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A physical problem such as diffusion can be described mathematically in two ways, i.e. by Differen­
tial Equation Formulation or Integral Formulation. An integral form is derived from its governing dif­
ferential equation using the method of Variational Principle for a three-dimensional heat flow equation. 
The equivalent Integral Formulation will be a very useful and an inevitable tool in the formulation of 
finite element equatipn. 

Introduction 

Problems in engineering can be classified as steadystate, transient, and eigenvalue [4]. The field pro­
blems such as the transient behavior of heat conduction, saturated-unsaturated porous media flow, solute 
transport studies, and consolidation are the typical examples of those governed by parabolic type diffu­
sion and diffusion with convection equations. Each of these problems can be described mathematically 
by differential equation formulation or by its equivalent intergal formulation. 

In this paper the time-dependent heat flow problem is considered as an illustration to the derivation 
of integral and finite element formulation. The remaining types of diffusion problems will then follow 
in a similar manner. 

Governing Diffusion Equation 

The basic equation governing the 3-dimensional transient heat flow in solids (Carslaw and Jaeger, 
1959) is 

~(KxaT)+£_ 
ax ax ay 

+Q' 

(Ky dT ) + ~ (Kz 3T ) 
ay az 3z 

= pc 3T 
3t 

(I) 

in which T = temperature, 15· = density, c = specific heat, t = time, Q' = specified heat flux, and 
Kx, Ky. Kz = thermal conductivities in x, y, and z directions, respectively. 

Initial Conditions: For timewise solution~ initial conditions on Tare required and can be stated as follows 

T(x,y,z,o) = T
0 

(x, y, z) (2a) 

Boundary Conditions (B.C.): For the heat flow domain shown in Fig. 1, the following general boundary 
conditions can occur in diffusion problems: 

T = T 
3T = (3T) 
on 31\ 

FIG. 1 HEAT FLOW DOMAIN 
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1. Temperature potential B.C. 

T=T on surface sl (2b) 

2. Heat flux B.C. 

on surface s2 (2c) 

where rt is the unit outward normal vector to the surface boundary. It represents the direction cosines 

of lx, 1y. and 1z and the overbar denotes a prescribed quantity. 

Integral Formulation 

The finite element equations can be derived by using either a variational principle or residual pro­
cedure. For problems with certain mathematical properties such as self-adjointness of heat flow, valid 
variational principles are available. For certain other problems, it may not be possible to establish a 
mathematically consistent variational principle. The Galerkin's residual procedure can be used to derive 
finite element equatiohs for such problems [5]. 

Variational Principle 

The integral equation will be derived from Eq . 1 using the variational principle. For simplicity the 
material in Eq. 1 is assumed thermodynamically isotropic and homogeneous, i.e., Kx = Ky = Kz = K, a 
constant that gives 

K v2 T + Q' P c aT 
aT 

(3) 

in which V 2 = a2 ;ax2 + a2 /ay2 + a2 /az2 is the Laplacian ofT. A quantity o T called 
"virtual temperature" is introduced which is an arbitrary temperature and has nothing to do with actual 
temperature T . With o T we construct Eq.3 by the following functionalo7T: 

07T = fff 
pc 

(~) oT dv _ fffv2 ToTdv - JfJQ*oTdv = o (4) 
v K at v v 

Q' 
~2T 

aT + aT + aT + 

in which Q* --
' 

= V. VT = V. (- + -j + - k ) ' K ax ay az 

; ..... ..... 
and i, j, and k are the vectors in x, y, and z directions, respectively. 

