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Graphical abstract 
 

 

Abstract 
 

This paper presents our study on a simulation of path planning for indoor robot that relies on 

the use of Laplace’s equation to constrain the generation of Harmonic Potential Fields 

(HPF). The computation of HPF requires immense amount of computing resources, 

particularly when the size of environment is large. In the past, fast iterative methods that 

apply the use of half-sweep iteration and block technique are suggested. In this study, 

faster iterative method known as Four Point-Explicit Decoupled Group Successive Over 

relaxation via 9-Point Laplacian (4-EDGSOR-9L) is introduced. Essentially, the 4-EDGSOR-9L is 

actually a variant of block SOR iterative method based on four points that employs half-

sweep iteration and utilizes 9-Point Laplacian discretization scheme. Once the HPF is 

obtained, the standard Gradient Descent Search (GDS) technique is performed for path 

tracing to the goal point. 

 

Keywords: Path planning simulation; Explicit Decoupled Group SOR; iterative method 

 

Abstrak 
 

Kertas kerja ini menerangkan kajian tentang simulasi perancangan laluan suatu robot 

yang menggunakan persamaan Laplace untuk menjana Harmonic Potential Fields (HPF). 

Pengiraan HPF memerlukan sumber komputer yang banyak, terutamanya apabila ia 

melibatkan saiz persekitaran yang besar. Dalam kajian-kajian yang lepas, kaedah lelaran 

pantas yang menggunakan lelaran sapuan-separuh dan teknik blok telah dicadangkan. 

Dalam kajian ini, kaedah lelaran lebih pantas yang dinamakan sebagai Four Point-Explicit 

Decoupled Group Successive Overrelaxation via 9-Point Laplacian (4-EDGSOR-9L) 

diperkenalkan. Sebenarnya, kaedah lelaran 4-EDGSOR-9L adalah variasi blok SOR 

berasaskan empat titik yang menggunakan lelaran sapuan-separuh dan skema 

pendiskretan 9-titik Laplacian. Setelah HPF diperolehi, teknik lazim Gradient Descent Search 

(GDS) digunakan untuk menjejak laluan ke titik destinasi.   

 

Kata kunci: Simulasi perancangan laluan; Explicit Decoupled Group SOR; kaedah lelaran 
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1.0  INTRODUCTION 
 

A truly autonomous robot must have the capability to 

find path from its start point to a specified goal point. 

This study proposed a robot path planning technique 

that relies on the use of Laplace’s equation to 

constrain the generation of Harmonic Potential Fields 

(HPF). The application of HPF to solve path planning 

problem was first demonstrated by Connolly et al. [1]. 

In the past, computing HPF using numerical techniques 
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produced encouraging results. The standard 

numerical implementations include approaches 

based on family of point iterative methods i.e. Jacobi, 

Gauss-Seidel and Successive Over relaxation (SOR) [1-

4]. Additionally, fast iterative methods that utilize half-

sweep iteration and block computation technique 

were also employed in our previous works [5-10]. The 

main challenge is to improve the computation speed 

of obtaining the HPF, since it often requires immense 

amount of computing resources when the size of 

environment is large. Hence, in this study, faster 

iterative method known as Four Point-Explicit 

Decoupled Group SOR via 9-Point Laplacian (4-

EDGSOR-9L) is introduced for computing HPF to further 

improve the overall performance of the path planning 

algorithm. Once the HPF are obtained, the standard 

Gradient Descent Search (GDS) technique is 

performed for quick path tracing from start point to 

the goal point. 

 

 

2.0 LITERATURE REVIEW 
 

The HPF is actually the solutions of Laplace's equation, 

and they have been typically used as a global 

method for robot path planning [1,2,4,11], where it 

were shown that the HPF has a number of properties 

which are essential to robotics applications. Paths 

derived from HPF are generally smooth and they also 

offer a complete path planning algorithm. They are 

guaranteed to always provide a trajectory to the goal 

by following a path of gradient descent and therefore, 

do not suffer from problems of local minima. 

Consequently, they can be used to advantage for 

potential-field path planning. However, a solution may 

be computationally expensive and gradient values 

may be small and indistinguishable from noise. 

Alternatively, to circumvent these issues, it is argued 

that HPF can be used for complete local 2-D path 

planning provided that its spatial extent is limited and it 

is integrated with a global path planner to 

compensate for the imposed myopia [12]. 

In the literature, Khatib [13] introduced the use of 

potential fields for robot path planning. It views every 

obstacle to be exerting a repelling force on an end 

effector, while the goal exerts an attractive force. 

Koditschek [14], using geometrical arguments, showed 

that, at least in certain types of domains, there exists 

potential fields which can guide the effect or from 

almost any point to a given point. These potential 

fields forpath planning, however, suffer from the 

spontaneous creation of local minima. Meanwhile, 

global path planning using Laplace's equation was first 

introduced in the pioneer work by Connolly et al. [1] 

and Akishita et al. [2]. Exact robot navigation using 

artificial potential fields was developed by Rimon and 

Koditschek [15]. HPF was employed for real-time 

obstacle in [16]. It was observed by Connolly and 

Grupen [11] that HPF had a number of properties 

useful in robotic applications. The work by Sasaki [4] 

demonstrated the use of numerical technique for 

solving path planning problem. Then, Waydo and 

Murray [17] utilized stream functions that are similar to 

HPF to generate motion planning for a vehicle. Path 

planning using HPF and probabilistic cell 

decomposition was carried out by Rosell and Iniguez 

[18]. Daily and Bevly [19] used HPF for path planning of 

high speed vehicles. Meanwhile, finite elements had 

been applied to obtain HPF for robotic motion [20]. 

Morerecently, Szulczynski et al. [21] used HPF for real-

time obstacles avoidance, whilst Yang and Ariyur [22] 

implemented Laplacian path planning for avoiding 

moving obstacles. Pedersen and Fossen [23] applied a 

potential flow solver to marine vessel path planning for 

cluttered environments. A three dimensional (3D) 

potential path planning method for unmanned aerial 

vehicles (UAVs) in complex environments is studied by 

Liang et al. [24]. 

Although, there are many elegant analytical 

solutions to Laplace's equation in special geometries, 

the practical real problems are usually solved 

numerically. The availability of modern and powerful 

computers and software made it easier to obtain the 

numerical solutions of Partial Differential Equations. By 

using finite difference method for solving the Laplace's 

equation, the Partial Differential Equation is converted 

into a set of linear simultaneous equations i.e. linear 

system. Generally, methods for solving linear system 

such as Laplace’s equation can be classified into two 

main group i.e. direct and iterative methods. 

Essentially, direct methods are recommended for 

linear system with dense and unstructured coefficient 

matrix, whereas iterative methods are best for very 

large sparse matrices [25].Iterative methods offer a 

vast saving of storage space compared with direct 

methods, since usually only the non-vanishing 

elements of the system matrix, the solution vector, and 

a few additional vectors have to be stored. However, 

one of the disadvantages of iterative methods 

compared with direct methods is slow convergence or 

even divergence [26]. 

