of size n 

drawn from the distribution of x. The corresponding 

order statistics of sample size can be denoted by. x1:n ≤ 

x2:n ≤ … ≤ xn:n. Hosking [11] defines the rth L-moments of 

x as 
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The expected value of order statistics defined by 

Elamir and Seheult [12] is 
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where  
1

0
)( duuuQ r

r
. From Eqs. (3)–(4), the first 

four L-moments can be derived as follow: 
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L-moment ratios are defined by Hosking [11] as: 
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3.2  TL-Moment Method 

 

Elamir and Seheult [12] defined the rth TL-moment as  
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where r = 1, 2, … and the Eq. (4) can be used as the 

expected value of order statistics and t1 =1, 2, 3, and 4 

while t2 = 0. Since t2 = 0, 
 21 ,tt

r  can be denoted as 

  rr )0,(
where η = 0, 1, 2, 3, and 4. The sample TL-

moment was presented by Elamir and Seheult [12] is: 
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where t1 = 1, 2, 3, and 4 while t2 = 0, r represents the 

order of the L-moment, n represents the sample size, 

and xi:n is the ith sample order statistic. Since t2 = 0, 
 21 ,tt

rl  can be denoted as 
 rrl )0,(

where η = 0, 1, 2, 

3, and 4.  

From Eq. (12), the first four TL-moments η = 1 

can be derived as follow: 

,2 1

1

1               (14) 

),9(
2

1
12

1

2                     (15) 

,124840(
3

1
123

1

3                (16) 

1234

1

4 20150300175(
4

1
        (17) 

TL-moments η = 1 ratio can be defined as: 
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3.3  L-Moments and TL-Moments of the LN3 Distribution 

 

The L-moments and TL-moments of the LN3 are 

obtained as follow: 
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For TL-moments η = 2, 3, and 4 for LN3 distribution, 

the steps to find the first four TL-moments and TL-

moments ratios are the same as the TL-moments η = 1 

which used Eq. (12) and Eqs. (18)–(20). The three 

parameters α, μ, and σ in the LN3 distribution can be 

estimated by matching the first three TL-moments to 

their sample estimates for a selected η. The scale and 

location parameter for each level of TL-moments 

estimated in Eqs. (23)–(24).  
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where )( rSS   r = 0,1,2,… Given σ or Cs, the 

exact values of Sr(σ) cannot be computed because it 

is impossible, analytically, to integrate the right-hand 

sides of Eq. (22). The scale and location parameter for 

L-moment and each level of TL-moments estimated as 

in Table 1. By using the relationships of TL-Cs of the LN3 

distribution, the shape parameter was developed as 

Eq. (25). 
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where the coefficients, a vary with η and are given in the Table 2. 

 
Table 1 Parameter estimates for L-moment and TL-moment of the LN3 distribution 

 

 Parameter Estimates 

η Location, α Scalar, μ 
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 Parameter Estimates 

η Location, α Scalar, μ 

3 
 eSl )(4 31   ))(20)(25ln()2ln( 342  SSl 

 

4 
 eSl )(5 41   ))(15)(18ln()ln( 452  SSl 

 
 

Table 2 Values of coefficients of the shape parameter 

 

η a0 a1 a2 a3 a4 a5 a6 a7 a8 

0 

1 

2 

3 

4 

-0.0010 

-0.2938 

-0.4713 

-0.6251 

-0.7520 

0.9974 

1.2503 

1.4351 

1.6352 

1.8172 

0.0010 

0.0816 

0.0689 

0.1671 

0.2770 

-0.0059 

-0.0027 

-0.0281 

-0.0971 

-0.1782 

-0.0002 

-0.0159 

0.0111 

-0.0507 

-0.1316 

0.0001 

-0.0077 

0.0052 

0.0113 

0.0177 

0 

0.0025 

0.0008 

0.0151 

0.0340 

0 

0.0015 

0.0001 

0.0038 

0.0089 

0 

0.0002 

0 

0.0003 

0.0007 

 

 

4.0  MONTE CARLO SIMULATION 
 

Monte Carlo simulation study is conducted to 

compare the performance L-moment, η = 0 and TL-

moment, η = 1, 2, 3, and 4 for the LN3 distribution. The 

measures of performance that were used are the 

Relative Bias (RBIAS) and the Relative Root Mean 

Square Error (RRMSE).  

