

78: 9–3 (2016) 21–30| www.jurnalteknologi.utm.my | eISSN 2180–3722 |

Jurnal

Teknologi

Full Paper

THE HIGH PERFORMANCE LINPACK (HPL) BENCHMARK

EVALUATION ON UTP HIGH PERFORMANCE CLUSTER

COMPUTING

Wong Chun Shiang, Izzatdin Abdul Aziz*, Nazleeni Samiha Haron,

Jafreezal Jaafar, Norzatul Natrah Ismail, Mazlina Mehat

Computer and Information Sciences Department, Universiti

Teknologi PETRONAS, Bandar Seri Iskandar, 32610 Tronoh, Perak

Darul Ridzuan, Malaysia

Article history

Received

1 February 2015

Received in revised form

24 March 2015

Accepted

1 August 2015

*Corresponding author

izzatdin@petronas.com.my

Graphical abstract

 Abstract

Universiti Teknologi PETRONAS (UTP) has formed a high performance computing cluster

(HPCC) inside the campus by utilizing most of the campus’ existing resources as the

computing resources. All the resources are interconnected within a same network, enabling

it to be accessed by users anywhere anytime within and outside the campus. The UTP HPCC

is used by researchers, including lecturers and students from UTP also from external parties to

compute intensive applications. However, the UTP HPCC has never been benchmarked

before, hence the performance and the ability of UTP HPCC are still unverified. The

benchmarking is imperative in order to measure the true performance and the ability of UTP

HPCC. This paper aims to evaluate the performance of UTP HPCC using a suitable

benchmarking tool as well as to determine the optimal parameters configuration of the

selected benchmarking tool. A comparative study has been done in order to select the best

benchmarking tool between High performance LINPACK (HPL) and the NAS Parallel. The

results show that HPL is a more suitable benchmarking tool for UTP HPCC compared to NAS

Parallel. A series of experiments were carried out to select the optimum parameter of HPL

configuration for UTP HPCC. The results from benchmarking show that the peak

performance is achievable under the test conditions.

Keywords: Benchmarking, cluster computing, high performance LINPAC (HPL), NAS parallel

 © 2016 Penerbit UTM Press. All rights reserved

1.0 INTRODUCTION

The high performance computing (HPC) cluster is

made of separate machines or servers

interconnected and running intensive applications

using parallel processing. By using the parallel

processing, it manages to run the application

efficiently, reliably and quickly. This HPC term applies

especially to the system that the performance is

above teraflop or 1012 floating-point operations per

second. Mostly, the HPC users are coming from

academician and scientific background. In some

country they even used and rely on HPC to run some

complex application for their government agency,

particularly in the military.

Nowadays, there are a number of factors which

result in the ubiquity of computer clusters such as the

availability of high speed, computer

interconnections, the reduction in the cost of

components such as microprocessors, and the

emergence of parallel programs or software where

distributed computers can work together. So that, the

benchmarking is needed in order to show the

theoretical maximum performance and calculation

ability of a computing cluster.

There are some different type of benchmark, which

are, real program, kernel, I/O, and parallel

benchmark. There are also several groups of

benchmarking tools, like open source benchmarks

also Microsoft benchmarks. In this paper, two of the

22 Izzatdin et al. / Jurnal Teknologi (Sciences & Engineering) 78: 9–3 (2016) 21–30

open source benchmarking tools are evaluated and

one of it will be selected as our benchmarking tools.

The UTP’s High Performance Computing Cluster

(UTP HPCC) has never been benchmarked before, so

that the performance and the ability of UTP HPCC

are unsure. As such, this research paper aims to study

the use of benchmarking software in measuring the

performance of a computing cluster and implement

a benchmark test on a small scale computing cluster

such as UTP HPCC using the appropriate benchmark

tool.

Therefore, the main objectives of this paper are to

study on gauging the performance of a computing

cluster through the use of benchmarking tool and

also to carry out the benchmarking testing tool in a

small scale computing cluster such as UTP’s High

Performance Computing Cluster.

The paper presents the benchmarking results and

is structured as follows: Section 2 presents the brief

explanations on the computer cluster and the

benchmarking tools. Section 3 presents the proposed

design and methodology of the benchmarking

process. Section 4 contains the results and

explanation of our findings. Finally, Section 5

concludes this paper and presents a brief outline of

the research perspectives.