In recent decades, complexity reduction approach 

has been applied vigorously for computing the 

solutions of linear systems such as Poisson and 

Laplace’s equations. The basic idea of complexity 

reduction approach such as half-sweep iteration is to 

reduce the computational complexity of the solution 

methods. The half-sweep iteration concept isfirst 

envisioned via the Explicit Decoupled Group (EDG) 

[27] method for solving Poisson equation. The EDG 

method is actually an extension from the standard 

Explicit Group (EG) [28] method, whilst its faster variant 

that employs weighted parameter via SOR is known as 

EDGSOR method. Since then, the EDG and EDGSOR 

methods had been employed for solving linear systems 

generated from various problems [29-31]. Also, half-

sweep iteration technique and its variants were utilized 

in many iterative methods for computing the solutions 

of linear systems [32-35].  
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3.0 PATH PLANNING STRATEGY 
 

Essentially, the aim of robot path planning is to 

construct a collision-free path from some initial 

configurations to some goal configurations for a robot 

within a workspace containing obstacles. This study is 

inspired by the physical analogy of heat transfer in 

which path planning strategy is constructed by utilizing 

the temperature distributions model in the 

environment of the robot as described in Section 3.1. 

The mathematical model of the path planning 

problem relies on the solutions of Laplace's equation, 

i.e. harmonic functions, to provide surface gradients 

that are useful for robot navigation purposes [11].In 

robotics, these harmonic functions are also known as 

Harmonic Potential Fields (HPF). Harmonic functions 

are discussed in detail in Section 3.2. The configuration 

spaces are constructed based on the previous work 

[1] so that better performance comparison can be 

obtained. Section 3.3 described the details of the 

configuration space used in this study. Once the 

temperature distributions of the environment are 

obtained, the path can be generated by using the 

temperature gradient to navigate the configuration 

space as explained in Section 3.4. The self-developed 

robot simulator used in this study is described in Section 

3.5. 

 

3.1   Physical Analogy 

 

Assume that a real robot vehicle can be reduced to a 

point moving in a known environment, path planning 

problem of the robot can be formulated as a steady-

state heat transfer problem. In the heat transfer 

analogy, the goal is treated as a sink pulling heat in. 

Whilst, the environment boundaries and obstacles are 

considered as heat sources and are fixed with 

constant temperature values. As a result of heat 

conduction process, the temperature distributions 

develop and the heat flux lines that are flowing to the 

sink fill the work space. The path then can be easily 

found by following the heat flux. 

Based on the above analogy, a global path 

planning method can be developed by using 

Laplace's equation to model the temperature 

distributions in the environment. These temperature 

distributions represent the HPF of the environment. The 

HPF is computed in global manner over the entire 

region of the environment, and is used to find path 

lines for a robot to move from the start point to the 

goal point. Outer boundaries, inner walls and 

obstacles are considered as current heat sources to 

be assigned with high fixed potential, whereas the 

goal is considered to be the sink with the lowest fixed 

assigned potential. By using iterative method, the HPF 

is computed iteratively until the convergence criterion 

is satisfied. Then, by performing the gradient descent 

strategy on the computed HPF, a path is generated by 

following the current line and move to succession of 

points with lower potential leading to the goal point 

with the least potential[36]. 

 

3.2   Harmonic Functions 

 

Harmonic functions are actually solutions to Laplace's 

equation [37]. They are known to have a number of 

properties useful for robotics applications [11]. 

Harmonic functions offer a complete path planning 

algorithm and paths derived from them are generally 

smooth. One main advantage of harmonic functions, 

when applied to robot path planning, is that they 

exhibit no spurious local minima. 

Harmonic functions are functions which satisfies 

Laplace's equation, 

∇2∅ =  
𝜕2∅

𝜕𝑥𝑖
2 = 0

𝑛

𝑖=1

 

(1) 

where 𝑥𝑖  is the i-th Cartesian coordinate and 𝑛 is the 

dimension. In the case of robot path construction, the 

boundary consists of the outer boundary walls of the 

environment and inner walls of all obstacles. The 

spontaneous creation of a false local minimum inside 

the region is avoided if Laplace's equation is imposed 

as a constraint on the functions used, as the harmonic 

functions satisfy the min-max principle [38].The 

gradient vector field of a harmonic function has a zero 

curl, and the function itself obeys the min-max 

principle. Hence the only types of critical points which 

can occur are saddle points or flat regions. For a path-

planning algorithm, an escape from such critical points 

can be found by performing a search in the 

neighbourhood of that point. Moreover, any 

perturbation of a path from such point results in a path 

which is smoothes everywhere[11]. 

Though harmonic functions are free from local 

minima, they are not fully global. In path planning 

problem, Koditschek [14] showed that in the presence 

of obstacles, a global avigation function does not exist 

in general. For a two dimensional space with q disjoint 

obstacles, a potential function U must possess at leastq 

saddle points. In general, harmonic functions give rise 

to a practical path planning approach with the 

following main features [39]: i) a potential field with a 

unique minimum, ii) an efficient update of the 

potential field, iii) completeness up to the discretization 

error in the environment, and iv) a robust and reactive 

behavior.  

 

3.3   Configuration Space 

 

In the framework used in this study, the robot is 

represented by a point in the configuration space. The 

path planning problem is then posed as an obstacle 

avoidance problem for the point robot from the start 

to the goal point in the configuration space. The 

configuration space has outer boundaries and some 

obstacles inside the boundary. The configuration 

space is designed in grid form and the coordinates 

and potential values associated with each node are 

computed iteratively to satisfy equation (1).The 

solutions to Laplace's equation are subjected to 

Dirichlet boundary conditions where a constant value 
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is given at each point of the boundary. Thus, high fixed 

potential value is assigned to the outer boundaries, 

inner walls and obstacles, and lowest fixed potential 

value for the goal point. No initial potential values are 

assigned to all other free non-occupied points and the 

start points. Hence, by using the heat transfer analogy 

as described in Section 3.1, the boundary of the 

configuration space is modeled as a source, and the 

boundary of the goal is modeled as a sink. The 

computation of HPF only involves free non-occupied 

points, since all points occupied by obstacles are 

ignored during the iteration process. 

The configuration space samples are taken from the 

pioneer work by Connolly et al.[1]. The original samples 

are in varying sizes i.e. 200 by 200 grid, 30 by 41, 50 

by50 and 70 by 70. All these samples are rescaled into 

grid of 300 by 300, so that better performance 

comparisons can be made. In the literature, the 

numerical experiments were conducted against 

several mesh sizes in order to obtain better 

performance comparisons [30-35]. Therefore, the 

considered sizes of the configuration space are grids 

of 300 by 300, 600 by 600, 900 by 900, 1200by 1200, 

1500 by 1500 and 1800 by 1800.  

 

3.4   Path Generation 

 

Once the harmonic functions under the boundary 

conditions are established using the iterative methods 

as further described in Section 4.0, the required path 

can be traced by using standard GDS searching 

technique [1,4,12,20,36]. GDS employs simple 

technique by following the negative gradient from the 

start point through successive points with lower 

temperature till the goal, which is the point with the 

lowest temperature. 

