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Abstract 
 

The east coast of Peninsular Malaysia is one of the most vulnerable regions of Malaysia to 

hydrological disasters, which is believed to become more vulnerable due to climate 

change. Studies to have better understandings of the hydrological processes in the region 

are therefore, of paramount importance for disaster risk mitigation. However, unavailability of 

long-term river discharge data is one of the major constraints of hydrologic studies in the 

area. The major objective of this study is to predict river discharge in ungauged river basins in 

the study area. For this purpose, a set of multiple linear regression equations and exponential 

functions have been developed, which are expressed in the forms of multivariate equations. 

Available streamflow data along with other catchment characteristics from gauged 

catchments were used to develop the equations and were subsequently applied to the 

poorly gauged or ungauged catchments within the study area for prediction of streamflow. 

In this present study, 4 to 7 explanatory variables were selected as the input variables, which 

comprise of climatic, geomorphologic, geographic characteristics, soil properties, land use 

pattern and land cover of the area. Ten flow metrics as maximum, 0.05, 0.10, 0.25, 0.50, 0.75, 

0.90, and 0.95, mean and minimum were therefore predicted. Thus, the results of the 

developed multivariate equations revealed the model to be capable of   predicting the 

desired flow metrics at ungauged catchments in the area under consideration with 

reasonable accuracy. 

 

Keywords: Flow duration curve, streamflow prediction, ungauged catchments, east coast of 

Peninsular Malaysia, multivariate equations 
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1.0  INTRODUCTION 
 

Predictions of runoff hydrographs are key requirements 

for designing hydraulics structures, water resources 

planning and management, hydropower operation, 

hydrological disaster risk management as well as in 

assessing the effects of environmental changes [1, 2]. 

Streamflow predictions are approaches used to 

extrapolate by hydrological information transfer of 

contiguous ungauged catchment from gauged data 

through, hydrological model simulation, and other 



44                                   Salaudeen et al. / Jurnal Teknologi (Sciences & Engineering) 78: 6–12 (2016) 43–49 

 

 

relevant methods [3]. However, runoff data are not 

available in many catchments of interest. Therefore, it 

is often required to predict runoff hydrographs of 

ungauged catchments from other information within 

that catchment or from other catchments [4]. Many 

methods have been developed and applied in 

different parts of the world for this purpose [1, 5, 6]; 

however, prediction in ungauged basins remains a 

major challenge in hydrology. 

It is much more challenging in tropical regions 

where most of the catchments are ungauged, as 

such; the need for improved knowledge of flow 

variability in such regions become very urgent, 

especially in the context of changing hydrological 

processes and growing hydrological disasters due to 

climate change. Increasing severity and frequency of 

floods due to changing rainfall pattern is a growing 

concern in the east coast of peninsular Malaysia [7-9]. 

Major challenge in hydrological studies in the area is 

the unavailability of reliable and long-term streamflow 

data in most of the catchments of interest. 

Flow duration curve (FDC) presents the probability 

of flood of a particular magnitude to be equaled or 

exceeded over a historical period. With FDC, a 

comprehensive graphical view of the historical 

change in the overall flow event is possible, for the 

catchment of interest. Because of highly skewed 

nature of daily streamflow data, nonparametric 

approach will be used for the FDC framework rather 

than the parametric to avoid high tendencies to 

biasness. Median annual FDC being most appropriate 

method for this type of study have been chosen [10].  

Several models have been developed by different 

researcher for flow predictions in ungauged 

catchments across the globe. For example, Yaşar and 

Baykan [1] developed a model for predictions of FDCs 

in ungauged basins in US with Quasi-Newton method, 

known as Estimation of Regionalized Flow Duration 

Curve (EREFDC). Lacombe et al. [5] suggested 

predictions of streamflow in Makong basin, where a set 

of power law equations were developed and were 

reported to perform well. A methodology for 

estimating the flood frequency curve at sites for which 

there is no sufficient information to allow the direct 

calibration of a rainfall-runoff model relevant for that 

site was developed by Jones and Kay [2]. The present 

research is however, targeted at the east coast of 

Peninsular Malaysia by making comparison 

accordingly between linear regression equations and 

exponential functions for improved knowledge of flow 

variability of the area concerned. 