2.0 LITERATURE REVEW

2.1 Computer Cluster

A computer cluster can be defined as a collection of

stand-alone computers connected via a network

which work together as a single system [1]. A

computer cluster have each node set to perform the

identical task, managed and planned by software

and with all of its component subsystems are

managed within a single administrative domain [2]. A

cluster is normally enclosed within a room and

handles as a single computer system [3]. The

components of a cluster, also known as nodes are

connected to each other through networks such as

fast Local Area Networks (LAN) or a hierarchy of

networks or even several dispersed network structures

[3], with each node running its own instance of an

operating system [1]. In most circumstances, all of the

nodes are similar in terms of hardware and operating

system. In a small-scale computer cluster with

Beowulf architecture, most cluster nodes contain

commercial hardware and can perform operations

independently [2].

The UTP HPC cluster for the UTP campus comprises

of 60 cluster nodes. Each of the nodes contains AMD

processors and AMD/Nvidia GPUs in various

configurations. Ten out of twenty cloud nodes in the

HPC cluster have been chosen to run the

benchmark, and a detailed hardware specification

of the Cloud Nodes is as follows: AMD FX 3.1 GHz

processor, 32GB DDR3 RAM, AMD 7970 graphics card

and Ethernet interconnection. The suite of software

running on the nodes includes the Ubuntu Linux 14.0.1

LTS operating system, mpich2 Message Passing

Interface (MPI) and Automatically Tuned Linear

Algebra Software (ATLAS) as the Basic Linear Algebra

Subprogram (BLAS).

The working principle of parallel computation

enables the high number of calculations or floating

point operations per second (FLOPS) by

interconnected computer cluster nodes. Parallel

computation are effective when the calculations

can be conducted in parallel and are calculated at

the same time by dividing them to be handled by

different processors [4]. A single calculation process

usually consists of multiple parts. These parts can be

broken down and translated into multiple instructions.

The commands in each part can be completed by

multiple processors at the same time, while under the

regulation or synchronization of a central mechanism

[4]. The time taken for the problem to be resolved

can be significantly shortened by spreading the work

load among several processors.

Amdahl's law dictates this improvement in speed

of execution when there are multiple processors [5].

Where n is the number of computational threads,

and B is the portion of the process that can only run

in serial, the time T(n) for the process for be

completed is:

𝐓(𝒏) = 𝐓(𝟏) (𝛃 +
𝟏

𝒏
 (𝟏 − 𝛃))

And the improvement in computation time, also

known as speedup, S(n) is calculated by [5]:

𝑺(𝒏) =
𝑻(𝟏)

𝑻(𝒏)
=

𝑻(𝟏)

𝑻(𝟏) (𝑩 +
𝟏
𝒏

(𝟏 − 𝑩))

=
𝟏

𝑩 +
𝟏
𝒏

(𝟏 − 𝑩)

Figure 1 Graph of Amdahl’s Law

Figure 1 illustrates the improvement in speed (or

speedup) of a process relative to the percentage of

portion in the process that can run in parallel. The

speedup in processing time is significantly increase

with the percentage of parallel portion in the process

increases along with the number of processors.

However the speedup will increase up to a certain

23 Izzatdin et al. / Jurnal Teknologi (Sciences & Engineering) 78: 9–3 (2016) 21–30

number of processors (again depending on the

percentage, higher percentage has a limit of higher

number of processors), after which the speedup will

plateau.

2.1 Benchmarking

A benchmark's main function is to perform a

selection of complex problem solving tests so as to

evaluate the potential capability or performance of

something. Generally, benchmarks are used against

computer hardware to measure the maximum

achievable performance under the test conditions,

such as the floating point operations per second

(FLOPs) of a CPU. The capabilities and profile of the

clusters and the factors which influence their

performance need to be comprehended and

analyzed in order to improve on the processes and

performance of the clusters. The benchmark results

can also show how different configurations may

affect the performance of the computation.

A few different benchmarks are available. In this

study, the High Performance LINPAC (HPL)

benchmarking tool and NAS Parallel benchmarking

tools are compared and examined.

2.1.1 High Performance LINPAC (HPL)

The HPL benchmarking tool is a portable application

which works across various platforms and is written in

C [6]. The LINPAC benchmark was primarily an

auxiliary program which is developed from the

LINPAC package. The LINPAC Benchmark is a

measurement of the computing power by gauging

the rate of calculation of a computer. FORTRAN

functions are run which decomposes and resolves a

dense matrix into complex linear equations systems

and linear least-squares problems in double precision

[7].