Divergence Theorem: For the sake of approaching the required formulation we have to convert the se­
cond term of the volume integrals in Eq. 4 into surface integral [2]. It is succeeded by applying the divergence 
theorem of the form 

Iff V . qdv = ff q. fids (5a) 
v s 

in which q, it are the heat flux and unit vector normal to the elemental surface dS. By setting q = (\7 ~ ) 
o ~ the theorem of Eq. 5a is modified to 

fff v. ( V4l) o ~dv = ff o~( v~ .n)dS (5b) 
v s 

If the LHS of Eq . 5b is expanded we get 
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(2b) fff . ( 'iJ . 'i/4>) 84>dv + fff 'il4>. 'i/(84>) dv = ffl>4> ( 'i/4> .rt)dS 
v v s 

(5c) 

Replacing ~ with T and equating Eq .. 4 and Eq. 5c we obtairl 

sines 

(2c) 

JJJ .1!S:.. ( oT ) 8Tdv + JJJ VI. 'iJ' (oT) dv 
v K at v 

JJ oT ( 'iJT . rt) dS - JJJ Q*oTdv 0 
v 

(6) 
>ro-
ilid ~ 

h a in which ('VT.ii) = ( oT) is the heat flux B.C. Expanding the third term of Eq. 6 into surface Stand surface 
ive on 

1e 

a 

) 

. . oT oT 
S2, setting 8 T 0 on St where T 1s gtven, and apply B.C.- (- ) on S2 gives 

on on 

JJJ pc oT 
(at) oTdv + JJJ 'VT. 'iJ ( oT) dv 

v K v 

- JJJ Q*oTdv - JJ ( oT ) oTdS 0 (7a) 
v s2 on 

This integral equation implies the heat conduction equation and in an expanded form Eq. 7a is written as 

J J J pc ( oT ) 0 Tdv + J J J ( oT 
v K ot v ox 

ooT + oT ooT + oT ooT ) dv 
ox oy oy oz oz 

- fff Q*oTdv - JJ ( oT ) oT dS = o 
on 

v 

Finite Element Formulation 

(7b) 

Eq. 7 governs the integral formulation for transient heat flow through 3- dimensional media; in fact 
there are a number of other penomena such as fluid flow in porous rigid media that are also governed 
by similar equations. The firlite element equations can therefore be derived and there are some steps re­
quired in this approximations. Only a general element and shape function will be discussed herein, the specific 
form of discretization of the continuum and selection of certain shape function will depend on the type 
of problem and the interest of the worker. A more comprehensive discussion of the subject can be found 
in references [5], [8] and [ 10]. 

FJement Equations 

For each element an approximation function is selected to express the temperature within the ele­
ment. In i - th element we assume 

and 

T = N qi 

T = ~ 9.i 

oT 
ox 

0 
ox ® qi = ~X ~i 
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aT a ~) ~i = ~y ~ ay ay 
(9b) 

aT (l 
~) ~i = !lz ~i az az 

(9c) 

where tl is the shape function and dependent on the space coordinate x, y, and z,9i is the vector of nodal 
temperature, and T and 9i denotes the time derivative of temperature and nodal temperature, respective­
ly. »x. JJy and Pz incorporate the spatial derivatives of the shape function in x, y, and z directions, respec­
tively. Substitution of Eqs. 8 and 9 into Eq. 7leads to the formation of element heat capacitance matrix 
(gi), conductivity matrix (~i), and nodal heat flux vector (fi). They are respectively obtained from the 
1st. term, 2nd. term, and 3rd. and 4th. terms of Eq. 7 and are described below 

Iff pc ( fl) oTdv o'liT ~i Si (lOa) 
vi K at 

JJJ 'VT . 'V (oT) dv oqiT Ki qi (lOb) 
vi 

JJJ Q*oTdv + JJ 
aT ( an )6 TdS oqiT Fi (lOc) 

V· 82· 1 
1 

where 

ci JJJ .!!::_ N T Ndv (Capacitance Matrix) (lla) 
V· K -
1 

Ki = JJJ O~x T~x + T T (Conductivity Matrix) (llb) ~y ~y + ~z ~z) dv 
vi 

Fi JJJ NT Q*dv + JJ !/ ( aT ) dS (Flux Vector) (llc) 

vi s2· 
an 

l 

in which L represents the boundary function and !: = ~on boundary s2.. The finite element equation is 
I 

obtained by combining Eq. 10 and Eq. 11; assemblying the element equation over the whole region of 
the heat flow problem and assuming B.C. On S1 has been applied, the following general equation is formed; 

(;q + Kq = F - -- ,., 
(12) 

Eq. 12 is the form of 1st order ordinary differential equation for 9 and can be solved using certain available 
procedures on computer [9]. 

