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Graphical abstract 
 

 

Abstract 
 

Regression model is one of the techniques employed in Joint Analysis of 

Electromyography Spectrum and Amplitude (JASA) to investigate the behaviour of 

muscle fatigue indices. However, the analysis of the electromyography signal is influenced 

by the epoch length and regression model used. To meaningfully describe the behaviour 

of fatigue indices, this study was conducted to determine the appropriate epoch length 

and regression model for 15-second segment of electromyography signal. Ten subjects 

participated in this study. With their right forearm and upper arm formed an angle of 90 

degree, the subjects were asked to hold a 2-kg dumbbell and stayed in that position for 2 

minutes. Surface electromyography (sEMG) was used to record the signal from the biceps 

brachii muscle. Two fatigue indices were extracted: Root Mean Square (RMS) and Mean 

Frequency (MNF). The 120-second sEMG signal from each subject was then sliced into 8 

segments (15 seconds each). In each segment, the effect of different epoch lengths (1-

second, 3-second, and 5-second) was studied. Standard Error Estimate (SEE) was used to 

decide the suitable epoch length. The 3-second and 5-second epoch lengths were found 

to fit the regression model better (smaller SEE value). When 3-second and 5-second 

epoch lengths were applied in different regression models (linear and 

polynomial), polynomial regression was found to better estimate the behaviour of the 

fatigue indices (higher correlation coefficient). This study concludes that 3-second and 5-

second epoch length can fit the polynomial regression well. However, fatigue behaviour 

(pattern of changes in fatigue indices) for every 15-second segment of sEMG signal is 

better described by JASA using polynomial regression with 3-second epoch length. 

 

Keywords: Regression line, sEMG, epoch, muscle activity, isometric contraction, JASA 

 

Abstrak 
 

Model regresi adalah salah satu teknik yang digunakan dalam Analisis Bersama Spektrum 

dan Amplitud Electromiografi (JASA) untuk menyiasat tingkah laku indeks keletihan otot.  

Walau bagaimanapun, analisa isyarat electromiografi dipengaruhi oleh panjang epok 

dan model regresi yang digunakan. Untuk menerangkan tingkah laku indeks keletihan 

dengan lebih bermakna, kajian ini dilaksanakan dengan tujuan untuk menentukan 

panjang epok dan model regresi yang sesuai untuk 15-saat segmen isyarat 

electromyography.  Sepuluh subjek telah mengambil bahagian dalam kajian ini. Dengan 

lengan kanan dan lengan atas membentuk sudut 90 darjah, subjek telah diminta untuk 

memegang 2-kg dumbel dan berada dalam kedudukan tersebut selama 2 minit. 

Electromiografi Permukaan (sEMG) telah digunakan untuk merekodkan isyarat otot 
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brachii bisep. Dua indeks keletihan diekstrak: Punca-Min-Kuasa-Dua (RMS) dan Frekuensi 

Min (MNF). Isyarat sEMG selama 120 saat dari setiap subjek kemudian dihiris kepada 8 

segmen (15 saat setiap satu). Dalam setiap segmen, kesan panjang epok yang berbeza 

(1-saat, 3-saat, dan 5-saat) telah dikaji. Aggar Ralat Piawai (SEE) telah digunakan untuk 

menentukan panjang epok yang sesuai. Panjang epok 3-saat dan 5-saat didapati 

memadani model regresi dengan lebih baik (nilai SEE yang rendah). Bila panjang epok 3-

saat dan 5-saat digunakan dalam model regresi yang berbeza (linear dan polinomial), 

regresi polinomial didapati lebih baik dalam menganggarkan tingkah laku indeks 

keletihan (pekali sekaitan yang lebih tinggi). Kajian ini menyimpulkan bahawa panjang 

epok 3-saat dan 5-saat dapat memadani regresi polinomial dengan baik. Walau 

bagaimanapun, tingkah laku keletihan (corak perubahan indeks keletihan) untuk setiap 

segmen 15-saat dari isyarat sEMG boleh digambarkan dengan lebih baik oleh JASA 

menggunakan regresi polinomial dengan panjang epok 3-saat. 