The HPL benchmark solves linear algebraic

problems by breaking down the matrix using Lower-

Upper (LU) factorization. LU factorization

decomposes a matrix as a by multiplying the lower

triangular part of matrix with the upper triangular part

of matrix. One example of an equation that the

benchmark tool solves is:

𝐴𝑥 = 𝑏; 𝐴 ∈ 𝑅𝑛𝑥𝑛; 𝑥, 𝑏 ∈ 𝑅𝑛 (1)

Provided a matrix A and right-hand-side vector b,

the algorithm of the HPL performs an LU factorization

calculation through partial pivoting of rows of the

matrix [A b] = [[L,U] y] with the coefficient of n-by-n+1

in order to solve a linear system with the order n in

equation (1) [8].

The decomposition of the dense matrix A is then

commenced and the final outcome of the

calculation is well-structured matrices where every

one of its elements are non-zero. Calculating the

equation of U x = y in the upper triangular resolves

into the solution x given that the lower triangular

factor L is applied to b as the factorization

progresses. The only unpiloted part of the matrix is the

lower triangular matrix L and is not returned to the

calculation [9]. To make sure load balancing is well-

adjusted and the ability to scale to multiple

computers, the results of calculation is allocated onto

a two-dimensional P-by-Q grid of processes and

structured using block-cyclic organisation. The matrix

with n-by-n+1 coefficient is then segregated into NB-

by-NB blocks according to logic, which are

intermittently distributed into the P-by-Q process grid.

The process is repeated for width and height of the

matrix [9].

The data is distributed onto a two-dimensional P-

by-Q grid of processes according to the block-cyclic

scheme to ensure "good" load balance as well as the

scalability of the algorithm. The n-by-n+1 coefficient

matrix is first logically partitioned into NB-by-NB

blocks, that are cyclically "dealt" onto the P-by-Q

process grid. This is done in both dimensions of the

matrix [9].

The right-looking variant has been chosen for the

main loop of the LU factorization. This is mean that

each of iteration of the loop a panel of NB columns is

factorized, and the trailing sub matrix is updated.

Note that this computation is thus logically

partitioned with the same block size NB that was used

for the data distribution [9].The main iteration of the

LU factorization calculation will select and employ

the right-looking variant. Each repetition of the

calculation loop will factorize a section of NB

columns and after that, updates to the trailing sub

matrix is applied. The identical block size NB that was

intended for distribution of data is used to logically

divide the computation into partitions [9].

Every one of the panel factorization happens in

one column of processes at a specific repetition of

the main iteration and according to the distribution

system’s Cartesian property. This specific calculation

method is an important part of the critical path in the

complete process. There are three recursive variants

of matrix multiplication methods offered to the user,

which are the Crout method, left-looking method

and right-looking method. The user is similarly

permitted to adjust the number of sub-panels the

main panel is separated into when separation occurs

in the repetition of algorithm.

Another selection factor for the user is the criteria

to stop the run-time of the recursion, such as how

many columns are left to factorize. Upon reaching

this maximum limit, factorisation of the sub-panel will

be calculated according to the user selected variant

out of the three matrix-vector based variant (Crout,

left- or right-looking) [10]. After that, every panel of

column is communicated in a single process which

merges the pivot search, the accompanying swap

and broadcast procedure of the pivot row. The three

processes are executed at the same time using a

binary-exchange (leave-on-all) reduction [9].

The resulting panel of columns is transmitted to the

other process columns using broadcast with the

completion of the panel factorization operation.

When the panel has been broadcasted to the other

24 Izzatdin et al. / Jurnal Teknologi (Sciences & Engineering) 78: 9–3 (2016) 21–30

columns, updates are applied to the resulting sub

matrix with the last panel in the look-ahead pipe. This

is due to the factorization of the panel is one of the

critical operations in the algorithm, so with the

completion of factorization and broadcasting of

panel k, the panel of k+1 will be factorized and

broadcasted to the other columns ensues [9].

This method is known in literature as "look-ahead" or

"send-ahead" method. The user can choose several

depth values of look-ahead for this software. A zero

depth value brings about no look ahead in normal

situations, which means the panel presently being

broadcast will affect the following sub matrix. The

look-ahead technique retains all the panels of

columns which are presently in the look-ahead pipe

by using up extra memory. According to the authors,

the value 1 or 2 of look-ahead depth value possibly

enables the greatest improvement in terms of

performance [9].

2.1.2 NAS Parallel Benchmark

The NAS Parallel Benchmark (NPB) suite is a set of

computer programs. The benchmark is designed for

testing parallel computer clusters in order to gauge

the performance of parallel computer clusters [11].

