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Graphical abstract 
 

 

Abstract 
 

In this study, the distribution of the maximum principal stress in the specimen is shown under 

Brazilian test. Generally, Brazilian test is dealt under a pair of concentrated force to obtain the 

tensile strength. However, it is assumed that the contact area induces between specimen and 

loading plate. Therefore, the cosine curve is adopted as the distribution of load applied on the 

loading plates in a theoretical model for Brazilian test. The results from this study are shown in 

the graphical representation and compared with those under the uniform loading. 
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Abstrak 
 

Dalam kajian ini, pengagihan tekanan utama maksimum sampel dijalankan di bawah ujikaji 

Brazilian. Secara umumnya, ujikaji Brazilian adalah berkaitan sepasang beban tumpu yang 

dikenakan bagi memperolehi nilai kekuatan tegangan. Walaubagaimanapun, dianggapkan 

bahawa keluasan sentuhan wujud di antara sampel dan plat beban. Oleh itu, lengkungan 

kosain diadaptasi bagi membuktikan pengagihan beban yang dikenakan pada plat di dalam 

model teori ujikaji Brazilian. Keputusan dari kajian ini ditunjukkan dalam bentuk grafik dan 

perbandingan dibuat di antara beban seragam. 

 

Kata kunci: Ujikaji Brazilian; tegasan utama maksimum; keluasan sentuhan  
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1.0  INTRODUCTION 
 

Brazilian test is a simple and relatively inexpensive test 

to measure the tensile strength of a brittle material. The 

test is performed by placing a disk between two (rigid) 

plates and applying a diametrical compressive load. 

The test induces a biaxial stress state in which the stress 

at the center of the circular plane is compressive in the 

x-direction (x), and tensile in the y-direction (y). 

Theoretically, for an isotropic material, the tensile stress 

reaches a maximum at a constant magnitude of 

P/(a), where P represents the applied load and a 

represents the radius of the circular plane [1]. Because 

tensile strength is smaller than compressive strength for 

many rock materials, the material undergoes tensile 

failure first. 

Analytical models using finite element modelling were 

used to evaluate the tensile stress for Brazilian test by 

Lemmon and Blackketter [2]. The contact area 

between the specimens and two loading plates was 
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set to 2, 4 and 8 % of the circumference of the 

specimen, and a uniform load was applied to the 

specimen. The numerical results of this study agreed 

well with those from a theoretical model using 

complex stress functions under the same conditions 

[3]. According to these results, the tensile stress 

generated near the loading plates is influenced by 

the contact area between the loading plates and the 

specimen in Brazilian test. For isotropic materials (i.e., 

with material properties that are uniform along each 

axis), the maximum tensile stress is generated at the 

center of disk when the contact area increases. For 

orthotropic materials (i.e., with material properties that 

differ along each of three mutually orthogonal 

twofold axes), the maximum tensile stress is also 

generated at the center of circular plane when the 

angle of the principal material direction to the loading 

direction is close to /4. The maximum value is almost 

constant regardless of the contact area. On the other 

hand, the tensile stress is highest near the loading 

plate when the angle between the principal material 

direction and the loading direction is small, and 

decreases as the contact area increases. In the latter 

case, the contact area has a significant influence on 

tensile strength measurements. 

In these studies, the distribution of stresses applied 

on the loading plate was assumed to be uniform. In 

reality, the maximum applied stress is generated at the 

center of loading plate, and decreases as the 

distance from the center increases. At last, the 

applied load seems to disappear at the edges of the 

loading plates. 

In this study, in order to satisfy this boundary 

condition on the loading plate, the cosine curve is 

adopted as the distribution of load applied on loading 

plates in a theoretical model for Brazilian test. 

Specimens are isotropic also homogeneous and 

comprise a continuum without layers or micro-cracks. 

The elastic solution using boundary conditions shown 

in this study is used to obtain the distributions of the 

maximum principal stress in the isotropic circular 

specimen. Using this theoretical solution, distributions 

of maximum principal stress in isotropic specimen are 

shown. 