 

3.5   Robot Simulator 

 

The self-developed robot simulator software is 

developed using Lazarus, and the code is written in 

Object-Pascal. Commercial robot simulators are 

available such as WEBOTS [40] and Open Sim, but this 

self-developed simulator provides maximum flexibility, 

albeit with limited features. 

 

 

4.0  THE ITERATIVE METHODS  
 
The solutions to Laplace's equation are called 

harmonic functions (also known as HPF in robotics). 

Considering a 2D configuration space, the HPF can be 

expressed in a 2D version of Laplace's equation as 

∇2𝑓 =
𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 = 0 

(2) 

The operator ∇2 is called the Laplacian. The 

Laplace's equation can be solved in one of two ways, 

analytically [19] or numerically [1,3,12]. In this study, the 

solutions of Laplace's equation are obtained using 

numerical method particularly the finite difference 

method. In this method, the Laplace's equation is 

converted into a set of linear simultaneous equations 

(or linear system). When the linear system is written in 

matrix notation, the majority of the elements of the 

matrix are zero. Such matrices are called sparse matrix. 

In the case of the mathematical model of path 

planning problem, the resulting linear system becomes 

very large and sparse, thus requiring very large storage 

in memory of the computer. Therefore in this study, by 

following the suggestion in [1], a more efficient way of 

solving this very large linear system using iterative 

method is employed. The main advantage of iterative 

solution is that the storing of large matrices is 

unnecessary. 

In order to develop accurate and efficient 

numerical iterative methods for solving problem(2), the 

solution needs to be discretized in a suitable way so 

that it can be stored in a computer. The standard finite 

difference discretization technique is based on 5-Point 

Laplacian (5L). In the previous studies [5-7], the point 

Full-Sweep SOR (FSSOR) and Half-Sweep SOR 

(HSSOR)methods, and the block method namely Four 

Point-Explicit Group SOR (4-EGSOR) that based on 5L 

were successfully applied to solve problem (2). The 

block variant of half-sweep SOR iteration namely Four 

Point-Explicit Decoupled Group SOR (4-EDGSOR) will 

be considered in this study. The FSSOR and HSSOR 

methods, and their corresponding block variantsi.e. 

the 4-EGSOR and 4-EDGSOR methods, are described 

in Sections 4.3 and 4.4, respectively. 

Additionally, iterative methods based on 9-Point 

Laplacian (9L)i.e. the point FSSOR-9L method and its 

block variant 4-EGSOR-9L method, were employed 

previously as reported in [8,9]. Also, the point HSSOR-9L 

method that apply half-sweep iteration technique via 

9L was implemented in [10]. The FSSOR-9L and HSSOR-

9L methods are further described in Section 4.5, whilst 

the 4-EGSOR-9L method is described in Section 4.6. In 

this study, the block variant of half-sweep SOR iteration 

via 9L method, namely the 4-EDGSOR-9L method, as 

further described in Section 4.7, is examined to further 

improve the overall performance of the path planning 

algorithm. 

 

4.1   The 5-Point Laplacian (5L) 

 

To discuss discretization, first consider the Laplacian in 

2D given by 

∇2𝑓(𝑥, 𝑦) =
𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 

(3) 

The 2D Laplacian then can be approximated using the 

five-point stencil finite difference method to obtain: 

∇2𝑓 𝑥, 𝑦 ≈
𝑢 𝑥 + ℎ, 𝑦 + 𝑢 𝑥 − ℎ, 𝑦 + 𝑢 𝑥, 𝑦 + ℎ + 𝑢 𝑥, 𝑦 − ℎ − 4𝑢(𝑥, 𝑦)

ℎ2  

(4) 

where 𝑓 𝑥, 𝑦  is a function which satisfies Laplace's 

equation, 𝑢(𝑥, 𝑦) represents a discrete regular sampling 

of 𝑓 on a grid, and ℎ is the step size to be used in 

approximating thederivatives in each direction. The 

equation (4) is second order accurate because the 
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error is of the order of ℎ2. It is derived from Taylor series 

approximation to the second derivatives using central 

difference formula at 𝑥 and 𝑦 directions: 

𝑢 𝑥 + ℎ, 𝑦 = 𝑢 𝑥, 𝑦 + ℎ
𝜕𝑢

𝜕𝑥
+

1

2
ℎ2

𝜕2𝑢

𝜕𝑥2 +
1

6
ℎ3

𝜕3𝑢

𝜕𝑥3 + 𝑂(ℎ4) 

(5) 

𝑢 𝑥 − ℎ, 𝑦 = 𝑢 𝑥, 𝑦 − ℎ
𝜕𝑢

𝜕𝑥
+

1

2
ℎ2

𝜕2𝑢

𝜕𝑥2 −
1

6
ℎ3

𝜕3𝑢

𝜕𝑥3 + 𝑂(ℎ4) 

(6) 

Then add both equations (5) and (6) together to get 

the following equations along the x and y directions, 

respectively: 

𝑢 𝑥 + ℎ, 𝑦 + 𝑢 𝑥 − ℎ, 𝑦 = 2𝑢(𝑥, 𝑦) + ℎ2
𝜕2𝑢

𝜕𝑥2
+ 𝑂(ℎ4) 

(7) 

𝑢 𝑥, 𝑦 + ℎ + 𝑢 𝑥, 𝑦 − ℎ = 2𝑢(𝑥, 𝑦) + ℎ2
𝜕2𝑢

𝜕𝑦2 + 𝑂(ℎ4) 

(8) 

Then combine both equations (7) and (8), thus the 

following equation is obtained: 

𝑢 𝑥 + ℎ, 𝑦 + 𝑢 𝑥 − ℎ, 𝑦 + 𝑢 𝑥, 𝑦 + ℎ + 𝑢(𝑥, 𝑦 − ℎ)

= 4𝑢 𝑥, 𝑦 + ℎ2
𝜕2𝑢

𝜕𝑥2 + ℎ2
𝜕2𝑢

𝜕𝑦2 + 𝑂(ℎ4) 

(9) 

If the fourth order error terms are discarded, and the 

step sizes are all equal, the following second-order 

central difference approximation to the second 

derivative is obtained: 

∇2𝑓(𝑥, 𝑦) =
1

ℎ2
 𝑢 𝑥 + ℎ, 𝑦 + 𝑢 𝑥 − ℎ, 𝑦 + 𝑢 𝑥, 𝑦 + ℎ 

+ 𝑢 𝑥, 𝑦 − ℎ − 4𝑢(𝑥, 𝑦)  

(10) 

Another type of approximation is based on the cross 

orientation operator which can be obtained by 

rotating the x-y axis 45°[29]. This will result in the rotated 

(skewed) 5L approximation and be written as 

∇2𝑓 𝑥, 𝑦 =
1

2ℎ2
 𝑢 𝑥 − ℎ, 𝑦 − ℎ + 𝑢 𝑥 + ℎ, 𝑦 − ℎ 

+ 𝑢 𝑥 − ℎ, 𝑦 + ℎ + 𝑢 𝑥 + ℎ, 𝑦 + ℎ 
− 4𝑢 𝑥, 𝑦   

(11) 

Essentially, the 5L approximations in equations (10) and 

(11) represent the full-sweep and half-sweep iteration 

cases, respectively. The computational molecules for 

the corresponding 5L approximations for both full-

sweep and half-sweep iterations are shown in Figure 1 

[27]. Whilst, Figure 2 shows the portion of the 

computational grid for the 5L about point (𝑖, 𝑗) for full-

sweep and half-sweep cases[27].The 5L 

approximations for full-sweep and half-sweep cases 

can also be written in stencil forms as shown in 

equations (12) [41] and (13) [42], respectively. 