The RRMSE and RBIAS can be represented as 
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where M is the sample size, 
ix̂  and x is the estimated 

values and true value of the quantile. In each 

simulation, 5 000 samples are used for sample size 15, 

30, 50, and 100. The quantile function x(F) that has 

been obtained for RRMSE and RBIAS values are F = 0.9, 

F = 0.95, F = 0.98, F = 0.99, and F = 0.995, i.e; Q10, Q20, 

Q50, Q100, and Q200.  

 

 

4.1  Known Parent Distribution 

 

The known parent distribution is useful to see the 

impact on the estimation when the assumed 

distribution function is similar to the parent distribution 

function. In this study, the LN3 distribution function is 

fitted to the generated LN3 samples. In this simulation, 

the value of parameter of location and scale is set to 0 

and 1 [29] with shape parameter k is between 0.2 and 

2.0. 

Tables 3 and 4 present the RRMSE and RBIAS values 

of quantiles x(F) for F = 0.9, F = 0.95, F = 0.98, F = 0.99, 

and F = 0.995 computed using L-moment, η = 0 and TL-

moment, η = 1, 2, 3, and 4 for the LN3 distribution for all 

samples, n = 15, 30, 50, and 100. Table 3 shows the 

results for small sample size, n = 15 where the TL-

moment η = 4 produce the smaller value of RRMSE at 

1.0 ≤ σ ≤ 2.0 for quantile x(F = 0.995) compare to L-

moment. However, at 0.2 ≤ σ ≤ 0.8 the larger RRMSE 

value was given by TL-moments η = 4.  

For the result of RBIAS values, the results from Table 4 

show that the smaller σ, the quantile estimates for L-

moment and TL-moments are become more unbiased 

for mostly quantiles. When σ becomes larger, the 

quantile estimator becomes more positively biased. 

Table 3 RRMSE of x(F) estimator fitting the LN3 distribution to generated LN3 samples 

 

σ Method n=15 n=30 n=50 n=100 

F= 

0.98 

F= 

0.99 

F= 

0.995 

F= 

0.98 

F= 

0.99 

F= 

0.995 

F= 

0.98 

F= 

0.99 

F= 

0.995 

F= 

0.98 

F= 

0.99 

F= 

0.995 

0.2 0 0.072 0.091 0.112 0.050 0.061 0.074 0.038 0.047 0.056 0.027 0.032 0.038 

1 0.076 0.099 0.127 0.052 0.066 0.083 0.040 0.050 0.062 0.028 0.034 0.042 

2 0.076 0.103 0.137 0.053 0.069 0.088 0.040 0.052 0.065 0.028 0.035 0.044 

3 0.077 0.106 0.146 0.053 0.071 0.093 0.041 0.054 0.069 0.028 0.037 0.047 

4 0.076 0.107 0.151 0.053 0.072 0.097 0.041 0.055 0.072 0.029 0.038 0.049 

0.4 0 0.164 0.208 0.258 0.114 0.142 0.171 0.088 0.108 0.129 0.061 0.074 0.088 

1 0.170 0.225 0.293 0.119 0.154 0.194 0.092 0.117 0.144 0.064 0.080 0.098 

2 0.170 0.231 0.309 0.120 0.158 0.203 0.093 0.120 0.151 0.064 0.082 0.102 

3 0.170 0.234 0.322 0.121 0.162 0.213 0.093 0.123 0.159 0.065 0.085 0.108 

4 0.168 0.235 0.328 0.120 0.164 0.219 0.093 0.125 0.164 0.065 0.087 0.112 

0.6 0 0.272 0.349 0.437 0.193 0.241 0.293 0.148 0.183 0.219 0.103 0.125 0.149 

1 0.277 0.369 0.484 0.199 0.259 0.328 0.154 0.197 0.245 0.107 0.135 0.166 

2 0.274 0.372 0.502 0.199 0.263 0.341 0.154 0.200 0.254 0.108 0.138 0.172 
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3 0.272 0.372 0.510 0.198 0.266 0.350 0.154 0.204 0.263 0.108 0.141 0.179 

