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Abstract 
 

In this research article, numerical solution of nonlinear 2nd order two-point boundary 

value problems (TPBVPs) is discussed by the help of nonlinear shooting method (NLSM), 

and through the modified nonlinear shooting method (MNLSM). In MNLSM, fourth order 

Runge-Kutta method for systems is replaced by Adams Bashforth Moulton method 

which is a predictor-corrector scheme. Results acquired numerically through NLSM and 

MNLSM of TPBVPs are discussed and analyzed. Results of the tested problems obtained 

numerically indicate that the performance of MNLSM is rapid and provided desirable 

results of TPBVPs, meanwhile MNLSM required less time to implement as comparable to 

the NLSM for the solution of TPBVPs.   

 

Keywords: Shooting method, predictor-corrector scheme, Runge-Kutta method, BVPs, 

ODEs. 

 

 Abstrak 
 

Dalam artikel penyelidikan ini, penyelesaian berangka bagi masalah nilai sempadan 

dua titik tertib kedua tak linear (MNSDT) dengan bantuan kaedah penembakan tak 

linear (KPTL) dan kaedah terubahsuai penembakan tak linear (KTPTL) akan 

dibincangkan. Dalam KTPTL, kaedah Runge-Kutta tertib keempat untuk sistem telah 

digantikan dengan kaedah Adams Bashforth Moulton, iaitu skema peramal-pembetul. 

Keputusan yang diperoleh secara berangka melalui KPTL dan KTPTL daripada MNSDT 

turut dibincangkan dan dianalisis. Keputusan masalah yang diuji yang diperoleh secara 

berangka menunjukkan bahawa prestasi KTPTL adalah pantas dan memberikan kesan 

yang optimum kepada MNSDT. KTPTL juga memerlukan masa yang kurang untuk 

dilaksanakan berbanding KPTL untuk menyelesaikan MNSDT. 

 

Kata kunci: Kaedah penembakan, skema peramal-pembetul, kaedah Runge-Kutta, 

masalah nilai sempadan (MNS), persamaan pembezaan biasa (PPB) 

 

 © 2016 Penerbit UTM Press. All rights reserved 
  

 

 
  



51                          Norma, Abdul & Mustafa / Jurnal Teknologi (Sciences & Engineering) 76: 8-2 (2016) 50-56 

 

 

1.0 INTRODUCTION 
 

For the two-point boundary value problems (TPBVPs) of 

ordinary differential equations (ODEs), some of the 

boundary conditions are stated at starting value of the 

independent variable, whereas the remaining 

boundary conditions are stated at end values of 

independent variable. Therefore, boundary conditions 

are divided between the initial points and terminal 

points of independent variable[1].  

Numerous problems in engineering and in applied 

sciences are sculpted as TPBVPs like in fluid dynamics, 

heat energy distribution theory, reaction kinetics, 

space technology, optimization and control theory. 

The newest application of the TPBVPs has been 

described by [2] [3] [4] [5] [6] [7] [8] and many others. 

Since the TPBVPs has a large number of applications in 

science, therefore, more rapidly and precise solutions 

numerically of TPBVPs are much needed.  

The tactic for the solution of a nonlinear second 

order TPBVP of the type    

( , , )y f x y y  ,  ,x a b ; ,a b R         

In association with boundary conditions 

( )y a 
 
and ( )y b  .        

here α and β are constants. 

have been suggested by a different number of 

researchers like [9] [10] [11] [12] [13] [14]and[15]. 

It has been reported by [11] who considered 

multiple shooting methods (MSM) with Runge-Kutta 

method (RKM) to solve the  nonlinear 2nd order TPBVPs 

using constant step size. In a research paper [14], 

discussed the multistep method regarding the 

backward difference formula and approaching 

solutions with NLSM. [10] discussed a numerical 

algorithm for the solution of TPBVPs directly by means 

of the divided-difference mode that comprises the 

differentiation and integration of coefficients in the 

code with MSM via adjustable order and step size. 

In this paper, the NLSM is modified, which is named 

as a MNLSM. This method is applied to find the 

numerical solution of 2nd order nonlinear TPBVPs by 

substituting RKM for systems (which is a single step 

method) by Adam Bashforth Moulton method (ABMM) 

for systems (which is multi step method). Both methods 

are used to find solution of initial value problems (IVPs). 

The execution and convergence time of both these 

methods are also tested and discussed. 
 
