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Synopsis

The constitutive relations for the specially orthotropic lamina under a plane stress state are
employed with a linear shell theory, to obtain the governing equations for the multilayered
cross-ply cylindrical shell with through thickness symmetry.

The well known Fourier expansion method, used extensively in the analysis of isotropic
shell problems, are extended to handle the more complex case of the anisotropic shell subject to
a general loading case. Attention is confined to those loads which are symmetric with respect to
the generator passing through the lowest point of the shell, that is liquid-filled. self-weight,
support loading, etc.

In troduction
The reinforced plastics cylindrical shell is increasingly used in both the process industry and

in aircraft and space transportation. The lightness of the product in the latter case is of
particular value where up to 50% weight can be saved without loss of strength or material
degradation.

In these applications peak stresses (or strains) can occur at a number of locations,
for example,

(i) where the shell and its contents are supported, or the shell loaded through a bracket
(ii) where the displacement of the pressuried shell is restrained in anyway

(iii) where there is a discontinuity in the primary loading, such as occurs when a pipeline
is partially filled .

The aim of this paper is to provide a theoretical basis for considering these and other similar
problems when the shell is manufactured in a multi-layered form with thickness symmetry. The
behaviour of a simplified cross-ply lay-up , with each layer specially orthotropic, is examined. In
this the principal material axes are aligned in the axial and circumferential coordinates of the
cylindrical shell .

Although this work is the first step to solving the more general case of the multilayered aniso­
tropic system it does provide an insight into the behaviour of a multilayered system when
subject to various types of loads-examples of which are given in detail", The validity of the
analytical approach proposed, has been examined by the author et. aP by comparing the results
derived for the patch load, with those obtained using a more rigorous approach). For com­
pleteness typical values of the results are presented in Figure 2 for a shell of 254 mm radius and
2540 mm length and of radius/thickness = IS. The axial length of the loaded area was varied
from approximately 20 mm to 125 mm, with an adjustment in the circumferential length to
maintain a constant value of loaded area equal to 3580 mm? . [The figures were chosen to coin­
side with those in ref (3)). It was found that the present method is acceptable for values of
moduli ratio that fall within normal shell design.

Theoretical Analysis

Govering differential equations

The constitutive relation for a specially orthotropic lamina under a plane stress state is
given by :

ax = 011 012 0 ~x

a</J = 0 12 022 0 ~</J .. . (1)

t x</J = 0 0 0 66 ~x</Jk
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where: 011 = E I1/(1 -1'121'21)

1'12 E22/(1 - 1'121'21) = 1'21 Ell /(1 - 1'12 1'2d

0 /0 (x/a) and 0/0 I/J are represented by d

The strain values k x' k I/J' 3 xI/J are defined in term of u, v and w, for the small strain
compatibility relations as gives by Flugge". These equations relate the positive strain and
curvature at any distance z from the middle surface as a function of the mid-surface displace­
ments, u, v and w. They are defined as follows:

I
:Ex = - du

a

:E¢
I Z 02W + I= - OV
a a(a+z) (a+z)

w

axcf>
I (a + z) _I (~ z= --ou + dv - + ) dow

(a+z) a2 a a a+z . .. (2)

In these equations the differential operators
and 0 respectively.

The lamina stresses of eqn. (I) can be expressed in terms of u, v and wand their deriva­
tives. using eqn . (2). Assuming the shell to be fabricated as a layered system with through thick­
ness symmetry . it is possible to integrate the stress from eqn. (1) over the thickness to obtain
the resultant forces and moments acting on the laminate. These can be written:

x = -.!- (All du + AI2 (0V + w)) 1.- Du d2w
a a2

I + A22 (Sv + w)) +
la

D22 (w + 02w)¢ = - (A 12 du -
a a2

I + ou)) + D6 6xl/J = - (A6 6 (dv (dv - dow)
a a2

N 1 I= - (A6 6 (dv + 0u)) + - D6 6 (Su + dow)tJ> x a a2

M I (d2w - du) + DI2 (02 W - ov))= - (D IIx a2

MtJ> = .l. (D12 d2w + Dn(w+0
2w))

a2

MxtJ>
I - dv))= - (2 D6 6 (dow
a2

MtJ>x
I + OU - dv))= - (D6 6 (2 dow
a2 .. . (3)

The terms A j j and Djj are the in-plane and bending stiffness for the laminate. They corres­
pond to the summation of the individual layer effects and are defined in the notation.