NAS Parallel Benchmarks are frequently used by

organisations as an alternative of HPL to measure of

cluster performance. The NAS benchmark was

created as the widespread kernel benchmarks such

as Livermore Loops, the LINPAC benchmark and the

NAS Kernels are more suited to evaluate vector

supercomputers, and not the highly parallel

machines popularly used nowadays [11].

There are eight benchmark modules available in

the NAS Parallel Benchmark suite. In the newest NPB

version, there are additional modules are included

(UA, DC and DT). The five problem sizes available for

each of the applications are class A, class B, class C,

class D and class E, increasing in problem size with

each class. The detailed working behind each of the

NAS benchmarks is explained in the Table 1.

After having a comparison study between HPL

and NAS benchmarks, it is the decision of the author

to use HPL as HPL measures performance using less

number of modules. Having less number of modules

possibly will take less time than complete than the

NAS benchmark due to less number of modules to

complete.

Table 1 Operations of NAS Modules

Benchmark Module Operations

Multi Grid
Employs the V-cycle multi grid technique to find the approximate solution to a

three-dimensional (3D) discrete Poisson equation.

Conjugate Gradient

Applies the inverse iteration to approximate the lowest eigenvalue of a complex

sparse symmetric positive-definite matrix problem. The conjugate gradient

method is a sub procedure used to resolve the system of linear equations.

Fast Fourier Transform
Apply the fast Fourier transform (FFT) method to resolve a three-dimensional (3D)

partial differential equation (PDE).

Integer Sort
Utilizes bucket sort algorithm to assign a list of integers positions in the final sorted

list accordingly [12].

Embarrassingly Parallel
Employing the Marsaglia polar process to produce independent Gaussian

random variates.

Block Tri-diagonal, Scalar

Penta-diagonal, Lower-

Upper symmetric Gauss-

Seidel

Find the answer to a nonlinear PDEs synthetic system using three different

processes of calculations involving block tri-diagonal, scalar penta-diagonal or

symmetric successive over-relaxation (SSOR) problem solving.

Unstructured Adaptive

Find the solution to a heat problem of a ball in motion with convection and

diffusion effects. The mesh has to be adaptive to the conditions and is

recalculated every five steps of calculation and the memory is retrieved

dynamically and erratically.

25 Izzatdin et al. / Jurnal Teknologi (Sciences & Engineering) 78: 9–3 (2016) 21–30

Table 2 Comparative Study between HPL and NAS Benchmarks

Categories Types of Benchmark

High Performance LINPAC (HPL) NAS Parallel Benchmarks

Problem solving Solves a dense matrix problem

using LU factorization

Solves calculations involving

simulations.

Modules
Single (LINPAC)

Multiple (CG, MG, FT, IS, EP, BT,

SP, LU, UA, DC, DT)

Suited for Parallel Computation Designed for Parallel Computers Designed for Parallel Computers

Used widely as standard Yes (TOP 500 list) No

3.0 METHODOLOGY

In the first part of methodology, the problem is

defined and clearly detailed. The problem which the

author has defined is that the performance of the

HPC cluster in UTP has not been measured using a

benchmark tool. One of the benchmark

configurations needed in running the benchmark is

to setup the High Performance LINPAC

configurations. Determining and selecting the correct

compiler for C and FORTRAN is one of the parts in this

stage. The message passing interface (MPI) also

needs to be preinstalled and setup. For the UTP

cluster, mpich2 will be used.

The Basic Linear Algebra Subprograms (BLAS)

which is responsible for the basic mathematical

procedures involving vector and matrix also needs to

be setup and configured. The BLAS library contains a

specific collection of low-level sub procedures for

common linear algebraic operations. BLAS contains 3

levels: Level 1 is employed in vector procedures;

Level 2 completes processes between matrix and

vector, whereas at Level 3, matrix-matrix processes

are calculated. BLAS is frequently utilized in creating

software tools which need to perform linear algebra,

such as LINPAC and LAPACK, as they have high

efficiency, are transferrable across platforms and

have many open source implementations [13].

The Automatically Tuned Linear Algebra Software

(ATLAS) is another BLAS routine alternative which

employs practical procedures for better execution

and portability across platforms. The interfaces of

ATLAS are written using C and includes some LAPACK

routines [13]. The LINPAC does not have high

efficiency in resolving matrix computations because

of the memory access method by both the algorithm

and software, which decreases the overall efficiency,

and has been superseded by LAPACK [13]. LAPACK is

a suite of software which can resolve linear algebra

involving matrices, with distinctive specialization

towards series of linear equations, least squares

calculations, eigenvalue calculations, and

decomposition of singular value [13]. The basis of the

software emulates the use of block partitioned matrix

techniques in order to accomplish great

performance on systems with RISC architecture,

vector computers, and parallel processors with

common memory [13]. The ATLAS library will be used

as BLAS library for the HPL benchmark.