Other Field Problems 

A number of other problems occur in various disciplines of engineering that involve the phenomenon 
of diffusion. This can include the saturated-unsaturated porous media flow and consolidation in soils. 
The governing differential equations for their respective fields are shown in Table 1. For saturated flow 
in porous media it applies to both confined and unconfined aquifer systems in groundwater [1]. In un­
saturated flow, problems are frequently encountered in the soil-water studies which involve, for instance, 
infiltration or simultaneous transfer of heat and moisture. These governing differential equations can be 
used to simulate some important processes, particularly in the prediction of isothermal and non-isothermal 
evaporaton of soil water, gravity drainage without evaporation, and evaporation without drainage [7]. 

Also illustrated in Table 1 is a problem that governed by diffusion with convection type parabolic 
differential equation. It involves the transport through diffusion and convection of chemicals, pollutants, 
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(9b) 

(9c) 

nodal 
ctive­
:spec­
tatrix 
n the 

:IOa) 

lOb) 

IOc) 

Ia) 

I b) 

I c) 

is 

:>f 
d; 

2) 

le 

n 
'· 
v 

contaminants, and dissolved salts in water under saturated and unsaturated conditions. EI-Damek [1983] 
used the Galerkin's 1-dimensional finite element models to solve simultaneously the moisture, heat, and 
solute transport in porous media. 

TABLE 1: FIELD PROBLEMS OF PARABOLIC TYPE DIFFUSION EQUATIONS 

Field Problem Governing Differential Equation 

I. 2-Dimensional Transient Saturated a 
[Kx ~ ~] + 

a 
[~ ~] a 4> 

Flow in Porous Media. ax ay ay + Q = c at 
2. 2-Dimensional Transient Heat Flow a [K(T) oTJ + a [K(T) ar] + Q c ar = 

in Solids. ax nx ay ay at 
a (K(Ijl) ( ~ + 1 )] = C(ljl) ~ or 3. Infiltration Equation az az a .t 

~ [D(&) ae] aK (e) ae 
az az + az at 

4. !-Dimensional Consolidation in Soils. K a2p* a p• 
= mv TI 

'Yw az2 

5. !-Dimensional Simultaneous Transfer of V ( Dr VT) + V ( De V e ) aK = ae 
Moisture and Heat in Unsaturated a z at 

and 

Porous Media. 
ar a 

V·(A.VT) + pL''V (De, v ve) = Cat where v=-az 

6.•• !-Dimensional Non-reacting Solute a (D ac*) _ a (v C*)- Q = ac• 
Transport in Porous Media ax X ax Ox X at 

where 

41 ,T,I}I,E>, p*,C* = dependent variables, respectively as fluid potential, temperature, suction, moisture, excess 

K,D,A. 
C, mv, 'Yw, p, L 

vx 
Q 

porewater, and concentration of solute. 
= material properties, conductivity and diffusivity. 
= diffusive agents (fluids) properties 
= velocity. 
= applied flux (fluid, heat, etc) . 

••diffusion with convection problem. 

Conclusion 

The integral formulation can therefore be used for the derivation of element equations and solves 
the heat conduction problem as well as other field problems, like sat-unsaturated porous media flow, solute 
transport studies, and consolidation. We may note, however, that the finite element formulation for all 
these problems will essentially be the same except for different relevance of material properties and mean­
ings of the unknowns such as temperature and fluid head. 
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