 
2.0 MATERIALS AND METHODS 
 

In latest study of optimal control theory, engineering 

and mechanics, one frequently faces with a second 

order TPBVPs. Many techniques for solving TPBVPs are 

discussed and presented by many researchers. The 

common technique for solving TPBVPs is shooting 

method (SM). In SM, TPBVP is reduced to the solution of 

an IVP, with the supposition of initial values that would 

have been given if ODE is an IVP. The boundary value 

calculated is then matched with real boundary value. 

Using some scientific approach or trial and error, one 

wants to reach the boundary value as close as 

possible. 

The SM workings by allowing for boundary conditions 

as multivariate functions of initial conditions (ICs) at 

specific points, reducing the TPBVP to finding ICs that 

gives a root. The SM takings advantage of adaptivity 

and speed of methods for IVPs. SM disadvantage is 

that it is not as strong as collocation or finite difference 

methods: some IVPs with increasing modes are 

inherently unstable even though the TPBVP itself may 

be somewhat well posed and stable. 

For solving these TPBVPs, a couple of other methods 

such as nonlinear SM (NLSM) and its variation, and 

multiple shooting methods (MSM) are present in the 

literature. In this study a new scheme is proposed and 

designed from favorable aspects of both NLSM and 

MSM. The modified nonlinear SM (MNLSM) covers 

discrepancies of both previously mentioned methods 

to give up a faster and superior method for solving 

nonlinear TPBVPs. The convergence of MNLSM is 

proved under mild conditions on second order 

nonlinear TPBVP. A comparison for a problem by 

MNLSM and MSM is made where both methods 

converge.  

MNLSM is the modified version of existing shooting 

techniques using predictor-corrector method (PCM) 

which proceeds in two steps. Firstly, prediction step 

computes a rough approximation of essential quantity. 

Secondly, the corrector step improves initial 

approximation using another means. The idea behind 

PCM is to use a suitable combination of an implicit and 

an explicit technique to find a method with better 

convergence characteristics. 

The fourth order classical RKM for systems is a single 

step method, has been used in NLSM to approximate 

the solution of the nonlinear TPBVPs. In MNLSM, ABMM 

for systems, which is a multistep method, is used in the 

replacement of the Classical fourth order RKM. The 

execution time of algorithms for both NLSM and 

MNLSM were also checked. 

 

Considered a nonlinear 2nd order TPBVP  

( , , )y f x y y  , ( )y a  , ( )y b          (1) 

Here α and β are constants and  ,x a b . 

For solutions of IVPs in the form of a sequence of  

( , , )y f x y y  , ( )y a  , ( )y a t          (2) 

including t a parameter, and  ,x a b , is applied to 

estimate solution of BVP (1).  

Express this through selecting kt t as a parameters 

in a manner that make assure that 
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lim ( , ) ( )k
k

y b t y b 


                (3) 

  Here ( , )ky x t  is a solution of IVP (2) with kt t and 

y(x) is a solution to the BVP (1). 

  This procedure is known as a NLSM. 

  Initiated with parameter 0t that set up out initial 

elevation by which object is fired from point ( , )a  and 

close to curve termed by solution for IVP. 

( , , )y f x y y  , ( )y a  , 0( )y a t         (4) 

  If 0( , )y b t  is not satisfactorily nearby to β, tried to 

accurate approximation by selecting a new elevation

1t and so on, up to ( , )ky b t  is appropriately near to 

strike β.  

  Decide that in what way the parameter kt  might be 

selected, assume a TPBVP (3) has single solution. If y(x, 

t) is solution to IVP (2), then there is requirement to 

conclude t so  

( , ) 0y b t                  (5) 

  Since (5) is a nonlinear, Newton’s method

1

( )

( )

n
n n

n

f x
x x

f x
  


is applied to solve this problem. 

The early approximation 0t is chosen and then 

produces sequence by 

1
1

1

( , )

( , )

k
k k

k

y b t
t t

dy
b t

dt







                (6) 

  This needs the information of 1( , )k

dy
b t

dt
 , which 

offered a trouble, meanwhile an explicit drawing for 

y(b, t) was not known; and only acknowledged of 

values 0 1 1( , ), ( , ), .........., ( , ).ky b t y b t y b t   

 

  Hence reformed IVP (2), give emphasis that solution 

depending on together x and t. 

 

 ( , ) , ,y x t f x y y  ; a x b  , ( , )y a t  , ( , )y a t t       

(7) 

recalling prime notation to specify differentiation w.r.t  

x. 

