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Abstract

A physical problem such as diffusion can be described mathematically in two ways, i.e. by Differen-
tial Equation Formulation or Integral Formulation. An integral form is derived from its governing dif-
ferential equation using the method of Variational Principle for a three-dimensional heat flow equation.
The equivalent Integral Formulation will be a very useful and an inevitable tool in the formulation of
finite element equatipn.

Introduction

Problems in engineering can be classified as steadystate, transient, and eigenvalue [4]. The field pro-
blems such as the transient behavior of heat conduction, saturated-unsaturated porous media flow, solute
transport studies, and consolidation are the typical examples of those governed by parabolic type diffu-
sion and diffusion with convection equations. Each of these problems can be described mathematically
by differential equation formulation or by its equivalent intergal formulation.

In this paper the time-dependent heat flow problem is considered as an illustration to the derivation

of integral and finite element formulation. The remaining types of diffusion problems will then follow
in a similar manner.

Governing Diffusion Equation

The basic equation governing the 3-dimensional transient heat flow in solids (Carslaw and Jaeger,
1959) is
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in which T = temperature, § = density, ¢ = specific heat, t = time, Q' = specified heat flux, and
Ky, Ky, Kz = thermal conductivities in x, y, and z directions, respectively.

Initial Conditions: For timewise solution, initial conditions on T are required and can be stated as follows

T(x,y,z,0) = T, (x,y,2) (2a)

Boundary Conditions (B.C.): For the heat flow domain shown in Fig. 1, the following general boundary
conditions can occur in diffusion problems:
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FIG. 1 HEAT FLOW DOMAIN

JURNAL TEKNOLOGI Bil.6




1. Temperature potential B.C.

T=T on surface S; (2b)
2. Heat flux B.C.

T.#= 2T = (_QTI) face S 2
v <n £ on surface S, (2¢)
where 1 is the unit outward normal vector to the surface boundary. It represents the direction cosines
of lx, ly, and 1 and the overbar denotes a prescribed quantity.

Integral Formulation

The finite element equations can be derived by using either a variational principle or residual pro-
cedure. For problems with certain mathematical properties such as self-adjointness of heat flow, valid
variational principles are available. For certain other problems, it may not be possible to establish a
mathematically consistent variational principle. The Galerkin’s residual procedure can be used to derive
finite element equatiohs for such problems [5].

Variational Principle
The integral equation will be derived from Eq. 1 using the variational principle. For simplicity the

material in Eq. 1 is assumed thermodynamically isotropic and homogeneous, i.e., Ky = Ky =K;=K,a
constant that gives

2 s i)
KV2T +Q = p¢ _a.’g 3)
in which Vv 2 =93%/0x% +3%/dy?* + 8% /02 is the Laplacian of T. A quantity T called

“‘virtual temperature’’ is introduced which is an arbitrary temperature and has nothing to do with actual
temperature T. With & T we construct Eq.3 by the following functional §:

sm= M0 PC (2Ty s gy — JISV? T8Tdv— [ffQ*6Tdv =0 @
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a.nd-i‘, j, and k are the vectors in x, y, and z directions, respectively.
Divergence Theorem: For the sake of approaching the required formulation we have to convert the se-

cond term of the volume integrals in Eq. 4 into surface integral [2]. It is succeeded by applying the divergence
theorem of the form

IV dav =y has (5a)
v S

in whichd, n"are the heat flux and unit vector normal to the elemental surface dS. By setting a = (V¢ )
8¢ the theorem of Eq. 5a is modified to

[ V. (Vo) 8 ¢dv = gf 56 ( Vo .n)ds (5b)
v

If the LHS of Eq. 5b is expanded we get
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(2b) I (V.Vd)sbdv + [ff V. V(8d) dv = [f8d ( Vé.ﬁ)dS (5¢)
v v S

Replacing ¢ with T and equating Eq. 4 and Eq. 5c we obtain

(2¢)
I e (ﬂ) 8Tdv + [ff VTI. V' (8T) dv
nes o K ot v

— Jf 8T (VT.h)dS — fff Q*Tdv = 0

v

S =8, +8, (6)
0-
id 3T u
a in which (VT.E') = ( — ) is the heat flux B.C. Expanding the third term of Eq. 6 into surface Sy and surface

on
e —
: ST aT oT .
32, setting 8 T = O on Sy where T is given, and apply B.C. a— = ( -a—- ) on Sy gives
n n
oT

JIJ e () 8Tdv + fff VT. V (8T) dv
e v K ot v
3

= I qQestav — g5 (2L ) sTds = 0 (7a)
v

S2
This integral equation implies the heat conduction equation and in an expanded form Eq. 7a is written as

2T , 9T 28T , 3T BT ) 4,

IS pe ( ATy sTav + T AT
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v S,

(7b)

Finite Element Formulation

Eq. 7 governs the integral formulation for transient heat flow through 3 — dimensional media; in fact
there are a number of other penomena such as fluid flow in porous rigid media that are also governed
by similar equations. The finite element equations can therefore be derived and there are some steps re-
quired in this approximations. Only a general element and shape function will be discussed herein, the specific
form of discretization of the continuum and selection of certain shape function will depend on the type
of problem and the interest of the worker. A more comprehensive discussion of the subject can be found

in references [5], [8] and [10].