The stress resultants given in eqn . (3) are shown in Fig. I.
The equilibrium equations for a thin-walled circular cylindrical vessel can be written as

follows:

dNx + 0 NtJ>x + Pxa = 0

aoNtJ> + adNxl/J - oMtJ> - dMxl/J + PI/J 'a2 = 0

s MtJ> + do Mxl/J + do MI/Jx + d2 Mx + aNI/J - Pra2= 0
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The governing differential equations are obtained by substituting the stress resultants
from eqn. (3) into the equilibrium eqn. (4) to give the following:

(A lld
2 +CI8 2)u+C2d8v+(AI2d+ ~ D66d8

2
a

= _ p a2
x

D22 2 I D 4 I 4 2 2 2+ (C5 + 2 - 8 + - 228 + - D11 d + C6d 8 )w = - p a
a2 a2 a2 r

Writing eqn. (5) in matrix form reveals the symmetry of the relationships:

L1 1 LI2 LI3 U - Px

LI2 L22 L23 V = a2
- PI/>

L13 L23 L33 W Pr

... (5 )

Using gramer's rule, eqn. (5) can be solved to give nine eighth order partial differential
equations relating the mid-surface displacements u, v and w to the loading components Pr'
PI/> and Px' Those relevant to the radial loading are shown below:

(DEXP) w =

(DEXP) u =

(DEXP) v =

Clld38 2 + Cl2d3 + Cl Sd" - CI4d8 4
) Pra"l

Cl6d48 - Cl7d28 3 + C188 3)p a2
r

where:

DEXPI = Cl9d28 2 +C20d28 4 +C21d28 6 +C22db8 2 +C23d48 4 +C24d48 2

+C25d2 +C26d6 +C27d8 +C288 4 +C298 6 +C308 8

... (6 )

The constant CI etc in eqns. (5) and (6) are functions of extensional and bending stiffness.
They are given in detail in Appendix I.

Fourier expansion solution

A particular solution of eqn. (6) can be obtained by expressing the loading components
and the mid-surface displacements in the double Fourier series form show below:

00

= :E
n=O

00

:E P Cos n I/> Cos (A x/a)
m=0 n,m

00 00

PI/> = :E :E Pn,m Sin n I/> Sin (A x/a)
n=l m= 1

00 00

Pr = :E :E Pn,m Cos n I/> Sin (A x/a) ... (7)
n=O m= 1
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00 00

w = L L Wn m COS n tP Sin (A x/a)
n = 0 m = 1 ,

00 00

u = L L Un ,m COS n tP COS (A x/a)
n = 0 m = 1

00 00 ... (8)
v = L L v Sin n tP Sin (A x/a)

n = 0 m = 0 n,m

where A = m rr ail

The choice of the expansions for Px' PtP and Pr imply that the loading system is symmetric
with respect to the generator passing through tP = 0 (see fig. I). The values for w, u and v eqn.
(8) can be used because of the through thickness symmetric nature of the specially orthotropic
system. A more general approach for the displacement is presented by the author in ref. (l).

Substituting w, u and v in eqn. (8) and the relevant loading terms, eqn. (7), into eqn. (6),
performing the required differential operations and involving orthogonality, a set of algebraic
equations are obtained for the coefficients W , v and u in terms of the loading p .n,m n,m n vm n,m

After deriving these coefficients, eqn. (8) can be used again to obtain expressions for w, u
and v, which can be used in eqn. (3) to obtain the stress resultants in series form. These equa­
tions are as follows:

00 00

Nx = L L Z4 P Cos n tP Sin (Ax/a)
a n=Om=l n,m n,m

00 OQ

NIf> = - L L Z5 Pn ,m Cos n tP Sin (Ax/a)a n=O m =1
n,m

00 00

NxtP = - L L Z6n ,m P Sin n tP Cos (Ax/a)a n=1
n,m

m=o

00 00

Nlf>x = L L Z7 Pn ,m Sin n If> Cos (Ax/a)a n=1 m=O
n,m

00 00

Mx = L L Z8 n ,m Pn ,m Cos n tP Sin (Ax/a)
n =O m = 1

00 00

MIf> = L L Z9 P Cos n tP Sin (Ax/a)
n=O m=1

n,m n ,m

00 00

Mxlf> = L L ZIO P Sin n If> Cos (Ax/a)
n=1 m=O

n,m n,m

00 00

Mlf>x = L L Z 11 P Sin n tP Cos (Ax/a)
n=1 m=O

n,m n,m
.. . (9)

where:

Z4n,m
1

= - A l l XZ2 + - D I I A2 Zl m + A 12 (nZ3 + ZI )n,m a2 n , n,m n,m

Z5n,m = - A 12 XZ2n,m
1

+ A22 (nZ3 m + ZI m) + 2' D22 ZI (1 -n2 )n , n , a n.rn

A
= - A6 6 (AZ3 m - nZ2 m) + -2 D6 6 (Z3 + nZ I )n , n , a n,m n,m
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Z8 n,m = (01lh2Z1
n m - 0 22 Zl (l - n2

) )

a2 , n,m

Z9n,m = (206 6 h(nZln m - Z3 n m))
a2 , ,

ZIOn m A6 6 (hZ3 n m - nZ2n,m) -
n066

(Z2 n,m + hZ I n,m)= --
, , a2

Zlln,m = 0 6 6 (hZ3 n,m + n (Z2n,m + 2»z I n,m ))
a2

Zln,m = a2 (C7 n2 h2 + C8h4 + C9 n4
) / DENn,m

= a2 (-CI5h2 n - Cl6h4 n - Cl7h2 n2
- Cl8 n3 )/OEN mn,

Boundary conditions

The expressions in eqn. (8) imply that certain boundary conditions must exist at the ends
of the vessel. Since the origin of the coordinate system is taken at one end of the cylinder (see
fig. I) all the Fourier expansions, or their derivatives containing the term sin (hx /a) vanish at
the ends of the cylinder. This implies that: -

(a) The ends cannot deform in the plane of their profile.
(b) No rigid body displacement or rigid body rotation of the ends can occur.
(c) The ends cannot carry applied axial loading.
(d) Generatiors are free to rotate in a plane normal to the profile.

If the vessel ends conform to the above boundary conditions then the Fourier expansion
solutions given in eqn. (9), are a complete solution to the problem. No complementary solution
need be added to the particular solution since eqn. (9) satisfy both the governing difference
eqn. (6) and the boundary conditions of the problem. In practice some deviation from the se
conditions is likely to occur, for example if the shell is a storage vessel with a flexible end
closure, or a pipe with a less than rigid support. In such cases it is still possible to use the results
of eqn. (9) with confidence if the local loading applied some distance from the vessel ends.

Fourier series representation of the applied loads

The only unknowns in eqn. (9) are the loading terms p . These terms are found bn m .
expressing the loading system in double Fourier Series form, This is achieved by multiplyin
both sides of eqn. (7) by suitable (orthogonal) expressions such as that integration over th
surface or the cylinder eliminates all but one of the tenns in each Fourier expansion.

To illustrate the method, consider a vessel subject to a radial pressure of p over all, or par
of its surface. From eqn. (7) this loading is expressed in the form:

m

cr
st

00 00

Pr = L L Pn m Cos n I/> Sin (h x/a)
n=O m= 1 ,

00 00

Pr = L (po,m + L Pn, m Cos n 1/» Sin m n x/L
m=1 n=1

Co

thi
th

Since h= mrra/L
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To illustrate th e procedure consider th e case n = 0 , that is:

00

= r
01 =1

p Sin m 1T x/L
0 , 01

Multiplying both sides of this equa tion by Sin (m' 1T x/L) dx de and , since the loading is
symmetric about the vertical diameter, nitegrating over half of the vessel surface (0 to 1T) we
obtain.

rL f1T Sin
Jo 0 Pr

otin g that ,

,
m 1TX

L
dxd t/> = l J1T 'f' p Sin

o 0 01= 1 0 , 01

m1TX

L

,
rn 1TX

Sin
L

dxdt/>

J
O

L
Sin 1111T x Sin m '1Tx dx = 0 when 111 =1= m'

= + when 111 = 111'

Leads to ,

when,

2 fL f1T Sin
L1T 0 0 Pr

m1T x
L

dxdt/> (lla)

n> 0, p
n ,01 = in

mn x
L

Cos n t/> dxde (II b)

Repeating this procedure for the other loading components, Pt/> and p x values of Pn, 01

may be obtained for these cases.
A compendium of p solutions is provided by Duthie and Tooth? , for the full range ofn,01

load conditions corresponding to the series given in eqn. (7).

Values of stress and strain in the layered system

The strain values are obtained using the compatibility conditions given is eqn. (2), the
values for u, v, w from eqn. (8) and u 01' v and w from eqn. (10) . In view of then , n v m n , m
Kirchoff-Love hypothesis these values are linear across the wall thickness.