 

 

2.0  METHODOLOGY 
 

2.1  Description of the Study Area 

 

The present study area comprises of some catchments 

in the states of Kelantan and Terengganu in the east 

coast of Peninsular Malaysia. It is inscribed by 

Longitude 1010 and 1030E, and Latitudes 40 and 50 N. It 

commands a total watershed area of approximately 

17,000km2, consisting of about 58 sub - catchment 

areas. The minimum and maximum elevations within 

the project area are approximately 3m and 2600m 

respectively above mean sea level. The River Kelantan 

catchment for instance is the longest river in 

catchment recording 180 to 300 m width covering a 

distance of 248 km and drains an area of 13,100 km2. 

Approximately 68.5% of the population was reported 

to inhabit the river basin and they are as such; 

predisposed to the detrimental effects of frequent 

flooding episodes [11]. Terengganu on the other hand, 

is bordered in the northwest, southwest and in the east 

by the state of Kelantan, Pahang and South China Sea 

respectively. The total population of the state was put 

at 1,015,776 according to 2010 census with a density of 

78 km2. The region has tropical monsoon climate 

known to be fairly hot and humid throughout the year 

with temperature ranging between 21°C and 32°C all 

year round [12]. Figure 1 Shows the location map and 

the streamflow gauging stations. 

 

2.2  The Multivariate Equations 

 

In order to predict the various flow metrics in the 

catchments, multiple linear regressions (Eq.(1)) from 

the available streamflow data from some stations were 

developed to established functional relationship 

among the variables as already being used in various 

catchments of the world [5]. 

 

𝑄𝑖 = 𝛽0 + 𝛽1. 𝑋1 + 𝛽2. 𝑋2 + ⋯ + 𝛽𝑛. 𝑋𝑛 + 𝜀                              (1) 
 

A logarithmic transformation of the variable prior to 

multiple linear regression, results in the exponential 

equation as given below: 
𝑄𝑖 = exp{[𝛽0 + (𝛽1𝑋1) + (𝛽2𝑋2 + ⋯ + (𝛽𝑛𝑋𝑛)] − 1} + 𝑣      (2) 

Where Q is the streamflow from n catchments with 

characteristics X (i = 1,2,…n) whose coefficients are β (i 

= 1,2,…n). 

β0 is the y intercept and, ε, v are the normally and 

log-normally errors of the models. 

The transformed data for the catchment 

characteristics, Xi and flow Qi will be incremented by 

one prior to being used in the regression analysis. As 

such; the variables, Qi and Xi were replaced by Qi+1 

and Xi+1 respectively. 
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Figure 1 Shows the location map and the streamflow gauging 

stations of the study area 

 

 

2.3  Streamflow 
 

Available records of daily streamflow data ranging 

from 6 – 51years for minimum of twelve gauging 

stations obtained from the Department of Irrigation 

and Drainage (DID), Malaysia were processed for this 

study. All - year of records median annual FDCs for all 

the gauged catchments were computed rather than 

period of records FDCs as suggested by Vogel and 

Fennessey [10]. Seven flow percentiles namely 0.05, 

0.10, 0.25, 0.50, 0.75, 0.90, and 0.95 were estimated 

from the FDCs. The maximum, minimum and mean 

flows were equally selected. The above ten metric 

flows were used as the candidate explanatory 

variables for the development of the regression 

equations. 
 

2.4  Rainfall 

 

The east coast of Peninsular Malaysia is one of the 

zones most vulnerable to natural disasters and climate 

change [13]. There has been increase in the cases of 

extreme rainfall events in the region in recent years, 

particularly during the northeast monsoon season [14]. 

Long-term rainfall data in the gauged catchments 

were equally collected from DID, Malaysia for the 

same hydrological year as the streamflow data, and 

was subsequently used to compute the areal 

precipitation time series for each gauged catchment, 

using inverse weighted distance method. The median 

annual rainfalls [5] were extracted rather than the 

mean annual rainfall because of the positively skewed 

nature that are associated with hydrologic data as 

mentioned earlier, thus, avoiding bias data possibilities. 

Correlations of rainfall with each of the explanatory 

variables for prediction were tested and were found to 

record the highest positive correlation coefficient. 
 

2.5  Geomorphologic and Geographic Characteristics 

 

Table 2 presents the summary of explanatory variables 

used in the multiple regression analysis. The 

geomorphologic characteristics are essential 

components of any hydrologic studies of a catchment 

as this presents properties such as; catchment area, 

perimeter, mean slope, drainage density etc. For 

example, the mean slope, drainage area, perimeter 

and drainage density were extracted from ASTER DEM 

data available at USGS website. Land-use, and land-

cover, soil properties, etc. were prepared using 

geographical information system (ArcGIS). The 

drainage area reflects the volume of runoff that can 

be generated from rainfall, and hence, it serves as one 

of the most important input data for the hydrologic 

model. The watershed slope is an important factor in 

the runoff momentum of a particular flood magnitude. 