4 0.270 0.371 0.513 0.197 0.266 0.355 0.154 0.205 0.268 0.108 0.143 0.184 

0.8 0 0.389 0.504 0.640 0.282 0.355 0.438 0.217 0.270 0.325 0.151 0.185 0.220 

1 0.388 0.517 0.682 0.285 0.372 0.476 0.222 0.286 0.357 0.156 0.198 0.243 

2 0.381 0.514 0.693 0.282 0.375 0.489 0.221 0.288 0.367 0.156 0.201 0.250 

3 0.377 0.508 0.691 0.280 0.374 0.493 0.221 0.290 0.374 0.156 0.203 0.256 

4 0.375 0.503 0.686 0.279 0.373 0.495 0.220 0.290 0.377 0.156 0.204 0.260 

1.0 0 0.504 0.657 0.847 0.375 0.479 0.599 0.292 0.365 0.446 0.205 0.252 0.301 

1 0.495 0.657 0.868 0.372 0.488 0.628 0.293 0.377 0.475 0.209 0.265 0.326 

2 0.484 0.646 0.868 0.365 0.484 0.635 0.289 0.378 0.484 0.207 0.267 0.334 

3 0.477 0.630 0.848 0.361 0.478 0.630 0.288 0.376 0.485 0.206 0.267 0.337 

4 0.476 0.621 0.832 0.361 0.474 0.625 0.288 0.376 0.485 0.206 0.268 0.339 

1.2 0 0.608 0.794 1.034 0.464 0.599 0.762 0.366 0.464 0.575 0.275 0.337 0.404 

1 0.591 0.776 1.025 0.453 0.593 0.770 0.361 0.466 0.591 0.260 0.331 0.410 

2 0.583 0.767 1.024 0.444 0.585 0.770 0.355 0.463 0.596 0.257 0.333 0.419 

3 0.571 0.736 0.975 0.437 0.569 0.748 0.353 0.457 0.589 0.257 0.332 0.419 

4 0.574 0.724 0.946 0.438 0.563 0.733 0.355 0.456 0.584 0.258 0.332 0.418 

1.4 0 0.696 0.905 1.183 0.552 0.712 0.913 0.440 0.559 0.702 0.316 0.397 0.485 

1 0.676 0.873 1.145 0.524 0.682 0.889 0.424 0.547 0.697 0.311 0.397 0.495 

2 0.681 0.883 1.169 0.521 0.680 0.894 0.418 0.543 0.701 0.306 0.395 0.501 

3 0.661 0.828 1.076 0.507 0.647 0.842 0.413 0.528 0.678 0.304 0.391 0.495 

4 0.668 0.814 1.035 0.511 0.638 0.817 0.417 0.526 0.668 0.308 0.391 0.493 

1.6 0 0.771 0.990 1.289 0.607 0.786 1.019 0.494 0.632 0.804 0.367 0.463 0.574 

1 0.754 0.953 1.236 0.587 0.753 0.978 0.480 0.614 0.784 0.358 0.456 0.572 

2 0.786 1.007 1.321 0.601 0.778 1.019 0.482 0.622 0.801 0.352 0.455 0.577 

3 0.750 0.913 1.164 0.573 0.714 0.917 0.468 0.589 0.751 0.347 0.443 0.561 

4 0.762 0.899 1.111 0.581 0.703 0.881 0.475 0.585 0.734 0.352 0.442 0.555 

1.8 0 0.838 1.056 1.360 0.661 0.846 1.096 0.543 0.693 0.884 0.410 0.520 0.650 

1 0.831 1.029 1.316 0.644 0.813 1.047 0.529 0.669 0.853 0.398 0.506 0.636 

2 0.912 1.158 1.504 0.694 0.893 1.163 0.554 0.710 0.911 0.400 0.514 0.652 

3 0.841 1.001 1.253 0.639 0.778 0.985 0.522 0.644 0.813 0.385 0.485 0.613 

4 0.859 0.985 1.186 0.649 0.763 0.935 0.532 0.638 0.786 0.392 0.483 0.601 

2.0 0 0.903 1.112 1.407 0.708 0.891 1.141 0.587 0.741 0.941 0.446 0.564 0.707 

1 0.914 1.112 1.406 0.702 0.871 1.114 0.578 0.721 0.913 0.433 0.545 0.685 

2 1.077 1.360 1.749 0.818 1.049 1.357 0.647 0.824 1.052 0.457 0.584 0.737 

3 0.941 1.100 1.359 0.708 0.846 1.060 0.579 0.702 0.876 0.421 0.523 0.656 

4 0.963 1.077 1.271 0.718 0.822 0.987 0.592 0.691 0.835 0.428 0.516 0.635 

* Values in bold indicate that RRMSE is smaller than TL-moments 

 
Table 4 RBias of x(F) estimator fitting the LN3 distribution to generated LN3 samples 