 

Kata kunci: Garisan regresi, sEMG epok, aktiviti otot, pengecutan isometri, JASA  

 

© 2016 Penerbit UTM Press. All rights reserved 

  

 

 
1.0  INTRODUCTION 
 

Muscle fatigue is known as a feeling of weakness or 

muscle pain or a reduction in muscle performance 

[1]. It describes the gradual decrease in muscle’s 

ability to generate force, perform voluntary 

movements, or perform repetitive actions [2]. The 

reduction in muscle force can be monitored by 

analysing changes in electromyography activities.  

An electromyography (EMG) is a measurement of 

the electrical activity in muscles as a by-product of 

contraction. Fatigue is known to be reflected in the 

EMG signal as an increase of its amplitude and a 

decrease of its spectral characteristics [3].   

Human muscles start experiencing fatigue during 

submaximal voluntary contraction [4]. The stimulation 

of motor neurons during muscle contraction induces 

the production of action potential [5]. The 

intensification of muscle contraction leads to the 

increase in action potential; thus, it increases the 

amplitude of the EMG signal [4]. However, once the 

muscle reaches the maximal voluntary contraction, 

the action potential declines and so as the 

amplitude of the EMG signal [4]. In frequency 

domain, changes in spectral parameters are related 

to the variation of velocity produced by the muscle 

fibre [2]. During submaximal voluntary contraction, 

muscle fibre conduction velocities tend to decrease; 

thus, causes the spectral parameters to shift to lower 

frequency [4]. 

The changes in both time and frequency domains 

had been used by Luttman et al. [6] to decide either 

the muscle had experienced fatigue or force 

changes. The method is called Joint Analysis of 

Electromyography Spectrum and Amplitude (JASA). 

In general, JASA method divides muscle activity into 

4 regions: fatigue, overcome fatigue, force increase 

and force decrease [7], as summarized in Table 1.   

It can be seen in Table 1 that muscle fatigue can 

be distinguished from muscle force based on the 

behaviour (changing pattern) of fatigue indices 

shown in the two domains: time-domain and 

frequency-domain.   

Table 1 Regions of muscle activity based on JASA 

Region 
Trend of fatigue indices 

Time Domain  Frequency Domain  

Fatigue Increase Decrease 

Overcome 

Fatigue 
Decrease Increase 

Force 

Increase 
Increase Increase 

Force 

Decrease 
Decrease Decrease 

 

 

The muscle is considered as experiencing fatigue 

when fatigue indices in time domain show opposite 

trend (increasing or decreasing) to the fatigue 

indices in frequency domain. On the contrary, when 

fatigue indices in time-domain and frequency-

domain show same trend, the muscle is classified as 

experiencing force changes. 

The commonly extracted fatigue indices in time-

domain as well as frequency-domain are listed in 

Table 2. Root Mean Square (RMS) and Average 

Rectified Values (ARV) are the commonly used 

amplitude-based fatigue indices in studying EMG 

signal inconsistency [6]. To describe the changes in 

frequency, Mean Frequency (MNF) and Median 

Frequency (MDF) are normally used. The reduction of 

muscle fibre velocity explains the decrement of MNF 

and MDF that are normally observed during fatigue 

condition [8, 9]. 

Regression model is one of the widely used 

techniques in trend analysis. In fatigue analysis, the 

goal is to discern whether the fatigue indicator has 

increased or decreased over time [10]. In regression 

analysis, the length of epoch influences the 

scattering of data which in turn affects the accuracy 

of the trend analysis [7, 11]. Epoch length used in 

muscle fatigue study ranges from 0.5 seconds to 5 

seconds. Mesin et al. [1] used 0.5-second epoch 

length to determine the index value of muscle 

fatigue on peripheral muscle and muscle central.  On 
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the other hand, Hendrix [12] used 5-second epoch 

length to determine muscle fatigue threshold.   

To describe the behaviour of the fatigue indicators, 

linear and polynomial regression models are 

commonly used. Oliveira and Gonçalves [13] used 

linear regression model to determine the onset of 

muscle fatigue (fatigue threshold). In contrast, Potvin 

and Bent [14] applied polynomial regression model 

to observe the trend of the fatigue indicators during 

dynamic contraction.   

The accuracy and strength of the trend analysis 

are normally described using Standard Error Estimate 

(SEE) and Correlation Coefficient (r) respectively 

[15,16]. These values (SEE and r) are used to reflect 

the influence of the data distribution and types of 

regression model in describing the behaviour of 

fatigue indices. The lower the SEE value, the nearer 

the distributed data to the regression line. 