In the following phase, the parameters to HPL.dat

are tuned. There are 17 parameters which need to

be assigned to HPL.dat. In these 17 parameters, only

seven of these parameters are usually configured

according to the cluster during benchmarking

process. The default good start value will normally be

used for the remaining parameters as suggested by

HPL. The seven parameters which need to be

configured are: problem size (N), processor grid (P x

Q), broadcast (BCAST), block size (NB), panel

factorization (PFACT), recursive panel factorization

(RFACT), and look-ahead depth (DEPTH).

𝑁 = √𝑇𝑜𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑀𝑒𝑚𝑜𝑟𝑦 (𝑖𝑛 𝑏𝑦𝑡𝑒𝑠) × 0.80 (2)

The solution to equation (2) shown above is

theoretically the best problem size, N to be solved.

Research by Petitet,Whaley, Dongarra and Cleary

suggest that the largest size of N which can fit around

80% of the memory should be used [9]. However,

when assigning the size of N too large, data swap

can happen between memory and disk, which will

lead to a reduction in the overall performance, as

the system will need to read from the disk instead of

directly from the memory. Thus, only 80% of the total

problem size will be utilized, with the remaining 20%

left for other uses.

The processor grid (P x Q) is a parameters that

denote the size or proportions of the process grid. In

the processor grid (P x Q), P represents the process

rows while Q represents the process columns. The size

of both P and Q should be determined by the

physical interconnection network. For a mesh or a

switch network, which is preferred, the values of P

and Q should be approximately equal, with Q having

a slightly larger value than P. Nevertheless, the

research conducted in Universiti Teknologi MARA on

their Khaldun Sandbox Cluster, after trying a number

of configurations, their findings was that the best

values for the processor grid are P is 2 while Q is 16 in

order to achieve the best benchmark results among

the configurations of 26.88 Gflops [10]. This finding is a

little contrasting with the recommended processor

grid configuration, and will need to be checked out.

There are also panel factorization and recursive

panel factorization variants to choose from, which

26 Izzatdin et al. / Jurnal Teknologi (Sciences & Engineering) 78: 9–3 (2016) 21–30

are: right-looking variant, left-looking variant and

Crout variant. These three variants are different

methods in which these computations are carried

out [9], and can have minor performance

differences in the result.

Once the factorization of the panel had been

calculated, HPL broadcasts panel factorization

column from one process column to other process

columns. There are 6 alternatives of broadcast

algorithms available can be employed, which are

Increasing-ring, Modified Increasing-ring, Increasing-

2-ring, Modified Increasing-2-ring, Long bandwidth

reducing and modified Long bandwidth reducing

[9]. Research has suggested that the Modified

Increasing-ring algorithm is one of the best in

efficiency [14]. However, in the research conducted

in Universiti Teknologi MARA on their Khaldun

Sandbox Cluster, the results from their benchmark test

saw that the Modified Increasing-ring does not

perform as well as compared to the Long bandwidth

reducing algorithm. The Long bandwidth reducing

algorithm allows them to obtain their best results of

31.33 Gflops [10]. These findings will be tested when

benchmarking the UTP HPC cluster.

4.0 RESULTS AND DISCUSSION

Seven test runs are conducted on the HPC cluster

based on the seven main parameters to be

configured in the HPL benchmark. The results of the

test to determine how the number of nodes, P x Q,

influence the speed of processing and the time

taken are as shown in Table 3.

Table 3 Results of Test based on Number of Nodes

Number

of Nodes

Time

Taken

(s)

Computation

Speed

(Gflops)

Speedup

in

Processing

1 29.62 2.815 1.00

2 59.65 1.398 0.50

4 39.86 2.092 0.75

6 26.21 3.181 1.13

8 23.17 3.597 1.28

10 18.79 4.436 1.58

Figure 2 Computation Speed and Speedup Results (based

on number of nodes)

As the number of nodes increases from one node

to two nodes, the computation speed drops as

shown in Figure due to a delay of communication.