∇2𝑓 =
1

ℎ2  
0 1 0
1 −4 1
0 1 0

  

(12) 

∇2𝑓 =
1

2ℎ2  
1 0 1
0 −4 0
1 0 1

  

(13) 

 

 

 

 

 

 

 

 

 

 (a)      (b) 

Figure 1  The computational molecules of the 5L 

approximations for (a) full-sweep and (b) half-sweep cases 

 

 

 

 

 

 

 

 

 

 

 (a)      (b) 

Figure 2  Portion of the computational grid for the 5L about 

point (i, j) for (a) full-sweep and (b) half-sweep cases 

 

 

Based on the 5L approximations in equations (10) 

and (11), let 𝑈𝑖 ,𝑗  representsan approximation to 𝑓(𝑥, 𝑦). 

Then, the full-sweep and half-sweep approximation 

equations for problem (2) can be rewritten as 

𝑈𝑖−1,𝑗 + 𝑈𝑖+1,𝑗 + 𝑈𝑖 ,𝑗−1 + 𝑈𝑖 ,𝑗 +1 − 4𝑈𝑖,𝑗 = 0 

(14) 

and 

𝑈𝑖+1,𝑗 +1 + 𝑈𝑖−1,𝑗−1 + 𝑈𝑖+1,𝑗−1 + 𝑈𝑖−1,𝑗 +1 − 4𝑈𝑖,𝑗 = 0, 

(15) 

respectively. Now, by applying these finite difference 

approximations to problem (2), it will result in a large 

and sparse linear system that can be stated in matrix 

form as 

𝐴𝑢 = 𝑏 

(16) 

where the matrix 𝐴 and the column vector 𝑏 are both 

known, and the column vector 𝑢 isunknown.Since the 

linear system in equation (16) is large and sparse, the 

iterative method is suitable to solve this type of 

problem. Also it can be solved either by point or block 

iterative methods [27]. Thus, the Gauss-Seidel iterative 

schemes for the full-sweep and half-sweep cases on 



17                   Azali & Jumat / Jurnal Teknologi (Sciences & Engineering) 78: 8-2 (2016) 12–24 

 

 

the finite difference equations (14) and (15) can be 

constructed and are given as 

𝑈𝑖 ,𝑗
(𝑘+1)

=
1

4
 𝑈𝑖−1,𝑗

(𝑘+1)
+ 𝑈𝑖+1,𝑗

(𝑘)
+ 𝑈𝑖 ,𝑗−1

(𝑘+1)
+ 𝑈𝑖 ,𝑗 +1

(𝑘)
  

(17) 

and 

𝑈𝑖 ,𝑗
(𝑘+1)

=
1

4
 𝑈𝑖+1,𝑗+1

(𝑘)
+ 𝑈𝑖−1,𝑗−1

(𝑘+1)
+ 𝑈𝑖+1,𝑗−1

(𝑘+1)
+ 𝑈𝑖−1,𝑗+1

(𝑘)
 , 

(18) 

respectively. Furthermore, by adding a weighted 

parameter𝜔, via SOR [43], the SOR iterative schemes 

for the full-sweep and half-sweep cases are given as 

𝑈𝑖 ,𝑗
(𝑘+1)

=
𝜔

4
 𝑈𝑖−1,𝑗

(𝑘+1)
+ 𝑈𝑖+1,𝑗

(𝑘)
+ 𝑈𝑖 ,𝑗−1

(𝑘+1)
+ 𝑈𝑖 ,𝑗+1

(𝑘)
 +  1 − 𝜔 𝑈𝑖 ,𝑗

(𝑘)
 

(19) 

and 

𝑈𝑖 ,𝑗
(𝑘+1)

=
𝜔

4
 𝑈𝑖+1,𝑗+1

(𝑘)
+ 𝑈𝑖−1,𝑗−1

(𝑘+1)
+ 𝑈𝑖+1,𝑗−1

(𝑘+1)
+ 𝑈𝑖−1,𝑗+1

(𝑘)
 

+  1 − 𝜔 𝑈𝑖 ,𝑗
(𝑘)

, 

(20) 

respectively. Generally, the optimal value of𝜔 is 

defined in the range 0 < 𝜔 < 2[43]. Note that if 𝜔 = 1, 

the SOR method simplifies to the standard Gauss-

Seidel method. Section 4.3 presents the application of 

equations (19) and (20) to develop the FSSOR and 

HSSOR iterative methods for computing the solutions of 

Laplace's equation. 

 

4.2   The 9-Point Laplacian (9L) 

 

Another possible approximation of the 2D Laplacian 

(3.1) is the 9L [37] 

∇2𝑓(𝑥, 𝑦) =
1

6ℎ2
 4𝑢 𝑥 − ℎ, 𝑦 + 4𝑢 𝑥 + ℎ, 𝑦 + 4𝑢 𝑥, 𝑦 − ℎ 

+ 4𝑢 𝑥, 𝑦 + ℎ + 𝑢 𝑥 − ℎ, 𝑦 − ℎ 
+  𝑢 𝑥 + ℎ, 𝑦 − ℎ + 𝑢 𝑥 − ℎ, 𝑦 + ℎ + 𝑢(𝑥
+ ℎ, 𝑦 + ℎ) − 20𝑢(𝑥, 𝑦)  

(21) 

In comparison to the 5L approximation, the 9L 

approximation utilizes 9 computational molecules as 

shown in Figure 3, thus it produces more accurate 

solution. Furthermore, by rotating the x-y axis 45°, the 

rotated 9L approximation is obtained and can be 

written as[44] 

∇2𝑓(𝑥, 𝑦) =
1

12ℎ2
 4𝑢 𝑥 + ℎ, 𝑦 − ℎ + 4𝑢 𝑥 + ℎ, 𝑦 + ℎ 

+ 4𝑢 𝑥 − ℎ, 𝑦 + ℎ + 4𝑢 𝑥 − ℎ, 𝑦 − ℎ 
+ 𝑢 𝑥 + 2ℎ, 𝑦 +  𝑢 𝑥, 𝑦 + 2ℎ 
+ 𝑢 𝑥 − 2ℎ, 𝑦 + 𝑢(𝑥, 𝑦 − 2ℎ) − 20𝑢(𝑥, 𝑦)  

(22) 

The 9L approximations as given in equations (21) and 

(22) represent the full-sweep and half-sweep iterations, 

respectively. Figures 3 and 4 illustrate the 

computational molecules and the portion of 

computational grid for full-sweep and half-sweep 

cases, respectively. The 9L approximations for full-

sweep and half-sweep cases can also be written in 

stencil form as [44] 

