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Abstract 
 

In the present paper, the effect of artificially produced pit-like defects on the strength of members made of AISI 410 martensitic 

stainless steel were investigated. Compressor blades in power generation industries made of AISI 410 stainless steel commonly 

suffer from pitting corrosion. Well-defined pit-like defects were artificially produced on various specimen and strength tests 

were conducted. AISI 410 stainless steel microstructure shows a typical body-centered tetragonal (bct) structure. Strength tests 

analysis established yield strength of 547 MPa for Case 1 (max depth-max diameter) whereas a yield strength of 585 MPa for 

Case 2 (min depth-min diameter). In addition, strength and elongation of the artificially produced pitted tensile specimen 

gradually decrease with the increase of the area lost due to artificially produced pits.   
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1.0  INTRODUCTION 
 

Fatigue failure originating from pitting corrosion has 

been identified as one of the dominant life-limiting 

factors for gas turbine blades [1-6].  In power 

generation industries, compressor blades are 

subjected to corrosive environment from the 

incoming air during the operation [7].  In this respect, 

the effects of pitting corrosion on the structural 

strength and the integrity of the compressor blades 

need to be established. Nakai et al. [8] has 

concluded that the nominal tensile strength of pitted 

structural members decreases gradually while the 

total elongation decreases drastically with the 

increase of thickness loss due to pitting. Yoshino and 

Ikegaya [9] found that even small amount of H2S 

have a significant detrimental effect on the 

resistance of the steels to the pitting corrosion in his 

study on 12Cr-Ni-Mo martensitic stainless steel in 

chloride and sulfide environments. 

Geometric discontinuity due to a pit induces a 

large stress gradient with high magnitude of localized 

stress [10-12]. The time to nucleate a corrosion pit 

under surface straining was analyzed at the 

microscale [13]. A relationship between surface stress 

and pitting corrosion has been established [14]. The 

effect of pitting damage is to reduce the life of 

structural components [6, 15-20]. Earlier research has 

already established pits geometry details [21]. This 
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research examines the strength response of AISI 410 

martensitic stainless steel compressor blade material 

with different geometries of artificially produced pit-

like defects. Several cases using same specimen 

geometry but different artificial pit geometries has 

been examined. The yield strength of the stainless 

steel sample coupons with and without artificial pit is 

compared.  

 

 

2.0  EXPERIMENTAL 

 
2.1  Material 

 

The material employed in this study is an AISI 410 

martensitic stainless steel. The material was received 

in the form of circular plate with radius and thickness 

of 440 and 18 mm, respectively. For microstructural 

study, the specimens were finely grind, polished and 

etched in the etching solution (5 ml HCl + 2 gr Picric 

acid + 100 ml Ethyl alcohol) for approximately 7 

seconds and examined using optical microscope. For 

quantifying the duration of specimen immersion time 

to produce desirable pits, the material was wire-cut 

using Electrical Discharge Machine (EDM) into 

samples at 20 x 10 x 2 mm3. Dog-bone shaped 

specimens, with dimensions based on ASTM A370 

standards were machined for use in tensile test. 

Figure 1 illustrates the dimension details of the tensile 

specimen used with a gage length of 25 mm. 

 

 

Figure 1 Geometry of the tensile specimen (all dimensions in 

mm) 

 

 

Mechanical and chemical composition of the 

material are shown in Table 1 and 2. The primary 

alloying elements are chromium and carbon. The 

chromium provides the excellent corrosion resistant 

or stainless property while carbon defines the 

strength of the steel.. Manganese and nickel 

contribute to improved toughness of the steel. 

 
Table 1 Chemical composition of AISI 410 steel [21] 

 

Chemical Weight Percentage (wt %) 

C 0.2 

Mn 0.5 

P 0.02 

S 0.002 

Si 0.35 

Cr 14.20 

Ni 0.39 

Mo 0.01 

Al 0.003 

V 0.03 

Fe Bal. 

Table 2 Mechanical properties of AISI 410 steel at room 

temperature [21] 

 

Tensile 

Strength 

(MPa) 

Yield 

Strength 

(MPa) 

Elongation 

(pct.) 

Maximum 

Load (kN) 

656.04 620.17 30 21.27 

 

 

2.2  Microstructure 

 

For microstructural study, the specimens were finely 

grind, polished and etched in the etching solution (5 

ml HCl + 2 gr Picric acid + 100 ml Ethyl alcohol) for 

approximately 7 seconds and examined using 

optical microscope. Figure 2 shows typical 

microstructures of the AISI 410 martensitic stainless 

steels at the three different orthogonal section 

planes. The microstructure shows a typical body-

centered tetragonal (bct) structure. The dark area 

represents martensitic phase while light area the 

ferrite phase. The structure shows the matrix of 

equiaxed ferrite grains, with randomly dispersed 

particles of chromium carbide. Since qualitatively 

identical microstructure is displayed for each section, 

the material is expected to behave in isotropic 

manner. 

 

2.3  Pitting Corrosion Experiment 

 

Pitting corrosion experiment was performed using 6 

pct. (by mass) of Ferric Chloride solution, FeCl3 

according to ASTM G48-11. This experiment was 

conducted at room temperature to quantify 

specimen immersion time for creating the desired 

characteristic corrosion pit morphology. 

Three specimens were polished to 120-grit, cleaned 

with magnesium oxide paste, rinsed, dipped in 

methanol before air dried and finally immersed into 

Ferric Chloride solution. Each specimen was removed 

from the solution every 24 hours, rinsed thoroughly 

and finely scrubbed with nylon bristle brush under 

running water to remove corrosion particles. The 

specimen was then examined using optical 

microscope for pits. All specimens show different 

geometry and size of pits. 

