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Abstract 
 

X4-AUV is a type of an autonomous underwater vehicle (AUV) which has 4 inputs with six degrees 

of freedoms (6-DOFs) in motion and is classified under an underactuated system. Controlling an 

underactuated AUV is difficult tasks because of the highly nonlinear dynamic, uncertainties in 

hydrodynamics behaviour and mostly those systems fails to satisfy Brockett’s Theorem. It usually 

required a nonlinear control approach and this paper proposed a backstepping control method 

with Particle Swarm Optimization (PSO) to stabilize an underactuated X4-AUV system. In 

backstepping controller design, accurate parameters are important in order to obtain the 

maximal and effective response. Hence, PSO is implemented to obtain optimal parameters for 

backstepping controller and its carry out by minimizing the fitness function. Comparison results 

illustrated the controller with PSO has a smooth and fast transient response into the desired point 

compared than manually tune controller parameters and also improve the system performances. 

The validity of the proposed control technique for an underactuated X4-AUV demonstrates 

through simulation. 
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1.0  INTRODUCTION 

 
Autonomous underwater vehicles (AUV) are 

programmable robotic vehicles that are driven through 

the water by a propulsion system, controlled and 

piloted by onboard computer and maneuverable in 

three dimensions. Regularly AUVs is classified under an 

underactuated system with nonholonomic constraints. 

Mostly those systems fail to satisfy Brockett’s Theorem [1] 

i.e., these systems cannot be stabilized to a point with 

pure smooth (or even continuous) state feedback 

control. The dynamics of AUVs mostly are highly 

nonlinear systems, strong coupling, and have 

uncertainties in hydrodynamics parameters. 

This research focuses on point stabilization for X4-AUV. 

It is a type of AUV which has four inputs with six DOFs in 

motion and class under an underactuated system and 

have nonholonomic constraints. Le Tu et al. [2] develop 

a small X4-AUV, however to control this system is not an 

easy task, the X4-AUV still uncontrollable and the 

experiment is not achieved as expected yet. A 

discontinuous control method in chained form [3] is 

used for stabilizing X4-AUV and the method can only 

realize partially underactuated control, which controls 

five states out of six states by using four inputs. A 

transformation from the dynamic model into state-

space model is needed in order to design a model 

based controller. A direct Lyapunov theory is applied to 

stabilize an X4-AUV and it found that position and 

angles are not smoothly controllable compare than 

used backstepping control [4]. 

Research in underactuated systems has been a 

dragged to study another control problem which is 

nonholonomic system. Nonholonomic systems 

frequently appear in finite mechanical systems where 

constraints are imposed on the motion are not 

integrable, i.e. the constraints cannot be written as time 

derivatives of some function of the generalized 

coordinate [5]. Particular constraints can generally be 

defined in terms of nonintegrable linear velocity 

relationships. The problems occur in controlling class of 

nonholonomics system have attracted the interests of 

researchers. The investigation is motivated by the fact 

that such constraint is not responsive to linear control 

methods, and they cannot be converted into linear 
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control problems in any significant way. Moreover, due 

to Brockett’s Theorem, these systems cannot be 

stabilized to a point with pure smooth (or even 

continuous) state feedback control, usual smooth and 

time invariant. Hence, these nonlinear control problems 

required nonlinear control techniques. There are 

numerous control techniques such as linearization, H∞, 

intelligent PID, sliding mode and backstepping control 

for nonlinear systems. 

The backstepping is a recursive Lyapunov based 

scheme proposed by Krstic et al on the 1990s [6]. The 

idea of backstepping is to construct a recursive 

controller by considering some of the state variables as 

“virtual controls” and designing an intermediate control 

laws. The imperative advantage of backstepping as it 

has the adaptability to avoid eliminations of helpful 

nonlinearities and accomplishes the objectives of 

stabilization and tracking. Backstepping control widely 

can be found in robotics areas such as for mobile robot 

[7], aerospace vehicles [8], and marine vehicles [9]. 