 

 

 

Method n=15 n=30 n=50 n=100 

F= 

0.98 

F= 

0.99 

F= 

0.995 

F=    

0.98 

F= 

0.99 

F= 

0.995 

F= 

0.98 

F= 

0.99 

F= 

0.995 

F=    

0.98 

F=    

0.99 

F= 

0.995 

0.2 0 -0.004 -0.007 -0.012 -0.002 -0.003 -0.006 -0.001 -0.002 -0.003 -0.0006 -0.001 -0.002 

1 -0.002 -0.007 -0.014 -0.001 -0.003 -0.006 0.000 -0.001 -0.003 -0.0002 -0.001 -0.001 

2 -0.001 -0.007 -0.015 -0.001 -0.003 -0.007 0.000 -0.002 -0.004 -0.0006 -0.001 -0.003 

3 0.001 -0.006 -0.018 -0.001 -0.004 -0.009 -0.001 -0.003 -0.007 -0.001 -0.003 -0.005 

4 0.003 -0.005 -0.018 0.000 -0.005 -0.011 -0.001 -0.004 -0.009 -0.001 -0.004 -0.007 

0.4 0 -0.006 -0.015 -0.026 -0.003 -0.007 -0.012 -0.001 -0.004 -0.006 -0.001 -0.003 -0.004 

1 -0.003 -0.014 -0.031 -0.002 -0.008 -0.015 -0.001 -0.004 -0.009 -0.0014 -0.003 -0.005 

2 0.002 -0.011 -0.031 -0.001 -0.007 -0.015 0.000 -0.004 -0.009 -0.0011 -0.003 -0.006 

3 0.006 -0.009 -0.033 0.000 -0.008 -0.020 -0.001 -0.006 -0.014 -0.002 -0.006 -0.011 

4 0.011 -0.005 -0.032 0.002 -0.008 -0.022 0.000 -0.007 -0.018 -0.002 -0.008 -0.016 

0.6 0 -0.007 -0.021 -0.041 -0.005 -0.012 -0.021 -0.002 -0.006 -0.012 -0.002 -0.004 -0.007 

1 0.000 -0.019 -0.046 -0.002 -0.013 -0.026 -0.002 -0.008 -0.017 -0.003 -0.007 -0.011 

2 0.009 -0.011 -0.042 0.002 -0.008 -0.023 0.001 -0.005 -0.014 -0.0010 -0.004 -0.009 

3 0.016 -0.005 -0.040 0.004 -0.008 -0.027 0.001 -0.007 -0.020 -0.002 -0.008 -0.016 

4 0.024 0.003 -0.035 0.007 -0.007 -0.028 0.003 -0.008 -0.023 -0.0008 -0.009 -0.021 

0.8 0 -0.003 -0.025 -0.054 -0.005 -0.016 -0.031 -0.002 -0.009 -0.018 -0.003 -0.006 -0.011 

1 0.008 -0.017 -0.055 0.000 -0.015 -0.037 0.000 -0.011 -0.025 -0.003 -0.010 -0.018 

2 0.022 -0.003 -0.044 0.008 -0.006 -0.028 0.005 -0.004 -0.018 0.000 -0.005 -0.012 

3 0.033 0.009 -0.035 0.011 -0.004 -0.028 0.006 -0.005 -0.021 0.001 -0.007 -0.017 
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4 0.043 0.021 -0.024 0.015 0.000 -0.026 0.008 -0.004 -0.022 0.002 -0.008 -0.021 

1.0 0 0.007 -0.021 -0.060 -0.001 -0.017 -0.040 0.000 -0.010 -0.024 -0.002 -0.008 -0.015 

1 0.025 -0.006 -0.052 0.008 -0.011 -0.040 0.004 -0.010 -0.029 -0.001 -0.010 -0.022 