 Then to determined ( , )
dy

b t
dt

, when 1kt t  , take 

partial derivative of (7) w.r.t t. 

   ( , ) , ( , ), ( , ) , ( , ), ( , )
y f f x

x t x y x t y x t x y x t y x t
t t x t

   
  

   

 

   , ( , ), ( , ) ( , ) , ( , ), ( , ) ( , )
f y f y

x y x t y x t x t x y x t y x t x t
y t y t

   
  

   

 

Since x and t are independent, 0
x

t





, so  

   ( , ) , ( , ), ( , ) ( , ) , ( , ), ( , ) ( , )
y f y f y

x t x y x t y x t x t x y x t y x t x t
t y t y t

     
  

    

 (8) 

for a x b  . The initial conditions give 

( , ) 0
y

a t
t





, and  ( , ) 1.

y
a t

t





 

Making simpler the representation by using ( , )z x t to 

indicate ( , )
y

x t
t




 and consider that order of the 

differentiation of x and t can be reversed, Eq. (8) with 

initial conditions become IVP 

   ( , ) , , ( , ) , , ( , )
f f

z x t x y y z x t x y y z x t
y y

 
    

 
,

a x b  ; ( , ) 0z a t  and ( , ) 1z a t    (9) 

So, one requires that two IVPs (2) and (9) be solved for 

every single iteration. 

Then from Eq. (6), 

 
1

1

1

( , )

( , )

k
k k

k

y b t
t t

Z b t







              (10) 

In exercise, no one of these IVPs are solved accurately; 

as an alternative, the numerical solutions are found 

through one of IVP solvers. 

 

  Hence, in SM for 2nd order nonlinear TPBVPs, classical 

fourth order RKM is used to find together the solutions 

essential by Newton’s method. 

 

2.2 Adams-Bashforth-Moulton Method 

 

The PCMs also named multistep methods, are not self-

starting. They need four starting points

0 0 1 1 2 2( , ).( , ), ( , ),x y x y x y 3 3( , )x y , in order to create 

the point 4 4( , )x y . 

 

  Let the two first order IVPs are 

1 1 1 1( , , )i i i im f x m n   
  , 0 0( )m x m  

1 1 1 1( , , )i i i in g x m n   
  ,  0 0( )n x n for 

a x b  .  

By using four step Adams Bashforth methods as 

predictor formula, is  

 1 1 2 355 59 37 9
24

i i i i i i

h
m m f f f f   

       

 1 1 2 355 59 37 9
24

i i i i i i

h
n n g g g g   

         

The above predictor formulas are used one time in 

iteration, by using three step Adams Moulton methods 

as corrector formula, is  

 1 1 1 29 19 5
24

p

i i i i i i

h
m m f f f f   

         
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 1 1 1 29 19 5
24

p

i i i i i i

h
n n g g g g   

         

 

Here p is the predicted value. The above correctors 

formulas are used as several times as required to 

obtain the essential level of accuracy. 
 

 

3.0  RESULTS AND DISCUSSION 
 

Here, we discussed two examples to display the 

working of both NLSM and proposed MNLSM 

algorithm.  

 

  F o r  s i m u l a t i o n ,  M A T L A B  c o d e s  a r e  

written and that c o d e s  a r e  implemented on 

Core I3 Windows 7 system. 

 

 

 

 

 

3.1 Example-1 

 

 Suppose a 2nd order nonlinear TPBVP of the form 

 

 31
32 2 , 1 3,

8
y x yy x      with boundary 

conditions
43

(1) 17, (3)
3

y y  and actual solution is 

2 16
( )y x x

x
  .  

Take h=0.2 and the error bound 10-5. 

   

Table 1 indicates that when value of the variable x 

increased from 1 3x to x  , the numerical results of 

the MNLSM are further accurate than numerical results 

of NLSM, while compared to the exact solution, but 

results attained by NLSM and MNLSM are suitable as 

related to the exact solution and for the results 

reported by  researcher [11] , [13]and [15]. 

