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Graphical abstract 
 

 

Abstract 
 

One of the major challenges in polymerization industry is the lack of online instruments to 

measure polymer end-used properties such as xylene soluble, particle size distribution and 

melt flow index (MFI). As an alternative to the online instruments and conventional 

laboratory tests, these properties can be estimated using model based-soft sensor. This 

paper presents models for soft sensors to measure MFI in industrial polypropylene loop 

reactors using artificial neural network (ANN) model, serial hybrid neural network (HNN) 

model and stacked neural network (SNN) model. All models were developed and 

simulated in MATLAB. The simulation results of the MFI based on the ANN, HNN, and SNN 

models were compared and analyzed.  The MFI was divided into three grades, which are 

A (10-12g/10 min), B (12-14g/10 min) and C (14-16 g/10 min). The HNN model is the best 

model in predicting all range of MFI with the lowest root mean square error (RMSE) value, 

0.010848, followed by ANN model (RMSE=0.019366) and SNN model (RMSE=0.059132). The 

SNN model is the best model when tested with each grade of the MFI. It has shown lowest 

RMSE value for each type of MFI (0.012072 for MFI A, 0.017527 for MFI B and 0.015287 for 

MFI C), compared to HNN model (0.014916 for MFI A, 0.041402 for MFI B and 0.046437 for 

MFI C) and ANN model (0.015156 for MFI A, 0.076682 for MFI B, and 0.037862 for MFI C). 
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1.0  INTRODUCTION 
 

To improve end-used properties is one of the primary 

reasons for the use of advanced control in monitoring 

polymerization reactors. A common problem in the 

polymer industry is the lack of online instrument for 

measuring polymer quality [1]. Polypropylene (PP) 

grade specifications are generally quoted in terms of 

polymer melt flow index (MFI).  

The melt flow index is a widely used indicator of 

polymer quality [2] which is able to represent the 

molecular weight distribution of the polymer, where it is 

the main characteristic of polymer to determine its 

viscosity, strength and tensile strength. The grade of PP 

is mainly differentiated by the MFI of the product. The 

MFI is defined as the mass of polymer in grams flowing 

in 10 minutes through a capillary of specific diameter 

and length, by a pressure applied via prescribed 

alternative gravimetric weights for alternative 

prescribed temperatures. Experimental methodology 

to determine the MFI of polymer resins can be found in 

[3].  
MFI is the most critical quality variable for 

polypropylene due to the lack of sufficient fast 

measurement limits the control performance for 

polymer quality control [4]. MFI data used for this study 

were obtained from industry. In industry, MFI values are 

measured using laboratory testing, which is time 

consuming and requires more manpower. The 

measurement for MFI value is taken average 2 to 4 

hours. The typical sampling point is at the discharge of 

the reactors or at the polymer finishing section. 
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Whenever there is an offset of MFI during the process, it 

always has a lack of time before the appropriate action 

is taken because the measure of MFI is done in a period. 

If the MFI value exceeds from the set point, the product 

has to be downgraded to cheaper selling or direct 

disposed due to its inconsistent in MFI in that particular 

period [5].  

Appropriate measures cannot be implemented 

immediately to bring the process back to normal and 

minimize the production of off-specification polymer 

resins.  This off-specification product leads to losses and 

increasing overall production cost. Therefore, early 

identification of off-specification polymer production is 

vital. 
As an alternative, instead of experimental 

measurement, polymer MFI can be predicted on-line 

by developing a soft sensor.  A typical soft sensor 

consists of three main pillars: the process model, the 

variables used by the model and an update technique.   

Soft sensor for inferential measurement can be 

developed using first principle method, multivariate 

statistical method, or a hybrid of both methods. 