Meanwhile, the closer the r-value to 1, the stronger 

the relationship between the fatigue index and the 

independent data.   
The effect of epoch length and type of regression 

model on muscle fatigue study lead this research to 

determine the appropriate:  

i. epoch length (1 second, 3 second or 5 

second) for good distribution of surface EMG 

data in JASA 

ii. regression model (linear or polynomial) to 

describe the behaviour of the fatigue indices.  

 

 

2.0  METHODOLOGY 
 

2.1  Participants 

 

Ten college students (male = 5; female = 5) from 

Universiti Teknologi Malaysia (UTM) participated in this 

study. None of them have had muscle stiffness 

complaints. Their mean (± standard deviation) age, 

body mass, and height were 23.5 (± 1.3) years, 59.9 (± 

8.3) kg, and 161.6 (± 7.68) cm, respectively. 

 

2.2  Data Acquisition 

 

The subjects were first told about the flow of the 

experiment. They were also asked to minimize their 

movement during the experiment to reduce noise.   

Isometric contraction was the main task in this 

study. By locking the elbow in 90-degree position, the 

subjects were required to hold a 2-kg dumbbell for 2 

minutes. Surface EMG (Neuro Prax System) was 

chosen to record the electrical signal of biceps 

brachii muscle activity. Surface EMG involves non-

invasive process and is suitable to be applied on the 

subject's body [17]. Disposable electrodes which 

were affixed to the subject’s skin were used in this 

study to capture the sEMG signal. The frequency of 

muscle signal ranges up to 500 Hz; thus, 1 kHz 

sampling frequency was applied in this study.   

The captured raw signal required further 

processing.  Off-line analysis was performed in laptop 

using Matlab software. At this stage, the unwanted 

signal (noise) was removed and the fatigue indices of 

interest were extracted. 

 

2.3  Data Analysis 

 

To produce a clean muscle signal, band-pass filter 

(cut-off frequencies of 30 Hz and 500Hz) was used to 

filter the noise and band-stop filter was applied to 

remove the 50 Hz line noise. Although the bandwidth 

of 30-300 Hz and 20-500 Hz were used by Danion [18] 

and Thongpanja [19] respectively, this study used 30 

Hz low cut-off frequency to reduce the ECG 

interference [20] and 500 Hz high cut-off frequency 

to avoid the anti-aliasing within sampling [21]. 

Fatigue indices in both time and frequency domains 

were then extracted from the filtered signal.  

RMS was the chosen fatigue index. To extract this 

time-domain parameter, the computation of the 

filtered signal’s linear envelope was required. The 

Linear Envelope function processes the full wave 

rectified EMG signal with a low pass filter. Full wave 

rectification is the process used to convert the 

negative signal to positive value [21]. The 

rectification step is essential for getting the shape or 

“envelope” of the EMG signal. Then, the rectified 

signal was low-pass filtered by applying digital 

smoothing algorithms (suppressed high frequency 

components of the EMG signal by taking the mean 

value in a window) [21]. This results in an "envelope" 

representation of the data in the time domain which 

emulates the force development over time in the 

muscle. The application of this function was 

described in RMS equation as presented in Table 2.   

To study the changing pattern in power spectrum 

of muscle signal, MNF was chosen as the fatigue 

index. MNF value was extracted from power 

spectrum density (PSD) using the periodgram in 

Welch's method and its criteria are summarized in 

Table 3. MNF in equation form is presented in Table 2. 

During fatiguing contraction, the muscle response 

tends to decrease. Meanwhile, the blood flow would 

be occluded and recovered within 15 seconds [2]. 

Due to that reason, 15-second segment (eight slices) 

was selected in this study to analyze the muscle 

activity (fatigue or force changes) during the 120-

second isometric contraction. The effect of three 

different epoch lengths (1-second, 3-second, and 5-

second) was studied in each segment. Different 

epoch length produced different number of data for 

each studied fatigue index. 

To save the processing time, overlap technique is 

normally avoided in any analysis that involved large 

segment of signal [3]; such as the one that was 

analysed in this study (15 seconds).  
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Table 2 Fatigue indices in time and frequency domains 

Domain Description Index Equation Ref. 

Time 
Indices were extracted from 

raw EMG time series. 