∇2𝑓 =
1

ℎ2  
1 4 1
4 −20 4
1 4 1

  

(23) 

and 

∇2𝑓 =
1

ℎ2

 
 
 
 
 
0 0 1 0 0
0 4 0 4 0
1 0 −20 0 1
0 4 0 4 0
0 0 1 0 0 

 
 
 
 

, 

(24) 

respectively. Let 𝑈𝑖 ,𝑗  represents an approximation to 

𝑓(𝑥, 𝑦). By considering the 9L approximations in 

equations (21) and (22), the full-sweep and half-sweep 

approximation equations for problem (2) can be 

rewritten as 

4(𝑈𝑖−1,𝑗 + 𝑈𝑖+1,𝑗 + 𝑈𝑖 ,𝑗−1 + 𝑈𝑖 ,𝑗+1) + 𝑈𝑖−1,𝑗−1 + 𝑈𝑖+1,𝑗−1

+ 𝑈𝑖−1,𝑗 +1 + 𝑈𝑖+1,𝑗+1 − 20𝑈𝑖,𝑗 = 0 

(25) 

and 

4(𝑈𝑖+1,𝑗−1 + 𝑈𝑖+1,𝑗 +1 + 𝑈𝑖−1,𝑗+1 + 𝑈𝑖−1,𝑗−1) + 𝑈𝑖+2,𝑗 + 𝑈𝑖 ,𝑗+2

+ 𝑈𝑖−2,𝑗 + 𝑈𝑖 ,𝑗−2 − 20𝑈𝑖,𝑗 = 0, 

(26) 

respectively. Similarly, when these finite difference 

approximations are applied to equation (2), it will 

generate a linear system that is very large and sparse. 

By solving this linear system iteratively, the iterative 

schemes for the full-sweep and half-sweep cases on 

the finite difference equations (25) and (26) can be 

defined as 

𝑈𝑖 ,𝑗
(𝑘+1)

=
1

4
 𝑈𝑖−1,𝑗

(𝑘+1)
+ 𝑈𝑖+1,𝑗

(𝑘)
+ 𝑈𝑖 ,𝑗−1

(𝑘+1)
+ 𝑈𝑖 ,𝑗 +1

(𝑘)
  

(27) 

and 

𝑈𝑖 ,𝑗
(𝑘+1)

=
1

4
 𝑈𝑖+1,𝑗+1

(𝑘)
+ 𝑈𝑖−1,𝑗−1

(𝑘+1)
+ 𝑈𝑖+1,𝑗−1

(𝑘+1)
+ 𝑈𝑖−1,𝑗+1

(𝑘)
 , 

(28) 

respectively. Furthermore, by using an accelerated 

parameter𝜔, the corresponding SOR iterative schemes 

for the full-sweep and half-sweep methods via 9L are 

given as  

𝑈𝑖 ,𝑗
(𝑘+1)

=
𝜔

4
 𝑈𝑖−1,𝑗

(𝑘+1)
+ 𝑈𝑖+1,𝑗

(𝑘)
+ 𝑈𝑖 ,𝑗−1

(𝑘+1)
+ 𝑈𝑖 ,𝑗+1

(𝑘)
 +  1 − 𝜔 𝑈𝑖 ,𝑗

(𝑘)
 

(29) 

and 

𝑈𝑖 ,𝑗
(𝑘+1)

=
𝜔

4
 𝑈𝑖+1,𝑗+1

(𝑘)
+ 𝑈𝑖−1,𝑗−1

(𝑘+1)
+ 𝑈𝑖+1,𝑗−1

(𝑘+1)
+ 𝑈𝑖−1,𝑗+1

(𝑘)
 

+  1 − 𝜔 𝑈𝑖 ,𝑗
(𝑘)

, 

(30) 

respectively. Section 4.5 presents the application of 

equations (29) and (30) to develop the algorithms 
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ofFSSOR-9L and HSSOR-9L methods for computing the 

solutions of Laplace's equation. 

 

 

 

 

 

 

 

 

 

 (a) (b) 

Figure 3  The computational molecules of the 9L 

approximations for (a) full-sweep and (b) half-sweep cases 

 

 

 

 

 

 

 

 

 

 (a) (b) 

Figure 4 Portion of the computational grid of the 9L about 

point (i, j) for (a) full-sweep and (b) half-sweep cases 

 

 

4.3   The FSSOR and HSSOR methods 

 

The FSSOR is actually the standard SOR [43] method 

that employs traditional full-sweep iteration using five-

point discretization scheme. Whilst, the HSSOR [27] 

method is formulated by utilizing half-sweep iteration 

concept, and also using five-point discretization 

scheme. The algorithms for the implementation of 

FSSOR and HSSOR methods utilize the SOR iterative 

schemes as given in equations (19) and (20), 

respectively. 

With FSSOR method, all nodes are computed during 

the iteration process. Whilst, the HSSOR method utilizes 

half-sweep iteration, thus only half of all nodes are 

computed, since only black nodes are considered 

during the iteration process until the convergence 

criterion is reached. The remaining white nodes are 

then computed using direct technique [27]. Hence, 

the computational complexity of HSSOR method is 

reduced by approximately half. Figure 5 illustrates the 

computational nodes for full-sweep and half-sweep 

iterations. 

 

4.4   The 4-EGSOR and 4-EDGSOR methods 

 

This section describes the block variants of the FSSOR 

and HSSOR methods namely the 4-EGSOR and 4-

EDGSOR methods, respectively. Let us consider a 

group of four points as illustrated in Figure 6. By 

considering the standard 5Lapproximation in equation 

(14), the 4-EGSOR method can be generally expressed 

as [27,28] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

Figure 5  Computational nodes for (a) full-sweep and (b) half-

sweep cases 

 

 

4 −1 −1 0
−1 4 0 −1
−1 0 4 −1
0 −1 −1 4

 

 
 
 
 
 

𝑈𝑖 ,𝑗

𝑈𝑖+1,𝑗

𝑈𝑖 ,𝑗+1

𝑈𝑖+1,𝑗+1 
 
 
 
 

=  

𝑆1

𝑆2

𝑆3

𝑆4

  

(31) 

where 

𝑆1 = 𝑈𝑖−1,𝑗 + 𝑈𝑖 ,𝑗−1,

𝑆2 = 𝑈𝑖+2,𝑗 + 𝑈𝑖+1,𝑗−1 ,

𝑆3 = 𝑈𝑖−1,𝑗 +1 + 𝑈𝑖 ,𝑗+2,

𝑆4 = 𝑈𝑖+2,𝑗 +1 + 𝑈𝑖+1,𝑗 +2 .