 Despite the fact that backstepping method can 

provide an efficient procedure for controller design, it is 

difficult to get satisfactory performance because the 

controller parameters obtained by the backstepping 

method are chosen arbitrarily. It is important to select 

the proper parameters to obtain a good response 

because an improper selection of the parameters leads 

to inappropriate responses or may even lead to 

instability of the system. If the parameters are manually 

chosen or tune, it cannot be claimed that the optimal 

parameters are selected. In [10, 11], the authors 

applied backstepping control method for stabilized 

underactuated X4-AUV with manually tuned 

parameters. The simulation results show the controller 

succeeded in stabilizing the systems but it cannot be 

claimed that the performance is the best because the 

parameters is not an optimal values.  

In order to overcome the problem in determining 

controller parameter values, particle swarm 

optimization (PSO) algorithm has been used. PSO is a 

population based stochastic optimization technique 

developed by Dr. Eberhart and Dr. Kennedy in 1995 

[12]. The method has been inspired by the behavior of 

organisms, such as fish schooling and bird flocking. 

Generally, PSO is identified as a straightforward idea, 

simple to execute, computationally efficient and quick 

convergence. It also is under a flexible and well-

balanced mechanism to enhance the global and local 

exploration abilities [13]. The PSO algorithm has been 

used effectively in a wide range of engineering such as 

computer science problems [14, 15], power system [16], 

maglev transportation system [17], and largely used in 

UAV [18, 19, 20]. Due to its effectiveness, PSO is applied 

to compute the optimal parameter values for 

backstepping controller of X4-AUV systems. 

This article presented a backstepping controller with 

PSO for stabilizing x position and angles of an 

underactuated X4-AUV with four inputs and six DOFs. 

The X4-AUV are executed by nonlinear control 

strategies by separating system into two parts 

subsystem which are translational and rotational 

subsystems. Parameters of backstepping controller 

determine using PSO and a set of optimal parameters 

selected by minimizing the fitness function. The 

simulation results indicate the effectiveness of the 

control strategy for stabilizing an underactuated X4-

AUV. 

 

 

2.0  DEFINITION OF COORDINATE SYSTEM 
 

In order to describe the underwater vehicle's motion, a 

special reference frame must be established. There 

have two coordinate systems: i.e., inertial coordinate 

system (or fixed coordinate system) and motion 

coordinate system (or body-fixed coordinate system). 

The coordinate frame {E} is composed of the 

orthogonal axes {Ex Ey Ez} and is called as an inertial 

frame. This frame is commonly placed at a fixed place 

on Earth. The axes Ex and Ey form a horizontal plane and 

Ez has the direction of the gravity field. The body fixed 

frame {B} is composed of the orthonormal axes {X, Y, Z} 

and attached to the vehicle. The body axes, two of 

which coincide with principle axes of inertia of the 

vehicles, are defined as follows:  

X is the longitudinal axis (directed from aft to fore)  

Y is the transverse axis (directed to starboard)   

Z is the normal axis (directed from top to bottom)   

 
Figure 1 Coordinate systems of AUV 

 

 

Figure 1 show the coordinate systems of AUV, which 

consist of a right-hand inertial frame {E} in which the 

downward vertical direction is to be positive and right-

hand body frame {B}. 

Letting T
x y z     denote the mass center of the 

body in the inertial frame, defining the rotational angles 

of ,X Y  and Z axes as T
      , the rotational 

matrix R from the body frame {B} to the inertial frame {E} 

can be reduced to: 

c c s s c c s c s c s s

R c s s s s c c c s s s c

s s c c c

           

           

    

  
 

   
  

 
(1) 

 

where cα denotes cos α and sα is sin α. 

Following a Lagrangian method, the dynamic model 

of X4-AUV is summarized by (2) and detailed derivation 

given in [3]: 
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(2) 

 

 

3.0  CONTROL STRATEGY OF AN X4-AUV 
 

The model (2) can be rewritten in a state space form 

),( UXfX  by introducing   12
121 

T
xxX   as state 

vector of the system as follows: 
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(3) 

where the inputs   4

41


T
uuU  . 