RMS 𝑅𝑀𝑆 = √
1

𝑇
∫ 𝐸𝑀𝐺(𝑡)2𝑑𝑡
𝑇

0

 5, 8, 22 

ARV 𝐴𝑅𝑉 =
1

𝑇
∑ |𝐸𝑀𝐺(𝑡)|

𝑇

𝑡=1
 5, 8, 22 

IEMG 𝐼𝐸𝑀𝐺 =∑|𝐸𝑀𝐺(𝑡)|

𝑇

𝑡=1

 22 

Frequency 

Indices were extracted 

based on the transformation 

of Power Spectrum Density 

(PSD) 

MNF 𝑀𝑁𝐹 =
∫ 𝑓. 𝑃𝑆𝐷(𝑓)𝑑𝑓
𝑓𝑠
2
0

∫ 𝑃𝑆𝐷(𝑓)𝑑𝑓
𝑓𝑠/2

0

 5, 9,22 

MDF ∫ 𝑃𝑆𝐷(𝑓)𝑑𝑓 = ∫ 𝑃𝑆𝐷(𝑓)𝑑𝑓
𝑓𝑠/2

𝑀𝐷𝐹

𝑀𝐷𝐹

0

 5, 9, 22 

 

 

Suitable epoch lengths were selected based on 

the SEE value of each segment. Statistical t-test was 

also performed to evaluate the significance of the 

studied epoch lengths.  
 

Table 3 The criteria for Welch’s Method 

 

Criteria Description 

Window Hamming 

Window Length 256 

Overlap 25% 

 

 

The suitable epoch lengths were then used to 

determine the appropriate regression model: linear 

or polynomial (2nd order was used as it is commonly 

used in the nonlinear study of the fatigue indices 

[23]). The value of correlation coefficient, r, was used 

to decide the appropriate regression model that best 

fit the distributed data in each 15-second segment. 

Table 4 summarizes the analysis performed in this 

study. 

 
Table 4 Summary of the performed analysis 

 

Objective Variable 
Evaluation 

Test 
Statistical Test 

Epoch 

Length 

1-second 

(15 data) 

SEE t-test 
3-second 

(5 data) 

5-second 

(3 data) 

Regression 

Model 

Linear 
Correlation 

Coefficient 
t-test 2nd Order 

Polynomial 

 
 
3.0  RESULTS AND DISCUSSION 
 

3.1  Epoch Length 

 

Figure 1(a) and (b) show SEE values of each 15-

second segment that were produced from the 

filtered sEMG signal for one subject and Figure 1 (c 

and d) show the average of SEE values for each 

subject. It can be seen that in each segment, the SEE 

values were highest in 1-second epoch length 

followed by 3-second and 5-second epoch lengths. 

In general, the lower the SEE value the better the 

data would fit in the regression model.    

SEE values are dependent on the number of data.  

In this study, for each 15-second segment, the three 

studied epoch length produced different number of 

data. According to Burning and Kintz [24], the 

number of data during the plotting process affects 

the accuracy of regression analysis. Generally, higher 

number of data produces larger error when 

estimating the regression model.  

When performing t-test, SEE values for 1-second 

epoch length were found to be significantly different 

(p < 0.05) from the 3-second and 5-second epoch 

lengths. However, less than 50% of SEE values 

between the 3-second and 5-second epoch lengths 

(30% for RMS; 40% for MNF) were observed to differ 

significantly. 

 

3.2  Type of Regression Model 

 

The strength of the observed trend is described by 

the correlation coefficient (r) value; the closer the r-

value to 1, the better. Figure 2 shows a sample of r-

values obtained from linear and polynomial 

regression models.   

The comparison of the r values between linear and 

polynomial models for one subject is tabulated in 

Table 5. Table 6 compares the average of r-values 

between the two regression models for all subjects. 

The fluctuations of data in each fatigue index 

obviously affect the selection of regression model. 

Both tables indicate that the polynomial model was 

more suitable to be applied on fluctuating data 

compared to linear model; r-values are closer to 1. 

The r-values for polynomial model were also found to 

be significantly different (p < 0.05) from the r-values 

for linear model. This finding indicates that the data 

for the muscle fatigue indices were not normally 

distributed [14] with respect to time. 
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Figure 1 (a) SEE value for RMS (one subject), (b) SEE value for MNF (one subject), (c) Average SEE values for RMS (all subjects), (d) 

Average SEE values for MNF (all subjects) 

 

 

 
Figure 2 The graph of RMS value using linear and polynomial 

regression models 
 

 

The relationships between muscle force-time, 

muscle length-tension, and muscle load-velocity 

have been manifested in non-linear distribution [23]. 