2 0.043 0.015 -0.033 0.018 0.001 -0.027 0.011 0.000 -0.018 0.004 -0.003 -0.013 

3 0.057 0.033 -0.016 0.024 0.008 -0.021 0.014 0.003 -0.016 0.005 -0.003 -0.014 

4 0.068 0.048 0.001 0.027 0.013 -0.015 0.016 0.005 -0.014 0.006 -0.002 -0.015 

1.2 0 0.027 -0.006 -0.053 0.010 -0.012 -0.042 0.006 -0.008 -0.027 -0.001 -0.008 -0.019 

1 0.050 0.018 -0.034 0.022 0.000 -0.034 0.014 -0.003 -0.026 0.004 -0.007 -0.021 

2 0.070 0.042 -0.010 0.034 0.016 -0.017 0.023 0.010 -0.013 0.010 0.002 -0.010 

3 0.087 0.066 0.017 0.041 0.026 -0.004 0.026 0.015 -0.005 0.011 0.005 -0.007 

4 0.099 0.085 0.041 0.044 0.034 0.006 0.027 0.019 0.001 0.011 0.006 -0.004 

1.4 0 0.057 0.022 -0.030 0.026 0.001 -0.035 0.018 0.001 -0.024 0.007 -0.003 -0.016 

1 0.082 0.053 0.000 0.043 0.020 -0.017 0.029 0.012 -0.014 0.013 0.002 -0.014 

2 0.100 0.075 0.022 0.055 0.037 0.002 0.038 0.025 0.001 0.019 0.011 -0.003 

3 0.122 0.107 0.062 0.064 0.053 0.023 0.042 0.035 0.014 0.020 0.016 0.005 

4 0.135 0.130 0.091 0.066 0.062 0.038 0.041 0.039 0.023 0.018 0.018 0.010 

1.6 0 0.095 0.062 0.009 0.054 0.029 -0.011 0.038 0.020 -0.008 0.019 0.008 -0.009 

1 0.121 0.096 0.047 0.070 0.051 0.014 0.049 0.035 0.008 0.026 0.016 -0.001 

2 0.130 0.110 0.061 0.077 0.062 0.027 0.056 0.046 0.021 0.033 0.026 0.010 

3 0.159 0.154 0.114 0.090 0.086 0.060 0.062 0.060 0.042 0.033 0.033 0.023 

4 0.173 0.178 0.149 0.092 0.097 0.079 0.060 0.065 0.054 0.028 0.034 0.030 

1.8 0 0.139 0.112 0.062 0.087 0.065 0.025 0.064 0.047 0.018 0.038 0.026 0.008 

1 0.162 0.145 0.101 0.102 0.088 0.055 0.075 0.064 0.039 0.044 0.037 0.021 

2 0.158 0.144 0.100 0.098 0.088 0.056 0.075 0.069 0.045 0.048 0.044 0.029 

3 0.197 0.201 0.170 0.119 0.123 0.102 0.085 0.090 0.076 0.049 0.055 0.047 

4 0.211 0.229 0.209 0.120 0.136 0.126 0.081 0.096 0.092 0.042 0.056 0.057 

2.0 0 0.186 0.167 0.125 0.125 0.109 0.073 0.096 0.083 0.056 0.061 0.052 0.034 

1 0.204 0.196 0.159 0.136 0.130 0.101 0.103 0.099 0.078 0.066 0.064 0.051 

2 0.179 0.172 0.134 0.115 0.110 0.082 0.091 0.090 0.071 0.062 0.063 0.051 

3 0.233 0.247 0.224 0.148 0.161 0.147 0.110 0.124 0.115 0.069 0.081 0.078 

4 0.248 0.278 0.269 0.149 0.177 0.175 0.106 0.132 0.135 0.060 0.083 0.090 

* Values in bold indicate that RRMSE is smaller than TL-moments 

 

 

4.2  Unknown Parent Distribution 

 

The unknown parent distribution is more useful to see 

the effect on the estimation when the assumed 

distribution is totally different from the parent 

distribution function. In this study, the LN3 distribution 

function fitted to generate Generalized Pareto 

(GPA), Generalized Extreme Value (GEV) and 

Generalized Logistic (GLO) samples. 