The stress values in the kill layer can be obtained by substituting the strain variation
through the thickness, into the constitutive relations given in eqn. (I). Thus for any kill layer,
the stresses are given by the eqn.:

ax Q 11 Q 12 0 r x

at/> = Q 12 Q 22 0 z y

T-x 4> 0 0 Q 6 6 3 x y
k

Since the stiffnesses Q i j define the orientation of the individual lamina in a symmetric
cross-ply lay-up, the appropriate stiffnesses and strain values must be used when deriving the
stress for the particular layer considered . Examples of these are provided in ref. (6).

Concluding comments

The analysis presented provides a solution for the specially orthotropic shell, with through
thickness symmetry, when subject to a general loading system . It is contended that the use of
the linear elastic shell theory, neglecting transverse shear effects, is valid for moduli ratio
confin ed to the range 1/10 to 10 .
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Mid-surface
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Figure 1 Positive directions of mid-surface displacements, stress resultants and loading components
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Figurc 2 Dimensionless stress resultants, NI/l.Mx.M4l.Mx as a function of axial length. The ratio shown are Ell / En with
E/G =2.6.

Vinson and Cho u4

Elastic shell theory, neglecting tra nsverse shear".
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Appendix 1

The relationship between the constants CI etc as used in eqns.I Sj, (6) and (9), and the laminar
stiffness, are shown below:

CI = A 6 6 + I
- 0 6 6
a2

C2 = A l2 + A6 6

C3 Ai,6 + 3
0 6 6= -

a2

C4
I 3

0 6 6= - 0 12 + -
a2 a2

C5 An
I= + - 0 22
a2

C6
2 (0 12 + 20 6 6 )=
a2

C7 = All An + CI C3 - (C2)2

C8 = All C3

C9 = An C3

cio = A22 (A 12 + A6 6 ) - A 12 A22

CII C2 C4 - I
A22

I= - 0 11 + - D66C3
a2 a2

CI2 = - A 12 C3

CI3
I= - 011 C6

a2
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CI4 1= - A 22 0 66
a2

CIS = All A22 A I2 C2

C1 6 Au C4
1= - 0 11 C2
a2

C1 7 CIC2 + 1= -0 6 6 C2
a2

C19

C20

- An An 0 66 + A22 0 6 6 C2)

C21 = _1 All An 0 22 + An Cl C6 + -L On C1C3 - ..!.- 0 22(C2)2
a2 a2 a2

C23 =

C24 =

1 1 2
Al l A22C6 + -2 All 0 22 C3 + -2 An 0 11 CI + CI C3C6 - CI (C4)

a a

1
- -An06 6 C3 )

a2

C25 = C3 (Au C5 - (A I2)2)

C26 1 1= -2 Oil C3 (All - -0 11 )
a a2

,.,
C27 = -=-A IZ DlI C3

a2

C28 = Cl (AnC5 - (A22)2 )

C29 2= - A22On Cl
a2

C30 1
C29/2.= -A220 22Cl =

a2
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Notation

Lamina stiffness matrix

Matrix of in-plane stifness for laminate, layers

k = I to N

=

(Q ij)k (Z~ - Zk _ 1 3 )=

Matrix of bending stiffness for limate, layers k = I to N

I N
L

3 k = 1

Cl, C2, etc Constants which are functions of Ai j and Di j or both, defined in Appendix I.

x, cf> , z Coordinates in the axial, circumferential and radial directions - see figure I

Ell /E 22 Ratio of elastic Moduli in the axial and circumferential directions for indivi
layers

G 12 Shear modulus of layers in the x, cf> plane.

lJ
ij

Poisson's ratio for transverse strains in the j-direction when stressed in the i-dire

Nx' Ncf> Stress resultants - see figure I.

Mx' Mcf> etc

n, m Integer counters, denoting number of terms used in the Fourier series in the cir
ferential and axial direction respectively.

ax' acf>' 't-x cf> Normal and shear stresses in the axial and circumferential directions.

~ x ' ~ cf>' 3xcf> Normal and shear strains in the axial and circumferential directions.

u, v, w Mid-surface shell displacements in x, cf> and radial directions - see figure I.

Px' Pcf>' Pr Applied loading in the x, ¢, and radial directions - see figure I.

Pn.m Loading terms employed in Fourier analysis

d,o Differentials with respect to x/a and ¢ respectively

a, L, t Radius of mid-surface, length and thickness of cylindrical shell.

p Total radial load on the loaded area.
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