 

By determining the inverse of coefficient matrix, 

equation (31) can be rewritten as 

 
 
 
 
 

𝑈𝑖 ,𝑗

𝑈𝑖+1,𝑗

𝑈𝑖 ,𝑗 +1

𝑈𝑖+1,𝑗+1 
 
 
 
 

=
1

24
 

6𝑆1 + 𝑆𝑎

6𝑆2 + 𝑆𝑏

6𝑆3 + 𝑆𝑏

6𝑆4 + 𝑆𝑎

  

(33) 

where 

𝑆𝑎 = 2(𝑆2 + 𝑆3) + 𝑆1 + 𝑆4, 

𝑆𝑏 = 2(𝑆1 + 𝑆4) + 𝑆2 + 𝑆3. 
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Figure 6  Computational nodes for 4-EGSOR method 

 

 

Now, the SOR iterative scheme for equation (33) can 

be written as 

 
 
 
 
 

𝑈𝑖 ,𝑗

𝑈𝑖+1,𝑗

𝑈𝑖 ,𝑗 +1

𝑈𝑖+1,𝑗+1 
 
 
 
 

(𝑘+1)

=
𝜔

24
 

6𝑆1 + 𝑆𝑎

6𝑆2 + 𝑆𝑏

6𝑆3 + 𝑆𝑏

6𝑆4 + 𝑆𝑎

 + (1 − 𝜔)

 
 
 
 
 

𝑈𝑖 ,𝑗

𝑈𝑖+1,𝑗

𝑈𝑖 ,𝑗+1

𝑈𝑖+1,𝑗 +1 
 
 
 
 

(𝑘)

 

(34) 

By employing block technique, the 4-EGSOR method 

obtains four potential values per computation. For the 

computation of groups of points near to boundary, 

they can be treated as groups of two points and single 

point, as shown in Figure 6. Thus, for computation of 

these groups, direct method is employed using 

equation (17) [28]. 

Similarly, for 4-EDGSOR method, let a group of four 

points (see Figure 7) be considered based on the 

rotated 5L approximation equation (15) to form a(4x4) 

system of linear algebraic equations and be given as 

[27,30,31] 

 

4 −1 0 0
−1 4 0 0
0 0 4 −1
0 0 −1 4

 

 
 
 
 
 

𝑈𝑖 ,𝑗

𝑈𝑖+1,𝑗+1

𝑈𝑖+1,𝑗

𝑈𝑖 ,𝑗+1  
 
 
 
 

=  

𝑆1

𝑆2

𝑆3

𝑆4

  

(35) 

where 

𝑆1 = 𝑈𝑖−1,𝑗−1 + 𝑈𝑖−1,𝑗+1 + 𝑈𝑖+1,𝑗−1,

𝑆2 = 𝑈𝑖 ,𝑗+2 + 𝑈𝑖+2,𝑗+2 + 𝑈𝑖+2,𝑗 ,
 

and 

𝑆3 = 𝑈𝑖 ,𝑗−1 + 𝑈𝑖+2,𝑗−1 + 𝑈𝑖+2,𝑗+1 ,

𝑆4 = 𝑈𝑖−1,𝑗 + 𝑈𝑖−1,𝑗+2 + 𝑈𝑖+1,𝑗+2 .
 

The linear system (35) is then decomposed 

independently into two (2x2) linear algebraic 

equations as 

 
4 −1

−1 4
  

𝑈𝑖 ,𝑗

𝑈𝑖+1,𝑗 +1
 =  

𝑆1

𝑆2
  

(36) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7  Computational nodes for 4-EDGSOR method 

 

 

and 

 
4 −1

−1 4
  

𝑈𝑖+1,𝑗

𝑈𝑖 ,𝑗+1
 =  

𝑆3

𝑆4
 . 

(37) 

By determining the inverse of coefficient matrix, 

equations (36) and (37) can be rewritten as 

 
𝑈𝑖 ,𝑗

𝑈𝑖+1,𝑗+1
 =

1

15
 
4 1
1 4

  
𝑆1

𝑆2
  

(38) 

and 

 
𝑈𝑖+1,𝑗

𝑈𝑖 ,𝑗+1
 =

1

15
 
4 1
1 4

  
𝑆3

𝑆4
 , 

(39) 

respectively. Accordingly, the SOR iterative scheme for 

equations (38) and (39) can be written independently 

as  

 
𝑈𝑖,𝑗

𝑈𝑖+1,𝑗+1
 

(𝑘+1)

=
𝜔

15
 
4𝑆1 + 𝑆2

𝑆1 + 4𝑆2
 + (1 − 𝜔)  

𝑈𝑖,𝑗

𝑈𝑖+1,𝑗+1
 

(𝑘)

 

(40) 

and 

 
𝑈𝑖+1,𝑗

𝑈𝑖 ,𝑗+1
 

(𝑘+1)

=
𝜔

15
 
4𝑆3 + 𝑆4

𝑆3 + 4𝑆4
 + (1 − 𝜔)  

𝑈𝑖+1,𝑗

𝑈𝑖 ,𝑗+1
 

(𝑘)

 

(41) 

respectively. With 4-EDGSOR method, the 

configuration space consists of black and white 

nodes, as illustrated in Figure 7. The computations are 

carried out on groups of either pair of black or white 

nodes only. For the computation of groups of nodes 

near to boundary, i.e. groups with only one or two 

nodes, direct method is employed by using equation 

(18) [28]. Hence, the implementation of 4-EDGSOR 

method may utilize either equation (40) or (41). After 

the convergence, all the remaining white nodes are 

evaluated by applying direct method using equation 

(17). 
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4.5   The FSSOR-9L and HSSOR-9L methods 
 

The FSSOR-9L and HSSOR-9L methods utilize the SOR 

iterative schemes via 9L for full-sweep and half-sweep 

cases as given in equations (29) and (30), respectively. 

The FSSOR-9L method considers all nodes in the 

configuration space. Whilst, the more efficient HSSOR-

9L method considers only half of the total nodes, since 

only black nodes are considered during the iteration 

process, as illustrated in Figure 8. Once the 

convergence of the iteration process is reached, the 

remaining white nodes are then computed using 

direct technique [27].  

 

4.6   The 4-EGSOR-9L method 

 

The block variant of full-sweep iteration via 9L namely 

4-EGSOR-9L method utilizes the SOR iterative scheme 

via 9L as given in equation (29). Thus, to formulate the 

4-EGSOR-9L iterative method, let us consider a group 

of four points as illustrated in Figure 9 and defined 

as[45] 

 

20 −4 −4 −1
−4 20 −1 −4
−4 −1 20 −4
0 −4 −4 20

 

 
 
 
 
 

𝑈𝑖 ,𝑗

𝑈𝑖+1,𝑗

𝑈𝑖 ,𝑗+1

𝑈𝑖+1,𝑗+1 
 
 
 
 

=  

𝑆1

𝑆2

𝑆3

𝑆4

  

(42) 

where 

𝑆1 = 4𝑈𝑖−1,𝑗 + 4𝑈𝑖,𝑗−1 + 𝑈𝑖−1,𝑗−1 + 𝑈𝑖+1,𝑗−1 + 𝑈𝑖−1,𝑗 +1,

𝑆2 = 4𝑈𝑖+2,𝑗 + 4𝑈𝑖+1,𝑗−1 + 𝑈𝑖 ,𝑗−1 + 𝑈𝑖+2,𝑗−1 + 𝑈𝑖+2,𝑗 +1,

𝑆3 = 4𝑈𝑖−1,𝑗+1 + 4𝑈𝑖,𝑗+2 + 𝑈𝑖−1,𝑗 + 𝑈𝑖−1,𝑗+2 + 𝑈𝑖+1,𝑗 +2,

𝑆4 = 4𝑈𝑖+2,𝑗+1 + 4𝑈𝑖+1,𝑗+2 + 𝑈𝑖+2,𝑗 + 𝑈𝑖 ,𝑗+2 + 𝑈𝑖+2,𝑗 +2.