This explains why the linear model was not 

appropriate to be applied when analysing the 

muscle performance. 

3.3  The Combination of Epoch Length and Regression 

Model 

 

The appropriate selection of epoch length and type 

of regression model are essential in JASA. Therefore, 

the effects of 3-second and 5-second epoch length 

on polynomial model was compared (Table 7). The 3-

second epoch length produced variations of r-values 

as compared to the 5-second epoch length that only 

produced unity r. Similar pattern was observed in r-

values for MNF. Even though r = 1 indicates the best 

estimate of trend, the quantity of data in 5-second 

epoch length restricts the description on the 

behaviour of the fatigue indicators; only three data in 

a segment. Since SEE values between 3-second and 

5-second epoch length were not significantly 

different, 3-second epoch length was decided to be 

more appropriate to be paired with the 2nd order 

polynomial regression to describe the behaviour of 

fatigue indices in 15-second segment of sEMG signal. 
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Table 5 The r-values for RMS and MNF (1 subject) 

 

Fatigue 

Index 

Regression 

Model 

Segment 

1 2 3 4 5 6 7 8 

RMS 
Simple 0.37 0.85 0.73 0.30 0.60 0.65 0.09 0.35 

Polynomial 0.84 0.85 0.84 0.69 0.88 0.65 0.62 0.49 

MNF 
Simple 0.32 0.89 0.35 0.33 0.01 0.81 0.03 0.37 

Polynomial 0.32 0.94 0.41 0.40 0.10 0.92 0.20 0.56 

 
Table 6 The average of r-values for RMS and MNF (10 subjects) 

 

Fatigue 

Index 

Regression 

Model 

Subject 

1 2 3 4 5 6 7 8 9 10 

RMS 
Simple 0.49 0.55 0.55 0.37 0.63 0.55 0.40 0.51 0.41 0.35 

Polynomial 0.73 0.79 0.79 0.72 0.76 0.75 0.78 0.75 0.53 0.66 

MNF 
Simple 0.39 0.53 0.37 0.49 0.51 0.52 0.31 0.39 0.37 0.37 

Polynomial 0.48 0.69 0.58 0.73 0.67 0.63 0.63 0.62 0.55 0.73 

 

Table 7 The r-values (polynomial regression) for all subjects and segments (RMS parameters) 

 

Subject 1 2 3 4 5 6 7 8 9 10 

Epoch Length 

(second) 
3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 

15-second 

SEGMENT 

1 0.84 1 0.90 1 0.97 1 0.76 1 0.41 1 0.66 1 0.88 1 0.93 1 0.96 1 0.57 1 

2 0.85 1 0.95 1 0.87 1 0.84 1 0.82 1 0.76 1 0.99 1 0.84 1 0.88 1 0.91 1 

3 0.84 1 0.95 1 0.75 1 0.69 1 0.52 1 0.82 1 0.26 1 0.61 1 0.50 1 0.66 1 

4 0.69 1 0.94 1 0.30 1 0.79 1 0.96 1 0.79 1 0.39 1 0.39 1 0.58 1 0.86 1 

5 0.88 1 0.73 1 0.85 1 0.88 1 0.86 1 0.89 1 0.22 1 0.56 1 0.89 1 0.73 1 

6 0.65 1 0.69 1 0.79 1 0.69 1 0.89 1 0.66 1 0.22 1 0.86 1 0.70 1 0.64 1 

7 0.62 1 0.96 1 0.98 1 0.10 1 0.96 1 0.44 1 0.88 1 0.91 1 0.79 1 0.69 1 

8 0.49 1 0.22 1 0.84 1 0.99 1 0.62 1 0.30 1 0.35 1 0.91 1 0.91 1 0.91 1 

 

 

4.0  CONCLUSION 
 
The appropriate use of epoch length and regression 

model in JASA is important.  The application of 3-

second and 5-second epoch lengths produces 

better accuracy in regression analysis than the 1-

second epoch length.  The polynomial regression 

model describes the behaviour of the fatigue 

indicators better than the linear model.  However, 

due to the higher number of data, behaviour of 

fatigue indicator in every 15-second segment of 

sEMG signal is better described by JASA using 

polynomial regression with 3-second epoch length.  
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