The pit geometry was quantified and compared 

with the measured geometry details on pitted blades 

of a retired compressor from a local power 

generation plant. An immersion time of 48 hours were 

selected on the basis of the above observation to 

produce the desired pitted morphology on the 

specimen. 

 

2.4  Test Specimen 

 

The dog-bone shaped specimens are used for tensile 

tests. After wire-cut using EDM, the specimens were 

grind and polished with abrasive paper before being 

stress-relief annealed in high vacuum at 106 Pa 

(heating from room temperature to 600 °C in 1 hour, 

holding for 2 hours, cooling from 600 °C to 400 °C in 2 
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hours and to room temperature in approximately 12 

hours) to eliminate residual stresses [13]. 

To study the effect of different geometry pit-like 

defect on the strength of the material, artificial pit 

were generated in the gage length of the specimen. 

The maximum, minimum and nominal pit geometry 

details has been acquired from the earlier 

established research [21]. The artificial pits were 

generated using AG40L CNC Sinker EDM machine. 

 

 

Figure 2 Microstructure observations for section A, B and C 

 

 

The tensile specimen surface for the as-received 

and the pitted condition is compared in Figure 3. The 

grip area of the specimen is coated using epoxy-

based enamel paint to yield preferred localized 

pitting at gage area. Tensile tests to fracture were 

performed using Instron electromechanical testing 

machine on both the as-received and pitted 

specimens. The displacement rate for the tensile test 

was set at 0.1 mm/min. since the cross-section area 

of the pitted specimen varies throughout the gage 

length, the extensometer is not used during the test. 

 

 
 

Figure 3 (A) As-received and (B) corrosion pitted tensile 

specimen 

 

 

 

 

 

3.0  RESULTS AND DISCUSSION 
 

3.1  Pits Geometry Analysis 

 

The geometry of the pits, in term of equivalent 

diameter and depthis analyzed statistically. More 

than 300 depth and diameter measurements were 

taken using PJ300 Mitutoyo Profile projector machine 

for diameter and CS5000 Mitutoyo Formtracer for 

depth measurements, respectively. The distribution of 

pit depths and diameters is shown in Figure 4 and 

Figure 5, respectively. Results show that the three sizes 

of the pits, 0.5, 0.6 and 0.9 mm are dominant. 

However, in view of localized stress concentration, 

the smallest diameter pit at 0.4 mm could be 

detrimental for crack initiation. In addition, the 

combination of the smallest diameter and deepest 

pit, at 0.26 mm from Figure 5 is the most critical 

geometry with respect to crack initiation and 

subsequent fatigue crack growth of the blade. Based 

on the experimental procedures described above, 

nominal depth of the pits is at 0.06 mm. The 

maximum, minimum and nominal pit diameter and 

depth values are listed in Table 3. 

 

 
Figure 4 Pit diameter from corroded tensile specimen 

 

 
Figure 5 Pit depth from corroded tensile specimen 

 
Table 3 Artificial pit geometry details 

 

Geometry Pit Diameter 

(mm) 

Pit Depth 

(mm) 

Maximum 1.00 0.75 

Minimum 0.30 0.30 

Nominal 0.50 0.50 
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3.2  Tensile Test Results 
 

The resulting load-displacement yield strength values 

for as-received (AR) and artificially produced pitted 

specimen is compared in Figure 6. Results show that 

the apparent strength behavior of the pitted 

specimens of both geometry is lower than that of the 

AR specimen. The strength of specimen with 

minimum diameter and depth of artificial pit is 585 

MPa, which is higher than the specimen with 

maximum diameter and depth of artificial pit, which 

is 547 MPa. This is due to the geometry of the artificial 

pit itself. Larger artificial pit size gives more impact on 

strength reduction of the specimen and translates 

into lower apparent yield strength. The observed 

behavior of lower load could be attributed to 

localized stress around the pits that leads to early 

failure of the material. Such localized failure manifests 

in the early and gradual degradation of stiffness of 

the pitted material, as shown in  

Figure 7. 

 

 

Figure 6 Yield stress values for artificially produced pitted 

specimen 

 

 
Figure 7 Tensile curves for as-received and artificially 

produced pitted specimen with enlarge view 

 

 

A decrease in total elongation of the pitted 

compared to AR specimens is noted. Since the 

artificially produced pit area was selective and 

limited to the surface only, the apparent loss for 

elongation at fracture is likely due to the same effect 

of localized stress at the pits, rather than degradation 

of ductility in the bulk section of the specimen. 

 

 

4.0  CONCLUSION 
 

Effects of different geometries of artificially produced 

pits on the apparent tensile behavior of AISI 410 

martensitic stainless steel for compressor blades has 

been established. Major conclusions are as follows: 

 

1. The strength of the material gradually decrease 

with the existence of the artificial pit. 

2. The strength of the specimen with maximum 

diameter and depth of pit is lower than the 

strength of the specimen with minimum 

diameter and depth pit. 

3. Depth of the pit gives more effect on the 

strength of the material. The deeper the depth 

of the pit, the weaker the strength of the 

material. 

4. Immersion of AISI 410 stainless steel specimen in 

FeCl3 solution (6 pct. By mass) for 48 hours could 

produce characteristic corrosion pits as found 

on compressor blades. 

5. Although the nominal pit depth is 0.06 mm, 

combination of the smallest diameter (0.4 mm) 

and deepest pit (0.26 mm) is most critical with 

respect to fatigue crack initiation.  
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