From (2) and (3), we obtain: 
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(4) 
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It is worthwhile to note in the latter system that the 

angular subsystems do not depend on translation 

components as show in Figure 2. On the other hand, the 

translational subsystems depend on the angular 

subsystems. We can ideally imagine the overall system 

described by (4) as constituted of two subsystems.  

 

 
Figure 2 Connection of rotational and translational subsystems 

 

 

3.1  Control of the Rotations Subsystem 

 

Using the backstepping approach, one can synthesize 

the control law forcing the system to follow the desired 

trajectory. For the first step we consider the tracking-

error: 

For the first step, tracking error of roll is defined as: 

1 7 7d
z x x   (5) 

Then use Lyapunov theorem by considering Lyapunov 

function, 1z
 
is a positive definite: 

  2

1 1

1

2
V z z  

(6) 

It follows by its time derivative: 

   1 1 7 8d
V z z x x   (7) 

The stabilization of 
1

z
 
can be obtained by introducing a 

virtual control input 
8

x with 
1

0a    

8 7 1 1d
x x z   (8) 

The Equation (6) becomes: 

  2

1 1 1
V z z    (9) 

Let proceed by making the variable change, 2z defines 

as: 

2 8 7 1 1d
z x x z    (10) 

For second step, consider the augmented Lyapunov 

function:
        

  2 2

1 2 1 2

1 1
,

2 2
V z z z z   

(11) 

It’s time derivative is formulated as: 

   
  

1 2 2 1 10 12 1 2
2

2 7 1 2 1 1 1 2 1 1

,

d

V z z z a x x bu

z x z z z z z  

 

    
 

(12) 

The control input 2u  is then extracted  1,2,3
0

d
x  , 

satisfying  1 2
0 :V z z 

  

 2 1 1 10 12 1 2 1 1 2 2

1

1
u z a x x z z z

b
        

(13) 
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Similarly, same steps are followed to extract 
3

u  and 
4

u  

 3 3 2 8 12 3 12 3 4 3 3
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4 4
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(15) 

with:  

3 9 9
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5 11 11

6 12 11 5 5

d

d

d

d

z x x

z x x z

z x x

z x x z
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 


  


 
   

 

(16) 

where  1 2 3 4 5 6
, , , , , 0       , is a positive constant. 

 

3.2  Control of the Linear Translations Subsystem 

 

The altitude control keeps the X4-AUV stabilized at 

desired point. Used the same approach described in 

subsection 3.1, the control law for altitude controller is: 

 1
1 7 7 8 7 7 8 8

cos cos

m
u z z z z  

 
     

(17) 

with: 

7 1 1

8 2 1 7 7

d

d

z x x

z x x z

 


  
 

(18) 

where 7
 
and 8  

is a positive constant. 

 

 

4.0  OPTIMIZATION OF BACKSTEPPING 

CONTROLLER PARAMETERS 

 
The flowchart of PSO technique is applied to identify the 

optimal set of backstepping controllers parameter 

values is shown in Figure 3. For each iteration, each 

particle is updated by following two “best” values. The 

first is the best result (fitness) it has accomplished so far 

and this value is called Pbest. Another “best” value that 

is followed by the PSO is the best value, obtained so far 

by any particle in population. This best value is a global 

best and called Gbest. After finding the two best values, 

the particle updates its velocity and positions with three 

weight factors namely; inertia factor, w, self confidence 

factor, c1, and swarm confidence factor, c2 in (19) and 

(20);  

 
 

1

1 2

k k k

i i best i

k

best i

v w v c rand P x c

rand G x

        

 
 

(19) 

The appropriate value range for c1 and c2 is 1-2 but 2 are 

the most appropriate in many cases and Rand is a 

random number in between 1 to 5. 
1 1k k k

i i i
x x v    (20) 

where vi is the particle velocity and xi  is a current 

particle. The following inertia weight is used: 

 max max min max
/w w w w k k    (21) 

where kmax, k is the maximum number of iterations and 

the current number of iterations, wmin and wmax are the 

minimum and maximum weights, appropriate values 

are 0.4 and 0.9.  