It reflects the rate of change of elevation with respect 

to distance along the principal flow path; while the 

drainage density is the total length of the stream in the 

catchment normalized by the catchment area. The 

catchment slope plays an important role on the 

drainage density [15]. Higher per cent of the streams 

are found to flow towards north-east and east 

directions. 

Temperature time series data of the study area 

were collected from Malaysian Meteorological 

Department (MMD) and were used to compute the 

reference evapotranspiration (ET0) at each catchment 

using Hargreaves method [15]. This can be used to 

determine the reference evapotranspiration of the 

concerned area as suggested by [Droogers and Allen 

[16], Jabloun and Sahli [18], Tabari et al. [19]]. 

However, the annual variations in ET0 across the study 

area, were found not to be significant, and were 

therefore excluded from the analysis. 

 

2.6  Soil Characteristics, Land Use/Land Cover 

 

The soil properties of the catchments were derived 

from the available generalized soil map of Peninsular 

Malaysia, 1970. There are seventeen different soil 

groups as detailed on the map. Appraisal of the study 

“keys to the identification of the Malaysian soils using 

parent materials” reported by Paramananthan [20] 

gave better insight to the soil groups. Two major 

properties of interest which are likely to control the 

hydrological characteristics of the catchments were 

obtained from the map. These are: soil texture and soil 

depths [5]. The soil texture groups were categorized 

into three major groups as shown in Table 1 below: 

 

Table 1 Soil groups 

 

Top soil texture  Soil depth  Remark  

Coarse  <50cm Shallow 

Medium 50 - 100cm Moderately deep 

Fine >100cm Deep 

 

 

The Land use and land cover are highly dynamic 

and rarely in a stable equilibrium [21] and has been 
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reported to have great effects on the runoff 

generation in a catchment. The land use map of 

Peninsular was as well studied. This provides useful 

information about the land use practice in the 

catchment, because of its great influence on the 

catchment hydrologic response. It is a common 

practice in recent years to convert large tracks of 

forest to agricultural land with consequence of higher 

flood frequency and drought [22]. The soil 

characteristics and land-use of the area formed the 

rationale for curve number derivation for the 

catchments according to US Soil Conservation Service 

(SCS). In SCS, these are referred to the soil groups, 

hydrologic conditions and antecedent moisture 

condition [16, 23-25]. The hydrologic condition of the 

catchments defines the vegetation or ground cover 

and are expressed as poor, fair and good represented 

as < 50%, 50 - 75% and > 75%. In deriving the curve 

number, antecedent soil moisture condition II was 

selected for the study area depicting average 

condition. 

 

 
Table 2 Explanatory variables used in the multiple regression analysis 

 

Variable Definition Unit 
Minimum 

value 

Median 

value 

Maximum 

value 

Climatic characteristics 

Rain Median annual rainfall mm/year 2586 2735 3369 

Geomorphologic characteristics 

Area Drainage area km2 18.40 494.03 2788.00 

Peri Periphery km 19.76 136.23 265.00 

Strm Longest stream km 4.10 33.80 223.63 

Slop Mean slope % 0.39 1.16 2.41 

Drai Drainage density km-1 0.36 0.38 0.41 

Curv Curve number 
 

75 78.5 89 

Soil characteristics 

Depth Soil depth cm  25 75 150 

 

 

3.0  RESULTS AND DISCUSSION 
 

The explanatory variables for streamflow predictions in 

the east coast of Peninsular Malaysia are presented in 

Table 3 below. In the table, there are two rows for 

each flow metrics, the upper rows presents the 

coefficients of the multiple linear regression equations, 

while the lower row shows the logarithmic transformed 

data incremented by unity. The two sets of equations 

are presented for comparison of the models, by 

comparing the performance indicators as shown in 

columns 8 and 9 of Table 3 respectively. The illustrative 

equation of the multiple linear regression equations 

are as presented in (Eq. (3) and (4)). 