 

By determining the inverse of coefficient matrix in 

equation (42), the general scheme of this iterative 

method can be rewritten as 

 
 
 
 
 

𝑈𝑖,𝑗

𝑈𝑖+1,𝑗

𝑈𝑖 ,𝑗+1

𝑈𝑖+1,𝑗+1 
 
 
 
 

=
1

2079
 

699 + 𝑆𝑎

99𝑆2 + 𝑆𝑏

99𝑆3 + 𝑆𝑏

99𝑆4 + 𝑆𝑎

  

(43) 

where 

𝑆𝑎 = 28(𝑆2 + 𝑆3) + 17(𝑆1 + 𝑆4), 

𝑆𝑏 = 28(𝑆1 + 𝑆4) + 17(𝑆2 + 𝑆3). 

Consequently, the SOR iterative scheme for equation 

(43) can be written as 

 
 
 
 
 

𝑈𝑖 ,𝑗

𝑈𝑖+1,𝑗

𝑈𝑖 ,𝑗+1

𝑈𝑖+1,𝑗 +1 
 
 
 
 

(𝑘+1)

=
𝜔

2079
 

99𝑆1 + 𝑆𝑎

99𝑆2 + 𝑆𝑏

99𝑆3 + 𝑆𝑏

99𝑆4 + 𝑆𝑎

 + (1 − 𝜔)

 
 
 
 
 

𝑈𝑖 ,𝑗

𝑈𝑖+1,𝑗

𝑈𝑖 ,𝑗 +1

𝑈𝑖+1,𝑗+1 
 
 
 
 

(𝑘)

 

(44) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8  HSSOR-9L method considers only half of the total 

nodes during the iteration process, whilst the remaining nodes 

are computed using direct method after the convergence is 

reached 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9  With 4-EGSOR-9L method, groups of four points are 

calculated using 9L approximation 

 

4.7   The 4-EDGSOR-9L method 

 

Let a group of four points with decoupled pairs as 

shown in Figure 10 be considered to form a system of 

linear algebraic equations and be given as [46] 

 

20 −4 0 0
−4 20 0 0
0 0 20 −4
0 0 −4 20

 

 
 
 
 
 

𝑈𝑖 ,𝑗

𝑈𝑖+1,𝑗+1

𝑈𝑖+1,𝑗

𝑈𝑖 ,𝑗+1  
 
 
 
 

=  

𝑆1

𝑆2

𝑆3

𝑆4

  

(45) 

 

where 
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𝑆1 = 4𝑈𝑖−1,𝑗−1 + 4𝑈𝑖−1,𝑗+1 + 4𝑈𝑖+1,𝑗−1 + 𝑈𝑖−1,𝑗 + 𝑈𝑖 ,𝑗−1,

𝑆2 = 4𝑈𝑖 ,𝑗+2 + 4𝑈𝑖+2,𝑗 +2 + 4𝑈𝑖+2,𝑗 + 𝑈𝑖+2,𝑗+1 + 𝑈𝑖+1,𝑗+2,
 

and 

𝑆3 = 4𝑈𝑖 ,𝑗−1 + 4𝑈𝑖+2,𝑗−1 + 4𝑈𝑖+2,𝑗 +1 + 𝑈𝑖+2,𝑗 + 𝑈𝑖+1,𝑗−1,

𝑆4 = 4𝑈𝑖−1,𝑗 + 4𝑈𝑖−1,𝑗 +2 + 4𝑈𝑖+1,𝑗 +2 + 𝑈𝑖−1,𝑗+1 + 𝑈𝑖 ,𝑗+2.
 

 

By splitting equation (45), this leads to a decoupled 

group (2 x 2) that can be written as  

 
20 −4
−4 20

  
𝑈𝑖 ,𝑗

𝑈𝑖+1,𝑗 +1
 =  

𝑆1

𝑆2
  

(46) 

and 

 
20 −4
−4 20

  
𝑈𝑖+1,𝑗

𝑈𝑖 ,𝑗+1
 =  

𝑆3

𝑆4
 . 

(47) 

Then, determine the inverse of coefficient matrix in 

equations (46) and (47) toobtain  

 
𝑈𝑖 ,𝑗

𝑈𝑖+1,𝑗+1
 =

1

96
 
5 1
1 5

  
𝑆1

𝑆2
  

(48) 

and 

 
𝑈𝑖+1,𝑗

𝑈𝑖 ,𝑗+1
 =

1

96
 
5 1
1 5

  
𝑆3

𝑆4
 , 

(49) 

respectively. The SOR iterative scheme for equation 

(48) and (49) can be written independently as  

 
𝑈𝑖,𝑗

𝑈𝑖+1,𝑗+1
 

(𝑘+1)

=
𝜔

96
 
5𝑆1 + 𝑆2

𝑆1 + 5𝑆2
 + (1 − 𝜔)  

𝑈𝑖,𝑗

𝑈𝑖+1,𝑗+1
 

(𝑘)

 

(50) 

and 

 
𝑈𝑖+1,𝑗

𝑈𝑖 ,𝑗+1
 

(𝑘+1)

=
𝜔

96
 
5𝑆3 + 𝑆4

𝑆3 + 5𝑆4
 +  1 − 𝜔  

𝑈𝑖+1,𝑗

𝑈𝑖 ,𝑗+1
 

 𝑘 

. 

(51) 

The configuration spaces are divided into two types of 

nodes, i.e. white and black nodes, where the solutions 

of any group of nodes are based on decoupled pairs. 

The 4-EDGSOR-9L may utilize either equation (50) or 

(51). For groups near to the boundaries, with only two 

or single nodes, direct method is applied.  

 

 

5.0  SIMULATION RESULTS AND DISCUSSION 
 

The simulations of robot path planning are run in a 

static environment using two simple configuration 

spaces i.e. Case 1 and Case 2. The considered 

methods are examined against several sizes of 

configuration space i.e. 300 by 300, 600 by 600, 900 

by900, 1200 by 1200, 1500 by 1500 and 1800 by 1800. 

The configuration space consists of a goal point, 

obstacles, inner walls and outer boundary walls. In the 

initial setup, the obstacles, inner and outer walls are 

fixed with high potential values, whilst the goal point is 

set to a fixed lowest potential value, and no initial 

values are assigned to all other free spaces. The 

computation are carried out using Windows XP 

machine running on Intel Core 2 Duo CPU at 2.5GHz 

speed equipped with 1GB of RAM. The codes are 

written in Pascal, and the generation of paths are 

simulated in the self-developed software namely 

Robot 2D Simulator. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 With 4-EDGSOR-9L method, groups of four points 

consists of decoupled pairs 

 

 

The numerical representation used for these 

experiments is important. The iteration technique is 

terminated when there is no change of potential 

values from one iteration process to the next. A very 

high precision is required, thus the implementation 

used an 8 bytes variable storage of type Double for 

storing each potential value. The range value for 

Double is5.0 x 10-324 to 1.7 x 10-308, and it can store up 

to 15 significant digits. The convergence criterion is set 

to a very small error tolerance i.e. 1.0-15, since lower 

precision is not sufficient to avoid flat areas in the 

resulting potential values. 