Element Equations

For each element an approximation function is selected to express the temperature within the ele-
ment. In i — th element we assume

T=N q (8a)
/] 8b
T=N 4§ e
and
(9a)

T - 2 g s
ox X (U)Sl EXSI
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9T - o ;= B (9b)
dy oy @ & Y

T _a_ - g 9)
oz dz ® 4 =z % :

where N is the shape function and dependent on the space coordinate x, y, and z,9; is the vector of nodal
temperature, and T and gi denotes the time derivative of temperature and nodal temperature, respective-
ly. By, By and B, incorporate the spatial derivatives of the shape function in x, y, and z directions, respec-
tively. Substitution of Eqs. 8 and 9 into Eq. 7 leads to the for_mation of element heat capacitance matrix
(€Y, conductivity matrix (K'), and nodal heat flux vector (F)). They are respectively obtained from the
Ist. term, 2nd. term, and 3rd. and 4th. terms of Eq. 7 and are described below

i pe (9Ty stav = 8T (i g 10a
v X ( at) v 9 ¢ 9 (109)
fif VT.V GT)dv = 8qT K g (10b)
V: - -
1
T
[f QWTdv + ff  (3;)TdS = 8qT F (10¢)
vi S, )
1
where
ct = Jif P_Iz N T]:Jdv (Capacitance Matrix) (11a)
V.
1
Ki = T T T ivi i
5 f{f ®, "B, * §y Ey + B, 'B,)dv (Conductivity Matrix) (11b)
i
Ei = [ff NTQ*dv + ff LT (%T_) ds (Flux Vector) (11¢)
n
% S2i

in which L represents the boundary function and L = Non boundary S,.. The finite element equation is
e i

obtained by combining Eq. 10 and Eq. 11; assemblying the element equation over the whole region of
the heat flow problem and assuming B.C. On S has been applied, the following general equation is formed;

Ca+Kg=F (12)

Eq. 12 is the form of 1st order ordinary differential equation for q and can be solved using certain available
procedures on computer [9].

Other Field Problems

A number of other problems occur in various disciplines of engineering that involve the phenomenon
of diffusion. This can include the saturated-unsaturated porous media flow and consolidation in soils.
The governing differential equations for their respective fields are shown in Table 1. For saturated flow
in porous media it applies to both confined and unconfined aquifer systems in groundwater [1]. In un-
saturated flow, problems are frequently encountered in the soil-water studies which involve, for instance,
infiltration or simultaneous transfer of heat and moisture. These governing differential equations can be
used to simulate some important processes, particularly in the prediction of isothermal and non-isothermal
evaporaton of soil water, gravity drainage without evaporation, and evaporation without drainage [7].

Also illustrated in Table 1 is a problem that governed by diffusion with convection type parabolic
differential equation. It involves the transport through diffusion and convection of chemicals, pollutants,
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contaminants, and dissolved salts in water under saturated and unsaturated conditions. El-Damek [1983]
used the Galerkin’s 1-dimensional finite element models to solve simultaneously the moisture, heat, and
solute transport in porous media.

%)
TABLE 1: FIELD PROBLEMS OF PARABOLIC TYPE DIFFUSION EQUATIONS
nodal
ctive- Field Problem Governing Differential Equation
‘Spec-
1atrix
n the . 2-Dimensional Transient Saturated & [K a_¢] 3 a_ [ ﬂ] + 0= C ¢
Flow in Porous Media. ox L™x0dx oy y Q= C3t
2. 2-Dimensional Transient Heat Flow B [K T) ﬂ‘] ¢ ¥ [K (T) aT ] %0 «¢ o
- in Solids. ax ax’ 3y dy at
10a) 3 3 _ 3
3. Infiltration Equation 2z K(y) ( a—f +1 )] = C(¥) éf‘f 'y
) 00
10b 2 Ip@®) 28| K = 00
) az[ ( ) az]"’ oz (e) ‘a_t
2 9 p*
10c) 4. 1-Dimensional Consolidation in Soils. Y m, -a—f
Tw 0822
5. 1-Dimensional Simultaneous Transfer of V(Dp VT) + V(Dg ve) — IK_ 9@ and

Moisture and Heat in Unsaturated dz

(S5
—

Porous Media.
oT ac
V(AVT) + pL'V (Dg v V@) = C5 where V=75
13 6.** 1-Dimensional Non-reacting Solute i (D ac*) _ 9 (v C*) — 6 = 3C*
Transport in Porous Media ax X x 9x X ot
|b)
where

c) o,T,y,0, p*, C* = dependent variables, respectively as fluid potential, temperature, suction, moisture, excess

porewater, and concentration of solute.

K,D,\ = material properties, conductivity and diffusivity.
: C, My, Yy Ps L = diffusive agents (fluids) properties
18 Vx = velocity.
>f Q = applied flux (fluid, heat, etc).

**diffusion with convection problem.

Conclusion

The integral formulation can therefore be used for the derivation of element equations and solves
the heat conduction problem as well as other field problems, like sat-unsaturated porous media flow, solute
transport studies, and consolidation. We may note, however, that the finite element formulation for all
these problems will essentially be the same except for different relevance of material properties and mean-
ings of the unknowns such as temperature and fluid head.
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