The use of neural network has become increasingly 

popular since the mechanistic models are either 

unknown or very complex [6-8]. There are many 

applications of ANN to solve different chemical 

engineering problems. ANN has been applied by one 

of the research [9] to develop a detailed mechanistic 

model of a polyethylene production process including 

material and energy balance to predict the reactor 

temperature, conversion and molecular weight 

distribution (MWD). However the accurate MWD has 

not been obtained using mechanistic model. Therefore, 

a feed forward artificial neural network (FANN) has 

been used to correct the MWDs. In propylene 

polymerization process itself, the model is developed to 

predict the end-used property of the final product. A 

virtual soft sensor to infer MFI of polypropylene has been 

developed [10] using neural network architecture that 

integrates independent combining analysis (ICA) and 

multi-scale analysis (MSA). ICA has been proven 

effective to estimate the relevance of certain features 

needed as input to the model. MSA was carried out to 

acquire more information and to reduce the 

uncertainty of the studied problem. The proposed 

method reported can provide prediction reliability and 

accuracy, which is capable of learning the relationships 

between process variables and the target MFI. Xia et al. 

(2010) [11] conducted a study about inferential 

estimation of polypropylene MFI using stacked neural 

network based on absolute error criteria. The estimation 

errors can be reduced by using single neural network 

model and can be further reduced using stacked 

neural network model. Gonzaga et al. (2009) [12] 

focused on measuring viscosity as one of the most 

important product quality of polyethylene 

terephthalate (PET). An artificial neural network based 

on soft sensor (ANN-SS) was developed by using feed 

forward ANN and trained with the historical dataset of 

the plant. The proposed ANN-SS was able to provide 

reliable estimation of the viscosity. 

Many researchers have been focusing on the 

development of the soft sensor using artificial neural 

network model as mention above. Nevertheless, the 

comparison of effectiveness on of various types of ANN 

models is limited in literatures. Therefore in this paper 

artificial neural network (ANN), serial hybrid neural 

network (HNN) and stacked neural network (SNN) 

models were developed to predict the MFI of 

polypropylene in industrial loop reactors. Using these 

models, the MFI can be estimated from the measured 

process variables instantly.  
 

 

2.0  PROCESS DESCRIPTION 

 
Understanding the process helps in determining the 

variables and parameters involved to develop ANN 

models. Therefore, this section will elaborate about the 

process of propylene polymerization in industrial loop 

reactors. Figure 1 shows the industrial loop reactors 

modeled in this study. This figure illustrates the typical set 

up for loop reactor used for propylene polymerization 

plant in Malaysia. 

Loop reactors are widely used in large-scale 

coordination polymerization industries because they 

offer low capital and maintenance cost, high 

production rate, high heat removal, and maintain 

uniform temperature, pressure and catalyst distribution. 

The reaction is a liquid phase propylene polymerization 

which is a part of the Spheripol process. The Spheripol 

process comprises of three steps, namely catalyst and 

raw material feeding, polymerization and finishing. The 

fourth-generation of Ziegler Natta catalyst is used due 

to its high activity and stereospecificity [13].   

 
Figure 1 Process flow diagram of industrial loop reactor 

 

 

Discharge from the first loop reactor is continuously 

fed into the second loop reactor. Fresh monomers and 

chain transfer agent are also injected into the second 

loop reactor. Discharge from the second loop reactor is 

flashed to separate the polymer particles from the non-

reacted monomers. The stream of polymer particles is 

then sent to the subsequent processes: impact 

copolymerization in fluidized-bed reactor and finishing. 
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3.0  MODELS DEVELOPMENT 
 

3.1  Data Collection 
 

The very first step to develop the ANN, HNN and SNN 

models was to gain information on the selected input 

data and requirements to build the network 

architecture. The input variables were selected 

depending on the factor of dynamic behavior of the 

chemical process, and kinetic reaction of the 

polymerization.  