The quantile function x(F) of the GPA, GEV, and 

GLO distributions are showed in Eqs. (28)-(30)  
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


 FFx  11)(      (28) 
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


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






F

F
Fx

1
1)(                    (30) 

The same parent distribution was applied as a 

parent distribution by using Monte Carlo simulation to 

see the performance of the L-moment, η = 0 and TL-

moment, η = 1, 2, 3, and 4. The RBIAS and RRMSE 

values were obtained for quantile function x(F) for F = 

0.90,  F = 0.95, F = 0.98, F = 0.99, and F = 0.995, 

estimated by L-moments and TL-moments at samples 

n = 15, 30, 50, and 100. Box plot is used as a tool for 

grouping of the results based on statistical properties. 

Box plot is a widely used graphical tool introduced by 

Tukey [30]. It is a simple plot of five quantities, namely, 

the minimum value, the lower quantile (q0.25), the 

median (q0.5), the upper quantile (q0.75) and 

maximum value. The criteria for selecting a suitable 

TL-moments level are based on the minimum 

achieved median of RRMSE or RBIAS values, as well 

as the minimum dispersion in the median RRMSE or 

RBIAS values indicated by both ends of the box plot. 

It is noted that a smaller median dispersion in RRMSE 

or RBIAS values would indicate better integration of 

the TL-moments levels, so it should also be used as 

selection criterion. 

Figures 1(a) – 1(d) present the box plots of RRMSE 

values on LN3 shape parameter, σ = -0.3, -0.1, 0.1, 

and 0.3 for n = 15. For this small sample size, it gives 

almost similar result. 
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Figure 1 Box plots of RRMSE values on LN3 shape parameter, 

σ = -0.3, -0.1, 0.1, and 0.3 for method L-moment, η = 0 and 

TL-moment, η = 1, 2, 3, and 4 at n = 15 

 

 

For sample size, n = 50 are shown in Figures 2(a) – 

2(d). Almost all of the results give the same result for 

all three distributions (Figure 2(a)). The L-moment η = 

0 level (Figure 2(b)) and TL-moment η = 1 level (Figure 

2(d)) of the GLO distribution has minimum dispersion 

in RRMSE results. While, at sample size 50 and LN3 

shape parameter, σ = 0.3, illustrate that TL-moment 

levels have minimum dispersion compare to L-

moment η = 0 level for all three distributions.  
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Figure 2 Box plots of RRMSE values on LN3 shape parameter, 

σ = -0.3, -0.1, 0.1, and 0.3 for method L-moment, η = 0 and 

TL-moment, η = 1, 2, 3, and 4 at n = 50 

 

 

Figures 3 and 4 represent the box plots of RBIAS 

values for sample size, n = 15 and 50 on LN3 shape 

parameter, σ = -0.3, -0.1, 0.1, and 0.3. TL-moment, η = 

1 of the GLO distribution (Figures 3(a) – 3(d)) have 

minimum dispersion in RBIAS. However, L-moment η = 

0 of the GEV distribution and TL-moment η = 1 of the 

GLO distribution give minimum median in RBIAS 

(Figure 3(a)). For sample size, n = 50, almost all TL-

moment levels of the GLO distribution indicate the 

minimum dispersion in RBIAS (Figures 4(a) – 4(d)). TL-

moment η = 4 of the GEV distribution (Figure 4(a)) 

provides minimum median RBIAS value of 0.0000. The 

minimum dispersion RBIAS also can be seen at TL-

moment levels of the GEV distribution in this figure. TL-

moment η = 2 of the GEV distribution gives minimum 

median RBIAS value of -0.0003 (Figure 4(b)). While, TL-

moment η = 3 and 4 level of the GLO distribution has 

minimum dispersion RBIAS (Figures 4(c) and 4(d)). 
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Figure 3 Box plots of RBIAS values on LN3 shape parameter, 

σ = -0.3, -0.1, 0.1, and 0.3 for method L-moment, η = 0 and 

TL-moment, η = 1, 2, 3, and 4 at n = 15 

 

 

 

 

 
Figure 4 Box plots of RBIAS values on LN3 shape parameter, 

σ = -0.3, -0.1, 0.1, and 0.3 for method L-moment, η = 0 and 

TL-moment, η = 1, 2, 3, and 4 at n = 50 
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4.3  Application To Hydrological Data 

 

To show the different results between L-moment, η = 

0 and TL-moment, η = 1, 2, 3, and 4 for the LN3 

distribution, stream flows data is needed. A set of 

annual maximum flow series for station 3813414 Sg. 

Trolak at Trolak and 3814416 Sg. Slim at Slim River 

located in Perak, Malaysia are used for this purpose. 