The flowchart for determining optimal parameter values 

showed in Figure 3. In this study, the following values are 

assigned for controller parameter optimization: 

(a) Dimension of the search space = 8 

(b) Population or swarm size = 30 

(c) The number of maximum iteration = 20 

(d) The self and swarm confident factor, c1 and c2 = 2 

(e) The inertia weight factor w,wmax = 0.9 and wmin = 0.4  

(f) The searching ranges for the backstepping 

parameters are limited to [1, 5]  

(g) The simulation time,t is equal to 15s 

(h) Optimization process is repeated 20 times 

The fitness function is called to determine a fitness of 

each particle during the search for choosing the best 

value. The aim is to minimize this fitness function in order 

to improve the system response in terms of steady-state 

errors. Sum of Squared Error (SSE) is used as a fitness 

function in order to optimize parameter values. The 

formula of SSE is given by: 

 
2

1

n

i di
SSE x x


   (22) 

with: 

SSE = Sum of squared error 

I    = number of iteration 

xi  = system output value at i iteration 

xd = initial input 

A good stabilization response will produce minimum 

SSE.  

 

START

Generate initial population

Update a set of backstepping 
parameter

(α1,α2,α3,α4,α5,α6,α7,α8)

Run X4-AUV model for each set of 
parameters

Calculate fitness function

Maximum iteration   number 
reached?

Update velocity, position,Pbest and 
Gbest of particles

END

Calculate Pbest and Gbest for 
population

Display optimal parameter

α1,α2,α3,α4,α5,α6,α7,α8

Yes

No

 
Figure 3 The flowchart of PSO for determining backstepping 

controller parameters 
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5.0  RESULT AND DISCUSSION 
 

Backstepping control method with PSO is implemented 

to stabilize an underactuated X4-AUV. Backstepping 

controllers were proposed for controlling each 

orientation angle and the position are stabilized 

according to the Lyapunov stability theory. Parameters 

of backstepping controller determine using PSO and a 

set of optimal parameters selected by minimizing the 

fitness function. The simulation was performed to 

demonstrate the effectiveness of proposed control 

performances by using 
1 2 3
, ,u u u  and 

4
u  respectively as 

a control input. The system started with an initial state 

for position 0x   and all angles
4


  . We wanted the 

final x position stabilized at 3 m with all zero orientation 

angles. The symbols used in controllers are presented in 

Table 1. Note that simulations for stabilizing the X4-AUV 

in ,x y   and z positions were implemented 

independently. The other results for y  and z position 

are not included in this paper.  
 

Table 1 Symbols used in backstepping controller 

Symbol Definition 

x  x position coordinates 

  Roll angle 

  Pitch angle 

  Yaw angle 

121 ,,     Control parameters 

4321 ,,, uuuu  Control inputs 

 

 

5.1. Backstepping Controller With Manual Tuned 

Parameters  

 

The improper selection of parameters for backstepping 

controller may lead to ineffective responses of the 

system. X4-AUV system has eight parameters and 

manually tuned is not an easy task. This section carried 

out similar simulation as past publication [7, 8] and the 

parameter obtains via manual tuned as follows [8]:

,0.2,0.1,0.1 321  
 

4.1,6.1,0.1,0.1,0.3 87654   . Figure 4 

illustrated response of backstepping controller with 

manual tuned. 

 

 (a)  

 
    (b)  

 
(c) 

 
(d) 

 

Figure 4 Manual tuned parameters: (a) Attitude control (b) 
x position control (c) A control inputs (d) A control inputs in 

rotation 

 

 

5.2. Backstepping Controller With Optimization (PSO) 

 

The simulation done in several runs and the five best 

fitness value with optimal parameters is summarized in 

Table 3. The best fitness is 4E-16 and the optimal 

parameters are 
1 2 3 4

1.4, 2.2, 2.1, 2.2,      

5 6 7 8
1.9, 3.2, 3.6, 4.9       . 