The kinetic mechanism of the propylene 

polymerization reaction involved the catalyst, 

cocatalyst, donor, hydrogen and monomer affected 

the PP reaction. The propylene was the main substance 

in this polymerization process. The flow rate of catalyst, 

co catalyst and donor were chosen to show the 

generation of the active site of catalyst. The active 

catalyst site reacted with the monomer, hydrogen and 

cocatalyst, Triethylaluminium (TEAL) to form PP with 

certain chain length during transfer reaction step. Time 

was considered as input of the model to show the 

dynamic behaviour of PP because the polymerization 

process was changed with time as nonlinear process.  

The output variable in this study is the MFI of the 

polymer. The MFI was divided into three grades which 

are MFI A (10-12 g/10 min), MFI B (12-14 g/10 min) and 

MFI C (14-16 g/10 min). These grades are categorized 

according to the given range in order to analyze them 

thoroughly.  Figure 2 shows the input and output 

variables for ANN model. For HNN model, the error 

between actual MFI and MFI generated first principle 

model [14-17] was added as an additional input as 

shown in Figure 3. 
 

 
Figure 2 Artificial Neural Network (ANN) model 

 

 
Figure 3 Serial Hybrid Neural Network (HNN) model 

 

3.2 Development, Simulation And Validation Of 

ANN Models 

 

The built up of feed forward back propagation (FFBP) 

neural network can be divided into two major steps, 

which are network training and network testing. Then, 

the model was validated using the cross validation 

(unseen) data for all combined MFI. The data 

distribution to develop the models is shown in Table 1.  

The function ‘newff’ in MATLAB created a feed-forward 

model and requires three basic arguments, which are 

input vector, target vector and array containing the size 

of each hidden layer. Another argument is a cell array 

containing the name of the training function. The 

transfer function used in the hidden layer is tansig and 

pureline for the output layer. Levenberg-Marquadt was 

chosen as the training algorithm due to the fast back-

propagation algorithm in the toolbox and highly 

recommended as a first choice algorithm. Once a 

neural network is created, it needs to be configured 

and trained. Then, the network underwent the testing 

generalization. The investigation of ANN model was 

continued by pruning the unnecessary inputs networks. 
For each network structure that being developed, the 

initial weights and biases which showing smallest RMSE 

were recorded. 

 

3.3 Development, Simulation And Validation Of 

HNN Model 
 

The hybrid neural network uses the residue of MFI 

extracted from the first principle model [14-17] and 

actual data as an additional input into the ANN model. 

The first principal part consists of a set of nonlinear 

differential equations, resulting from relevant mass and 

population balance [16-17].  

The MFI model was developed according to power-

law-type correlation, as a function of polymer weight 

average molecular weight (WAMW). The correlation 

was developed based on polymer WAMW values from 

first principles simulation results and MFI values from 

experimental measurement from industry. 
As the MFI model is developed in the form of a 

power-law-type correlation, it is valid in a limited range 

of WAMW. Each MFI spec will require different MFI 

model. The developed MFI model is validated using 

other sets of industrial data in order to examine its 

accuracy and reproducibility. The example of 

relationship between MFI and polymer WAMW as a 

power-law-type model is illustrated in Figure 4. 

The procedure to develop the model is similar with 

the development of ANN model. Figure 2 illustrates the 

configuration of the model.  
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Figure 4 MFI-WAMW relationships as a power-law-type 

model 
 

Table 1 Data distribution for ANN and HNN model 

 

Data distribution 

Types of MFI 
A 

(10-12 

g/10min) 

B 

(12-14 

g/10 min) 

C 

(14-16 

g/10min) 

Training data set 34 30 32 

Testing data set 11 8 8 

Validation 5 5 5 

 

 

3.4 Development, Simulation And Validation Of 

SNN Model 

 

Stacked neural network (SNN) was proposed to 

improve the accuracy of the model due to a limited 

number of training data sets. Model accuracy was 

improved by combining several neural networks [18]. 