 
Table 1 Showing Numerical Results and Exact Solution 

 

I X(I) Exact Solution Results by NLSM Results by MNLSM 

0 1.00000000 17.00000000 17.00000000 17.00000000 

1 1.10000000 15.75545455 15.75549614 15.75531210 

2 1.20000000 14.77333333 14.77339116 14.77305380 

3 1.30000000 13.99769231 13.99775428 13.99728621 

4 1.40000000 13.38857143 13.38863177 13.38745291 

5 1.50000000 12.91666667 12.91672269 12.92664767 

6 1.60000000 12.56000000 12.56005059 12.55470098 

7 1.70000000 12.30176471 12.30180955 12.30418467 

8 1.80000000 12.12888889 12.12892807 12.12538183 

9 1.90000000 12.03105263 12.03108645 12.03201527 

10 2.00000000 12.00000000 12.00002885 11.99844632 

11 2.00000000 12.02904762 12.02907192 12.02944466 

12 2.20000000 12.11272727 12.11274744 12.11205785 

13 2.30000000 12.24652174 12.24653819 12.24664626 

14 2.40000000 12.42666667 12.42667979 12.42637097 

15 2.50000000 12.65000000 12.65001016 12.65001916 

16 2.60000000 12.91384615 12.91385369 12.91370993 

17 2.70000000 13.21592593 13.21593115 13.21591762 

18 2.80000000 13.55428571 13.55428891 13.55422821 

19 2.90000000 13.92724138 13.92724281 13.92724524 

20 3.00000000 14.33333333 14.33333324 14.33333336 

 

 

   Results in Table 2 of example-1 showed that 

when value of the variable x increased from

1 3x to x  , absolute error for MNLSM 

decreased when compared with the absolute 

error of NLSM, and with results reported by the 

researcher [11] , [13]and [15]. 

Numerical results in Table 3 of example-1 

indicates that NLSM with tk = -1.4000192e+001 

converges in 7 iterations and its execution time is 

2.459359 seconds, whereas MNLSM with tk = -

1.4002225e+001 converges in 14 iterations and its 

execution time is 1.598757 seconds, which is also 

less than the execution time of NLSM, and from  

execution time described by [15]. The numerical 

results acquired by MNLSM are also suitable, as 

compared with exact solution. 

 
 

 



54                          Norma, Abdul & Mustafa / Jurnal Teknologi (Sciences & Engineering) 76: 8-2 (2016) 50-56 

 

 

 

Table 2 Showing Absolute Error and Exact Solution 

 

I X(I) Exact Solution Absolute Error 

by NLSM 

Absolute Error 

by MNLSM 

0 1.00000000 17.00000000 0.00000000 0.00000000 

1 1.10000000 15.75545455 0.00004159 0.00014245 

2 1.20000000 14.77333333 0.00005783 0.00027953 

3 1.30000000 13.99769231 0.00006189 0.00040610 

4 1.40000000 13.38857143 0.00006034 0.00111852 

5 1.50000000 12.91666667 0.00005602 0.00998100 

6 1.60000000 12.56000000 0.00005059 0.00529902 

7 1.70000000 12.30176471 0.00004484 0.00241996 

8 1.80000000 12.12888889 0.00003918 0.00350706 

9 1.90000000 12.03105263 0.00003382 0.00096254 

10 2.00000000 12.00000000 0.00002885 000155368 

11 2.00000000 12.02904762 0.00002430 0.00039684 

12 2.20000000 12.11272727 0.00002017 0.00066942 

13 2.30000000 12.24652174 0.00001645 0.00012452 

14 2.40000000 12.42666667 0.00001312 0.00029570 

15 2.50000000 12.65000000 0.00001016 0.00001916 

16 2.60000000 12.91384615 0.00000754 0.00013622 

17 2.70000000 13.21592593 0.00000522 0.00000831 

18 2.80000000 13.55428571 0.00000320 0.00005750 

19 2.90000000 13.92724138 0.00000143 0.00000386 

20 3.00000000 14.33333333 0.00000009 0.00000003 

 

 
Table 3 Showing Execution Time and Convergence 

 

NLSM MNLSM 

Convergence in 7  iterations with 

tk = -1.4000192e+001 

14  iterations with 

tk = -1.4002225e+001 

Execution Time is 2.459359 seconds 1.598757 seconds. 

 

 

3.2 Example-2 

 

Considered another 2nd order nonlinear  TPBVP of 

the form 
32 , 1 2,y y x    with the boundary 

conditions
1 1

(1) , (2)
4 5

y y   and exact 

solution of the problem is  
1

( ) 3y x x


  . Take 

h=0.1 and error bound 10-5. 