 

 

2.0  FORMULATION PROBLEM 
 

The application of opposing loads P to the diametrical 

axis of an orthotropic disk specimen of radius a is 

shown in Figure 1.  

 

 

 

 

 

 

 

 

 

 

Figure 1 Orthotropic circular plane under diametrical 

compression 

 

 

Here,  represents the angle between the principal 

material direction and the loading direction, and E1 

and E2 represent the respective moduli of deformation 

in the principal material directions. Xn and Yn represent 

the resultant forces on a circular boundary. To 

approximate this condition, it is assumed that a load 

of magnitude P is applied with the loading plate, with 

a width of /2 (rad). The center of loading plate is on 

the x-axis and is where the maximum applied load is 

generated. The load decreases with distance from the 

center of the loading plate, and disappears at the 

edge of the loading plate as shown in Figure 2. 

 
Figure 2 Schematic diagram in this study 

 

 

Boundary conditions for resultant forces are 

expanded into Fourier expansion with M terms as 

shown below. 

 

 

 

 

 

 

 

 

Here, the bar denotes the complex conjugate. In 

this case, Fourier coefficients for resultant forces m 

and m are given as follows. 
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The complex stress functions for an orthotropic 

circular plane are expanded as the series expressed 

below [4]: 

 

 

 

 

 

 

 

 

Where, Pkm (k=1, 2, m  2) is a power series of m-th order 

[4]. Complex coefficients Am and Bm (m  0) in Equation 

(5) are determined with Fourier coefficients for 

boundary conditions m and m [3]. Now, the stress 

components x, y and xy are given by 

 

 

 

 

 

 

 

 

Where Re represents the real part of each of complex 

functions in brackets.  kk z  means the first derivative 

of  with respect to zk, and 

 

   7.2,1 kyxz kk   

 

1 and 2 in the above equation are obtained as 

complex values of the characteristic equation [4]. The 

relationship between maximum principal stress 1 and 

stress components in Equation (6) is shown in Figure 3. 
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Figure 3 Maximum principal stress in Mohr’s stress circle 

 

 

Therefore, the maximum principal stress 1 can be 

obtained using stress components in Equation (6) as 

shown in Equation (8). 

 

 

 

 

 

 

 

3.0  RESULTS AND DISCUSSION 
 

Figure 4 and Figure 5 show the distribution of the 

maximum principal stress under cosine shaped 

loading and uniform loading for isotropic specimen 

respectively. The theoretical solution used in this study 

was induced for orthotropic elliptic plate. In these 

figures, E2/E1 was set to 0.98 and the value of the major 

axis was set similar to the minor axis as it deals with the 

isotropic circular plate. In both figures, the values of 

maximum principal stresses were normalized by the 

magnitude of applied load, P. The contact area 

between loading plate and specimen is set to 4% in 

Figure 4 and 8% in Figure 5. The number of Fourier 

coefficient that is shown as M in equation (1) is 45 for 

the loading shown in this study and 100 for uniform 

loading.  

In Figure 4, contours mean positions of the 

maximum principal stress with the values of 6.0, 5.0, 4.5, 

4.0, 3.5, 3.0, 2.5, 2.0 and 1.5. Values of maximum 

principal stress 2.5, 2.0 and 1.5 generated at the value 

of coordinate 0.747, 0.676 and 0.554 on loading axis in 

present study respectively. On the other hand, similar 

values of the maximum principal stress occur at the 

value of coordinate 0.751, 0.678 and 0.573 under 

uniform loading. The maximum principal stress 

generating on the loading radius in present study is 

larger than that under uniform loading. In addition, 

maximum principal stress spreads in the vertical 

direction to the loading radius in present study. The 

distribution shapes like pressure bulb appears in the 

elastic ground under concentrated force. The 

maximum principal stress propagates mainly in 

loading direction in present study. However, there are 

small differences between both figures. 
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In Figure 5, contours mean positions of maximum 

principal stress shows values of 3.5, 3.0, 2.5, 2.0 and 1.5. 