 
Table 3 Parameters of the multiple regression models; Column 1: Flow metrics for which predictions are made. Column 2 - 7: 

Coefficients of the explanatory variables. Column 8 and 9: Performances of the models (%) 

 

Q  

(m3s-1) 
β0 

Explanatory Variables (βi, i >0) Performance 

Rain Area Peri Slop Curv NSE RMSNE R2
adj 

Max 
-2112.9 13.38 0.875 

 

169.36 19.65 93.3 0.75 96.0 

-6.2 0.71 

 

1.483 0.40 0.18 98.8 1.37 89.5 

0.05 
-778.6 1.97 0.247 

 

50.20 8.20 97.5 0.00 88.7 

-24.6 0.70 

 

1.585 0.62 3.17 96.6 1.94 93.1 

0.10 
-592.9 1.40 0.174 

 

31.79 6.33 88.3 0.00 81.6 

-24.6 0.70 

 

1.585 0.62 3.17 95.6 7.69 90.6 

0.25 
-374.2 1.12 0.103 

 

18.32 3.95 86.7 0.00 79.1 

-28.9 0.85 

 

1.542 0.67 3.71 93.8 3.97 86.2 
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Table 3 Continued 

 

0.50 
-270.8 0.89 0.072 

 

12.46 2.85 84.1 0.00 75.0 

-27.0 0.91 

 

1.48 0.58 3.30 89.0 2.29 81.1 

0.75 
-194.8 0.66 0.054 

 

8.31 2.03 82.7 0.00 72.8 

17.9 0.99 

 

1.37 0.43 1.65 96.1 5.95 72.0 

0.90 
-150.3 0.53 0.044 

 

6.13 1.55 83.2 0.00 73.6 

-12.6 1.01 

 

1.366 0.31 0.60 97.3 6.04 67.4 

0.95 
-135.3 0.53 0.04 

 

5.46 1.38 82.7 2.38 75.1 

-7.6 1.07   1.344 0.28 0.35 97.6 5.80 64.0 

Min 
-77.8 0.60 0.026 

 

3.25 0.67 94.6 0.00 91.5 

-1.5 1.3 

 

1.184 0.41 0.20 91.6 4.98 48.2 

Mean 
-360.6 0.99 0.104 

 

20.27 3.80 89.2 0.69 82.5 

-26.9 0.78   1.546 0.64 3.41 95.6 3.20 88.9 

 

 

𝑄𝑚𝑎𝑥 = −2112.957 + 13.382𝑅𝑎𝑖𝑛 + 0.875𝐴𝑟𝑒𝑎 + 169.36𝑆𝑙𝑜𝑝 + 19.656𝐶𝑢𝑟𝑣                                                                   (3) 

 
The logarithmic transformed dataset prior to multiple linear regression, results in the exponential equation as given 

below: 

𝑄0.50 = exp{[−27.033 + 0.917𝑅𝑎𝑖𝑛 + 1.480𝑃𝑒𝑟𝑖 + 0.588𝑆𝑙𝑜𝑝 + 3.305𝐶𝑢𝑟𝑣] − 1}                                                                (4) 

 

The performance indicators in Table 3 above shows 

that logarithmic transformed data, prior to multiple 

linear regression and replacing the area with periphery 

generally have better perform than those that did not 

undergo transformation except at low flow metrics 

where the later proved to perform better. The 

performance of the two models can be said to record 

high performances and hence can be confidently 

applied to any catchment within the study area, once 

the input variables have been established. Figure 2 

presents excellent comparison between observed and 

predicted flows for the models. 

 

                
 

a) Measured vs pred. Qmax (Linear Model)     (b) Measured vs pred. Qmax (Log model) 
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c) Measured vs pred. Qmean (Linear Model)     (d) Measured vs pred. Qmean (Log model) 

 
Figure 2 Comparison of measured and predicted flows for the linear and log models (a-b): annual maximum and (c-d) 

mean annual  

 

 

4.0  CONCLUSION 

 
A set of multivariate linear and exponential models 

have been developed and validated in the present 

study, to predict streamflow in ungauged catchments 

in the east coast of peninsular Malaysia, which is 

considered the most vulnerable region of Malaysia to 

hydrological disasters. The models are specifically 

developed for the catchments of east coast and may 

not perform well in other catchments other than these, 

considering the fact that the input parameters were 

developed from the established catchment 

characteristics of the area under study. The model is 

found to predict streamflow in ungauged catchments 

with reasonable accuracy.  The R2
adj for the best 

models are of the order of 82.5 to 96%. The best of the 

model may be chosen to suit a particular flow metric 

applicable. However, the logarithmic transformed 

data with resulting exponential function suggested a 

higher predictive power except for very low flow 

where the multiple linear equations proved to be 

better. It is therefore expected that the methodology 

used in the present study can be used in other tropical 

regions for predictions of streamflow in ungauged river 

basins. 
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