 

 

   

   Numerical results in Table 4 of example-2 

indicates that when value of the variable x 

increased from 1 2x to x  , the results of 

NLSM are further accurate as results of MNLSM, 

when compared with exact solution, but results 

obtained with both methods are suitable when 

compared with exact solution and with results 

reported by researcher [11], [13]and [15]. 

 

 

 
Table 4 Showing Numerical Results and Exact Solution 

 

I X(I) Exact Solution Results by NLSM Results by MNLSM 

0 1.00000000 0.25000000 0.25000000 0.25000000 

1 1.10000000 0.24390244 0.24390244 0.24390218 

2 1.20000000 0.23809524 0.23809524 0.23809472 

3 1.30000000 0.23258514 0.23255815 0.23255736 

4 1.40000000 0.22727273 0.22727274 0.22727167 

5 1.50000000 0.22222222 0.22222224 0.22222855 

6 1.60000000 0.21739130 0.21739132 0.21739040 

7 1.70000000 0.21276596 0.21276598 0.21276612 

8 1.80000000 0.20833333 0.20833336 0.20833302 

9 1.90000000 0.20408163 0.20408166 0.20408167 

10 2.00000000 0.20000000 0.20000003 0.20000004 
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   Results in Table 5 of example-2 indicates that as 

the value of variable x increased from

1 2x to x  , the absolute error for MNLSM is 

higher when compared with absolute error of 

NLSM, and with exact solution, and with results 

reported by the researcher [11], [13]and [15], but 

absolute errors of both methods are acceptable. 

 

 

 
Table 5 Showing Absolute Error and Exact Solution 

 

I X(I) Exact Solution Absolute Error 

by NLSM 

Absolute Error 

by MNLSM 

0 1.00000000 0.25000000 0.00000000 0.00000000 

1 1.10000000 0.24390244 0.00000000 0.00000026 

2 1.20000000 0.23809524 0.00000000 0.00000052 

3 1.30000000 0.23258514 0.00000001 0.00002778 

4 1.40000000 0.22727273 0.00000001 0.00000106 

5 1.50000000 0.22222222 0.00000002 0.00000633 

6 1.60000000 0.21739130 0.00000002 0.00000090 

7 1.70000000 0.21276596 0.00000002 0.00000016 

8 1.80000000 0.20833333 0.00000003 0.00000031 

9 1.90000000 0.20408163 0.00000003 0.00000004 

10 2.00000000 0.20000000 0.00000003 0.00000004 

 

 

Numerical results in Table 6 of example-2 

indicates that NLSM with tk = -6.2499975e-002 

converges in 3 iterations and its execution time is 

1.483343 seconds, whereas MNLSM with tk = -

6.2502598e-002 converges in 10 iterations and its  

 

 

execution time is 1.029948 seconds, which is 

much less than the execution time of NLSM and 

from execution time observed by [15]. The results 

obtained by MNLSM are also suitable, as related 

with exact solution. 

 
Table 6 Showing Execution Time and Convergence 

 

NLSM MNLSM 

Convergence in 3  iterations with 

tk = -6.2499975e-002 

10  iterations with 

tk = -6.2502598e-002 

Execution Time is 1.483343 seconds. 1.029948 seconds. 

 

 

Results found numerically of both the tested 

problems clearly indicated that MNLSM in which 

ABMM for systems is used, will always require less 

execution time however perhaps with some loss in 

the accuracy. The fact is: ABMM which used in the 

MNLSM needs two function evaluations inspite of 

fourth order classical RKM used in NLSM which needs 

four function evaluations, make it more efficient [11] 

has applied NLSM on nonlinear 2nd order TPBVPs and 

attained the desired results, while in this paper, NLSM 

and MNLSM are applied on same TPBVPs, which 

presented further accurate results than [11], when 

compared with exact solution. Also, results in this 

paper are much better than  results reported by 

[11],[13]and[15], obtained by using NLSM.  

The reason is that the PCM which we used in 

MNLSM needs two function evaluations as a 

substitute of fourth order classical RKM used in NLSM 

which needs four function evaluations, make it more 

efficient. 

 

 

 

4.0 CONCLUSION  

 

Numerical simulations of tested problems pointed out 

that MNLSM all the time needs a smaller amount of 

time to execute, though possibly with certain loss in 

accuracy. Numerical results achieved by MNLSM are 

also acceptable, when compared with NLSM and 

with the exact solutions of the 2nd order nonlinear 

TPBVPs. For future research, higher order TPBVPs will 

be solved by using parallel computing techniques 

[16-20]. 
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