The data consists of 36 and 41 annual maximum 

stream flows data from 1960 until 2008 and 1966 until 

2009 respectively. The data used in this study was 

provided by the Department of Irrigation and 

Drainage, Ministry of natural Resources and 

Environment, Malaysia.  

The L-moment, η = 0 and TL-moment, η = 1, 2, 3, 

and 4 are used to estimate the parameter of LN3 

distribution. Table 5 presents the parameter estimates 

of the LN3 distribution. Figures 5 and 6 show five LN3 

distribution curves fitted to the data series by using L-

moment, η = 0 and the others by using TL-moments, η 

= 1, 2, 3, and 4. 

Figure 5 represents the annual maximum stream 

flows data from Sg. Trolak at Trolak, Perak, Malaysia. 

For Sg. Trolak data, frequency curves obtained by 

the TL-moments, η = 2, 3, and 4 lie much closer to the 

data than L-moment, η = 0 and TL-moments, η = 1 

especially by the larger flows. 

 

 
Figure 5 Fitting the LN3 distribution to annual maximum flows 

at Sg. Trolak at Trolak, Perak, Malaysia 

 

 

For Sg. Slim data (Figure 6), all methods give almost 

fitted to the data. However, at the end of the flows, 

TL-moments are much closer to the data compared 

to L-moments. Hence, both data seem that TL-

moments has good influenced by larger annual 

maximum flows. In contrast, L-moments (η = 0) shows 

the better trend by the small annual maximum flows. 

 

 
Figure 6 Fitting the LN3 distribution to annual maximum flows 

at Sg. Slim at Slim River, Perak, Malaysia  

 

Table 5 Value of parameter estimates of the LN3 distribution 

 

Station η σ μ α 

Sg. 

Trolak 
0 0.272 4.135 -38.038 

 1 0.575 3.159 0.125 

 2 0.916 2.302 14.525 

 3 1.083 1.897 18.754 

 4 1.12 1.805 19.636 

Sg. Slim 0 0.502 3.86 17.745 

 1 0.784 3.165 40.791 

 2 0.914 2.851 47.811 

 3 0.999 2.645 51.826 

 4 1.049 2.518 54.233 

 

 

5.0  CONCLUSION 
 

A robust generalization of population and sample L-

moments was defined by Elamir and Seheult [12] as a 

definition of population trimmed L-moments (TL-

moments) and corresponding sample TL-moments. 

The L-moments, η = 0 and TL-moments η = 1 to η = 4 

are used to estimate the regional parameters of the 

LN3 distribution. We used the combination of PWM 

and L-moment method to formulate the estimation 

of the LN3 distribution. 

Monte Carlo simulation study is conducted to 

compare the performance of L-moment, η = 0 and 

TL-moment, η = 1, 2, 3 and 4 for the LN3 distribution. 

For known parent distribution, the RRMSE result of TL-

moment method is leading when LN3 shape 

parameter, σ becomes larger either in small sample 

size or big sample size. The quantile estimates for L-

moment and TL-moments are becoming more 

unbiased for most quantiles when σ becomes 

smaller. However, when σ becomes larger, the 

quantile estimator becomes more positively biased 

almost for all sample sizes. For unknown parent 

distribution, LN3 distribution function is fitted to 

generate GPA, GEV, GLO samples. Box plot is used as 

a tool for grouping the results based on statistical 

properties. The criteria for selecting a suitable TL-
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moments level are based on the minimum achieved 

median of RRMSE or RBIAS values, as well as the 

minimum dispersion in the median of RRMSE or RBIAS 

values indicated by both ends of the box plot. From 

the results, most box plots produced similar results in 

RRMSE with small sample size. With a large sample 

size, positive shape parameter of LN3 gives the 

minimum dispersion in RRMSE for almost all level of L-

moment and TL-moment. For RBIAS box plots, TL-

moment level give the better result by showing the 

minimum median and minimum dispersion in RBIAS 

mostly for GLO distribution.  

We applied the method of L-moment, η = 0 and TL-

moment, η = 1, 2, 3, and 4 for the LN3 distribution in 

annual maximum flow series Sg. Trolak and Sg. Slim 

where are located in Perak, Malaysia. The TL-

moments method give the good fit to the data by 

larger annual maximum flows. 
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