Wolpert (1992) concluded that stacked generalization 

can be expected to reduce the generalization error 

rate. Two layers were needed in constructing stacked 

neural network: level-0 and level-1. Level-0 generalizer 

output came from a number of diverse ANN models, 

each of which was trained and tested on independent 

data set. The level-1 generalizer was developed by 

using the results of level-0 generalizer. Level-1 

generalizer was trained by using the prediction of the 

level-0 models and the target value of level-0 validation 

data set. 

In this paper, the developed ANN and HNN models 

above were combined in a stacked neural network. 

The data distribution to develop SNN model are shown 

in Table 2.  

 

 
Table 2 Data distributions for stacked neural network model 

 

Data 

distribution 

Types of MFI  

Total A 

(10-12 

g/10min) 

B 

(12-14  

g/10 min) 

C 

(14-16 

g/10min) 

Training and 

testing (level-0) 
45 38 40 115 

Overall Testing 

(level-1) 
5 5 5 15 

 

 

The technique to produce level-1 data set for the 

stacked neural network was based on a simple 

example by Sridhar, Seagrave and Bartlett [19]:  

1. Set the level-0 data set DL0 equal to data set D. 

Train the M level-0 network using DL0. Denote 

the jth network trained on DL0 as Nj(DL0), and 

denote the set of these level-0 network as 

N(DL0)={Nj(DL0):1≤ j≤M}. The N(DL0) should be 

saved for use in the SNN model. 

2. Each type of MFI’s data is divided  into three 

equal parts. Suppose DL0 is the overall data, D 

is divided into D1, D2 and D3. Define CVi as D-

Di. CVi contains all the pattern in the data set 

D except the pattern in Di. For example, CV1 is 

D-D1.  

3. Train the M candidate ANN models using the 

data set CVi. Denote the jth network trained on 

CVi as Nj(CVi), and denote the set of these 

trained network as N(CVi)={Nj(CVi):1≤ j ≤M}. The 

reason for developing the networks N(CVi) is to 

construct level-1 data set DL1. Recall N(CVi) on 

the data set Di. Denote the prediction of the jth 

network for pattern n in the data set Di as ypnj. 

For pattern n, the output of the candidate 

models is collected in an M-dimensional vector 

ypn={ypnj:1≤ j ≤M}. The actual output yn and the 

network output ypn constitue the output and 

input respectively, for the nth pattern in data 

set DL1. Discard the networks {Nj(CVi):1≤ j ≤M}. 

4. Step 3 produces the level-1 data set DL1(yn, 

ypn). Data set DL1 contains the true output and 

the predictions of the M models, for all N 

training patterns. 

 

 

The steps above generated 18 data sets consist of 

all types of MFI for ANN and HNN model. As an example, 

for MFI A, three data set produced from ANN model 

and another three from HNN model.  MFI B and MFI C 

also produced three data set from ANN model and 

HNN model. The single networks for MFI A, B and C were 

developed by varying the amount of hidden nodes 

and weights. Each respective single network model was 

trained for ten times from 5 to 30 different numbers of 

hidden nodes. The validation error (RMSE) for each 

single network with their respective weights and biases 

for particular hidden nodes were identified. The 

selection of the best single networks according to its 

weights and biases was based on the best validation 

result. 

Figure 5 illustrates the stacked neural network that 

being developed in this paper. X is input vector and Y, 

output level-1. NN1, NN2, NN3....NNm are the single 

network developed in level-0. Y1, Y2, Y3.....Ym are the 

output result from level-0 networks.   
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Figure 5 Stacked Neural Networks (SNN) Model 

 

 

4.0  RESULT AND DISCUSSION 
 

The neural network models (ANN, HNN and SNN) 

developed will be tested with the different data 

distribution: all ranges of MFI  and each grades of the 

MFI. This is because, certain models are only able to 

give the better prediction result for certain MFI.  