Values of maximum principal stress 2.5, 2.0 and 1.5 

generated at the value of coordinate 0.764, 0.688 and 

0.562 on loading axis in present study. These values are 

almost same as the values with the contact area of 

4%. However, in this case, the value of the maximum 

principal stress generating around loading plate is 

smaller. On the other hand, similar values of the 

maximum principal stress generate at the value of 

coordinate 0.786, 0.702 and 0.573 under uniform 

loading. Under uniform loading, these values are 

smaller than those of 4% of the loading area.  

Under the cosine shaped loading used in present 

study, the maximum deformation induces at the 

center of loading plate, and the value of deformation 

as the distance from center of loading plate increases. 

Finally, any deformations diminished at the edge of 

loading plate [5]. Therefore, the distribution of 

maximum principal stress in the specimen is similar to 

that under concentrated force [6]. Furthermore, it also 

explained why the value of maximum tensile stress 

generating on the loading axis under cosine shaped 

loading shown in present study is larger than that 

under uniform loading in orthotropic specimen [7]. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(a) Present result                                                                                          (b) Under uniform loading 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(a) Present result                                                                                            (b) Under uniform loading 

 

 
 

 

Figure 6 and Figure 7 show the distribution of the 

maximum principal stress under cosine shaped loading 

shown in present study and under uniform loading for 

orthotropic specimen respectively. In these figures, 

orthotropic ratio E2/E1 was set to 1.5 and the angle 

between loading direction and one of principal elastic 

axis E1,  in Figure 1, was set to 0. In other words, 

compression was carried out in softer axis. Figure 8 and 

Figure 9 also show the distribution of the maximum 

principal stress under cosine shaped loading shown in 

present study and under uniform loading in orthotropic 

specimen. Here, the orthotropic ratio, E2/E1 was 

consistent as in the Figure 6 and Figure 7 but the angle 

between loading direction and one of principal elastic 

axis E1 was set to /2. In which, compression was carried 

out in harder axis. In Figure 6 and Figure 8, contours 

show positions of the maximum principal stress with the 

values of 6.0, 5.0, 4.5, 4.0, 3.5, 3.0, 2.5, 2.0 and 1.5. In 

Figure 7 and Figure 9, contours show positions of 

maximum principal stress with the values of 3.5, 3.0, 2.5, 

Figure 4 Distribution of maximum principal stress under contact area 4% in isotropic specimen 

 

Figure 5 Distribution of maximum principal stress under contact area 8% in isotropic specimen 
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2.0 and 1.5. Furthermore, contours which mean 

positions of maximum principal stress with values of 5.0, 

4.5, 4.0 are added in Figure 9. It seems that the 

maximum principal stress propagates mainly in loading 

direction under compression in harder direction despite 

of distribution of loading from loading plates. On the 

other hand, it seems that maximum principal stress 

spreads in the vertical direction to the loading radius 

under compression in softer direction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(a) Present result                                                                                          (b) Under uniform loading 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 (a) Present result                                                                            b) Under uniform loading 

 

 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 (a) Present result                                                                                         (b) Under uniform loading 

 
 

 

Figure 6 Distribution of maximum principal stress under contact area 4% for E2/E1=1.5 =0 

 
, 

 

Figure 7 Distribution of maximum principal stress under contact area 8% for E2/E1=1.5 =0 

 
, 

 

Figure 8 Distribution of maximum principal stress under contact area 4% for E2/E1=1.5 =/2 

 
,  
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 (a) Present result                                                                               (b) Under uniform loading 

 

 
 

4.0  CONCLUSION 
 

In previous studies, concentrated forces or uniform 

loading were used as boundary conditions for 

theoretical models related to Brazilian test. To satisfy this 

boundary condition, the cosine curve is adopted as the 

distribution of applied load on the loading plate in the 

theoretical model for the Brazilian test. Furthermore, to 

obtain the distributions of maximum principal stress in 

the specimen, calculations were carried out using this 

theoretical model for selected contact areas in 

isotropic and orthotropic specimen. Distributions of 

maximum principal stress obtained from these 

calculations were graphically shown and compared 

with results obtained under uniform loading. 
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Figure 9 Distribution of maximum principal stress under contact area 8% for E2/E1=1.5 =/2 
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