Figure 5(a) and Figure 5(b) indicates the response of 

backstepping controller stabilizing roll, pitch and yaw 

angles of X4-AUV into zero in Ts = 3.02s. Position control 

of X4-AUV in Figure 6(a) and Figure 6(b) shows the x
position is convergence to the targets at 3 m in Ts = 2.37s. 

Figure 7(a) illustrates inputs for controlling X4-AUV where 

321 ,, uuu  and 4u  denote command signal for position 

and all angles and Figure 7(b) show a control input in 

rotation.
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Table 2 Fitness value and optimal controller parameters 

 

No. 
Fitness 

Value 

Optimal Parameters  

1

 

2

 

3

 

4

 

5

 

6

 

7

 

8

 

1 4E-16 1.4 2.2 2.1 2.2 1.9 3.2 3.6 4.9 

2 4E-16 3.3 5.0 1.5 1.2 1.1 2.2 3.4 4.8 

3 9E-16 1.6 4.3 1.6 3.7 1.1 4.5 3.9 3.1 

4 9E-16 1.1 2.2 4.9 4.4 1.4 1.2 4.6 3.2 

5 2E-15 2.6 3.2 2.0 1.5 3.0 3.6 3.1 3.9 

 

 
(a)  

 
(b)  

 
Figure 5 Optimal parameter values using PSO: (a) Attitude 

control (b) Attitude rate control 

 

 
(a)  

 
(b)  

 
Figure 6 Optimal parameter values using PSO: (a) x position 

control (b) x position rate control 

 

 
(a)  

 
(b)  

 
Figure 7 Optimal parameter values using PSO: (a) A control 

inputs (b) A control inputs in rotation 

 

 

5.3. Comparison of Backstepping Controller With 

Manual Tuned and PSO 

 

Both controllers with and without PSO succeeded in 

stabilizing x position and all angles into desired point. 

In order to compare performances between the 

controllers, settling time, Ts is used. Settling time is the 

time required for the response curve to reach and stay 

within a range of a certain percentage (usually 5% or 

2%) of the final value. In this study, 2% of the desired 

point is used to determine the settling time. 

The controller with manual tune parameters 

succeeded in stabilizing x position and all angles but 

has slow response. Settling time for backstepping 

controller with PSO is faster and has a smooth 
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performance compared than a controller with 

manually tuned parameters as summarized in Table 3. 

Percentage change of controller with manual tuned 

parameters is improved to 50.8% for x position while a 

rotation improved as much as 39.6%. By using PSO, it 

automatically generated optimal parameters value for 

X4-AUV systems and enhances the system 

performances. 

 
Table 3 Settling time, Ts   of PSO and manual tuned 

 

No. 
Selection of 

Parameters 

Settling Time,Ts 

Position 
  x  

Rotations 

  ,,  

1 Manual tuned 4.82 5.00 

2 PSO 2.37 3.02 

 

 

6.0  CONCLUSIONS 
 

This article presented a backstepping controller with 

PSO in stabilizing attitudes and x position of an 

underactuated X4-AUV with four inputs and six DOFs. 

The backstepping controller effective in stabilized the 

X4-AUV system into desired point from initial point given. 

Accurate parameters value will give maximal results 

and effective response of the system while improper 

selection of parameters may lead to unproductive 

results. Parameters of backstepping controller is 

determine using PSO and a set of optimal parameters is 

selected by minimize the fitness function. Simulations 

results illustrate the backstepping controller with PSO 

shows a smooth performance and has a fast settling 

time into the desired point compared than controller 

with manually tune parameters. This study is motivated 

to investigate more on backstepping control and 

optimization technique for further improvement in 

controlling underactuated systems. 
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