Table 3 shows the results for the neural network 

models when use the summation of all grades of MFI. As 

shown in Table 3, all the models generated the RMSE 

below 6% . HNN model is the best model to predict 

overall MFI types with the least RMSE, 0.010848. This is 

because its capability to calculate the residue 

between actual plant data MFI value and simulated 

MFI. The ANN model gives 0.019366 RMSE values. The 

number of nodes required are 27. In order to secure the 

ability of the network to generalize, the number of 

nodes has to be kept as low as possible.  Having a large 

excess of nodes, the network will become like a 

memory bank that can recall the training set to 

perfection, but it did not perform well on samples that 

was not part of the training set. The stacked neural 

network (level-1) gave the highest RMSE (0.059132) as 

compared to the ANN and HNN model when 

predicting the overall MFI types.  

 
Table 3 The performance of the neural network model 

 

Types of Model No of 

hidden 

nodes 

R2 RMSE 

ANN Model 27 0.977895 0.019366 

HNN Model 20 0.994395 0.010848 

SNNModel 

(level-1) 

5 0.851910 0.059132 

 
 

For further investigation, the ANN, HNN and SNN 

models were tested with each type of MFI. Table 4 

shows the performance of the models for each MFI. As 

compared to others model, the stacked neural network 

model has shown the lowest RMSE for each type of MFI. 

The capability of the stacked neural network to 

effectively integrate the knowledge acquired by 

different networks can produce better prediction.  

Stacked neural network had shown good results for the 

experiments with different grades of MFIs. In addition, 

the stacked neural network set up with different types 

of network such as hybrid, and normal neural networks 

provide accurate expectations. So stacked neural 

network has been providing the most optimal ways to 

anticipate the target values. 

 
Table 4 The performance of the models to predict each grades 

of MFI 

 

Types of Model ANN Model HNN Model SNN Model  

(level-1) 

No of nodes in 

hidden layer 

20 27 6 

Types of MFI RMSE RMSE RMSE 

A 

(1012g/10min) 

0.015156 

 

0.014916 

 

0.012072 

 

B 

(12-14g/10min) 

0.076682 

 

0.041402 

 

0.017527 

 

C 

(14-16g/10min) 

0.037862 0.046437 0.015287 

 

 

 

5.0  CONCLUSION 
 

In this work, the single artificial neural network (ANN), 

hybrid neural network (HNN) and stacked neural 

network (SNN) models were successfully developed to 

predict melt flow index (MFI) for the Spheripol propylene 

polymerization process. The models developed were 

tested with all ranges of MFI and each grade of MFI 

data.  
From the finding, the single HNN model is the best 

model to predict all ranges of MFI with RMSE value is 

0.010848, followed by ANN (RMSE=0.019366) and SNN 

models (RMSE=0.059132). It is because the first principle 

models described certain characteristics of the process 

being simulated. The introduction of the additional 

information (residue of MFI extracted from the first 

principle model) generated from the first principle 

model assisted the HNN model to perform better in 

predicting the MFI. 

The SNN model (with the number of nodes in level-1 

is 6) is the best model once tested with each type of 

MFI. It gave the lowest RMSE value for each type of MFI 

(0.012072 for MFI A, 0.017527 for MFI B and 0.015287 for 

MFI C). The capability of the SNN to effectively integrate 

the knowledge acquired by different networks can 

produce better prediction. The stacked neural network 

is a general method of using the high level model to 

combine lower level model to achieve greater 

predictive accuracy. It was set up with different types 

of network and the input variables provided accurate 

expectations. The SNN is also recommended when only 

a limited number of data is available 

As a conclusion, the neural network models (ANN, 

HNN and SNN) have the capabilities in modelling 

procedures that utilize the available information 

efficiently without being too time-consuming and 

expensive. Specifically, the most suitable model to 

serve as a soft sensor to measure the MFI for the 

Spheripol propylene polymerization process are the 

HNN model for predicting all ranges of MFI and SNN 

model for predicting each grades of MFI.  
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