For performance comparisons, the HPF are 

calculated using the considered iterative methods as 

described in Section 4.3 to 4.7 (i.e. FSSOR, HSSOR, 4-

EGSOR, 4-EDGSOR, FSSOR-9L, HSSOR-9L, 4-EGSOR-9L 

and the newly suggested 4-EDGSOR-9L). Once the HPF 

in the configuration space are established, the paths 

can be generated by following the gradient using the 

Gradient Descent Search (GDS) from the start point to 

the specified goal point. In a static situation where the 

goal point and obstacles are fixed, the solutions may 

be computed and then reused as often as desired. 

Unless the obstacles or goal point change position, the 

solution need not be recomputed. The position of start 

point does not affect the computation of the solutions. 
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The path planning simulations are conducted in 

several runs. Each run successfully generates smooth 

path from the start point to the goal point. In the 

generated paths shown in Figures 11 and 12, the solid 

square in green colour denotes start point, whilst the 

solid circle in red colour denotes goal point. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 The generated paths for Case 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12 The generated paths for Case 2 

 

Based on the simulation results, the performance in 

terms of number of iterations and CPU time for the 

considered methods are tabulated in Tables 1 and 2, 

respectively. Whilst, Table 3 shows the reduction 

percentages in terms of number of iterations and CPU 

time between the currently suggested method and 

the previous methods. As shown in Tables 1 and 2, the 

newly suggested 4-EGSOR-9L method is clearly faster 

than the previous methods. Also, 4-EDGSOR-9L method 

reduced the number of iterations significantly. Overall, 

the block variants of half-sweep iterative methods (the 

4-EDGSOR and 4-EDGSOR-9L) give the best 

performance. The 4-EDGSOR-9L method that based on 

9L approximation, however, is slightly faster than the 4-

EDGSOR method. Compared to the standard FSSOR, 

the suggested 4-EDGSOR-9L method gives the best 

complexity reduction percentages by reducing the 

iteration number and execution time approximately by 

65.0% to 66.9% and 70.8% to 76.5%, respectively. 

 

Table 1 Number of iterations 

  N 

 Methods 300 600 900 1200 1500 1800 

C
A

SE
 1

 

FSSOR 2804 10686 23218 40322 61840 87686 

HSSOR 1426 5473 11915 20698 31780 45065 

EGSOR 1428 5533 11979 20880 31927 45385 

EDGSOR 1069 4175 9070 15810 24228 34423 

FSSOR-9L 2349 8964 19485 33837 51905 73601 

HSSOR-9L 1183 4584 9998 17375 26674 37826 

EGSOR-9L 1894 7263 15770 27426 42042 59681 

EDGSOR-9L 949 3697 8094 14039 21601 30616 

C
A

SE
 2

 

FSSOR 2189 8331 18130 31473 48258 68431 

HSSOR 1109 4260 9299 16153 24786 35158 

EGSOR 1105 4327 9335 16313 24884 35427 

EDGSOR 822 3250 7068 12338 18876 26845 

FSSOR-9L 1834 6985 15214 26409 40501 57441 

HSSOR-9L 914 3562 7793 13547 20793 29507 

EGSOR-9L 1475 5657 12313 21399 32802 46556 

EDGSOR-9L 734 2872 6317 10951 16850 23880 

 

 

Table 2 CPU times (in seconds) 

  N 

 Methods 300 600 900 1200 1500 1800 

C
A

SE
 1

 

FSSOR 5.64 99.78 553.55 1720.28 4190.00 8605.36 

HSSOR 1.52 25.44 147.75 471.20 1137.26 2328.05 

EGSOR 3.20 49.80 270.48 841.89 2030.00 4179.11 

EDGSOR 1.53 23.94 137.70 432.63 1047.69 2134.50 

FSSOR-9L 5.94 88.59 494.72 1533.14 3707.52 7621.81 

HSSOR-9L 1.33 24.53 146.52 465.52 1124.09 2309.01 

EGSOR-9L 5.92 92.20 493.67 1533.67 3695.33 7561.14 

EDGSOR-9L 1.55 24.58 141.59 439.11 1066.86 2172.61 

C
A

SE
 2

 

FSSOR 4.59 79.06 446.23 1398.06 3415.03 7017.78 

HSSOR 1.19 21.52 121.83 383.69 927.31 1902.27 

EGSOR 2.53 40.70 216.81 677.38 1632.20 3371.28 

EDGSOR 1.22 19.48 110.59 346.75 838.91 1712.59 

FSSOR-9L 4.86 73.03 404.78 1249.61 3028.86 6226.06 

HSSOR-9L 1.11 20.09 120.94 380.91 926.39 1883.69 

EGSOR-9L 4.72 74.00 395.02 1223.61 2948.91 6038.83 

EDGSOR-9L 1.23 19.84 113.48 351.05 851.61 1737.94 
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Table 3 Reduction percentages 
    Number of iterations CPU time (in seconds) 

   Methods % % 

   FSSOR 0 0 

   HSSOR 48.6 – 49.3 72.5 – 74.5 

   EGSOR 48.0 – 49.8 40.9 – 53.5 

   EDGSOR 60.8 – 62.5 71.2 – 76.6 

   FSSOR-9L 16.0 – 16.2 (11.0) – 13.8 

   HSSOR-9L 56.8 – 58.3 71.5 – 78.8 

   EGSOR-9L 31.9 – 32.6 (12.4) – 18.5 

   EDGSOR-9L 65.0 – 66.9 70.8 – 76.5 

 

 

6.0  CONCLUSION 
 

In conclusion, the newly suggested 4-EDGSOR-9L 

method manages to speed up the computation of 

HPF significantly. The application of GDS to the 

obtained HPF quickly generates smooth paths from 

start point to the goal point in both Case 1 and Case 

2. In computing the HPF, compared to the standard 

point iterative method that employsfull-sweep 

iteration, the half-sweep approach reduced the 

computational complexity by approximately 50%.In 

comparison to the point iterative methods, their 

corresponding block variants further reduce the 

computational complexity. Thus, they greatly speed 

up the convergence of the iterations process to obtain 

the HPF, thus consequently further improve the overall 

performance of the path planning algorithm. 

Furthermore, although the computational complexity 

of the iterative methods based on 9Lare slightly higher 

than the 5L methods, the 9L methods converge slightly 

faster, since they obtain more accurate solutions than 

their corresponding 5L methods due to greater 

number of molecules involved per node calculation. 

Nevertheless, the performance differences between 

the 5L methods and their corresponding9L methods 

are minimal. In the future, faster iterative methods that 

employ quarter-sweep approach [47] and its block 

variants[48] would be recommended. 
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