This delay is caused by the computation problem

being transmitted over an Ethernet network through

Message Passing Interface (MPI) and distributed

among the cluster nodes. The delay in

communication increases the overhead for problem

computation and can cause a slowdown in

performance as shown in Figure 2. But when the

number of nodes keeps increasing, the delay in

communication is compensated by the speed of

processing of the cluster nodes. Thus, the speedup in

processing increases until all the processors are

saturated with computations (saturation point), then

the increase in speed remains constant.

The results of the test to determine how the

problem size, N, influence the speed of processing

and the time taken are as shown in Table 4.

0

1

2

3

4

5

1 2 4 6 8 10

Computation Speed (Gflops)

0.3

0.8

1.3

1.8

1 2 4 6 8 10

Speedup

27 Izzatdin et al. / Jurnal Teknologi (Sciences & Engineering) 78: 9–3 (2016) 21–30

Table 4 Results of Test based on Problem Size

Problem

Size, N

Time

Taken (s)

Computation

Speed (Gflops)

Speed

up

5000 18.79 4.436 1.00

10000 114.68 5.815 1.31

15000 374.78 6.003 1.35

20000 812.09 6.568 1.48

25000 1605.56 6.488 1.46

Figure 3 Computation Speed and Speedup Results (based

on problem size)

Problem size dictates the size of the matrix to be

decomposed. A larger problem size engages more

processing power in finding the solution, and thus

resulting in a higher computation speed as shown in

Figure 3. However the increase in computational

speed or speedup will only keep increasing until a

saturation point, where all the processors are being

used to solve the problem, then the increase in

speed stabilizes. This is due to the maximum

effectiveness and efficiency of processing power

had been reached.

 The results of the test to determine how the

distribution size, NB, influence the speed of

processing and the time taken are as shown in

Table 5.

Table 5 Results of Test based on Distribution Size

Distribution

Size, NB

Time

Taken (s)

Computation

Speed (Gflops)

100 19.36 4.307

125 17.86 4.667

150 20.99 3.973

175 18.54 4.497

200 23.17 4.406

225 22.30 3.738

250 21.30 4.706

Figure 4 Computation Speed Results (based on distribution

size)

The distribution size dictates the block size of the

problem to be decomposed and distributed among

the nodes. The optimal distribution sizes will vary

depending on computational performance and

network configuration. We have tested distribution

sizes ranging from 100 to 250 in increments of 25, and

the results from the test found that block size 250

provides the best performance in terms of

computation speed. A bigger block size means fewer

messages to be sent over the network, hence less

communication delay.

The results of the test to determine how the panel

factorization, PFACT, influence the speed of

processing and the time taken are as shown in

 Table 6.

0

2

4

6

8

5000 10000 15000 20000 250000

Computation Speed (Gflops)

0.8

1

1.2

1.4

1.6

5000 10000 15000 20000 250000

Speedup

0

1

2

3

4

5

100 125 150 175 200 225 250

Computation Speed (Gflops)

28 Izzatdin et al. / Jurnal Teknologi (Sciences & Engineering) 78: 9–3 (2016) 21–30

Table 6 Results of Test (Panel Factorization)

PFACT Time Taken

(s)

Comp. Speed

(Gflops)

Left 18.33 4.549

Crout 17.20 4.847

Right 18.19 4.583

Figure 5 Computation Speed Results (based on panel

factorization)

Panel factorization dictates the type of panel

factorization algorithm to be employed in solving the

matrix decomposition problem. There are three types

of algorithm: the left looking, right looking and Crout

algorithms, which are three different ways of solving

the computation problem. The results of the test, as

shown in Figure 5, indicate that the Crout algorithm in

panel factorization increases the computation

performance of the cluster as compared to other

algorithms.

The results of the test to determine how the

recursive panel factorization, RFACT, influence the

speed of processing and the time taken are as

shown in Table 7.

Table 7 Results of Test (Recursive Panel Fact.)

RFACT Time Taken (s) Comp. Speed (Gflops)

Left 18.46 4.516

Crout 17.93 4.649

Right 19.97 4.175

Figure 6 Computation Speed Results (based on recursive

panel factorization)

Recursive panel factorization dictates the type of

recursive panel factorization algorithm to be

employed in solving the matrix decomposition

problem. There are three types of algorithm: the left

looking, right looking and Crout algorithms, which are

three different ways of solving the computational

problem. The results of the test, as shown in Figure 6,

indicate that the right looking algorithm in recursive

panel factorization has the highest computation

performance as compared to the other algorithms.

The results of the test to determine how broadcast

algorithms, BCAST, influence the speed of processing

and the time taken are as shown in Table 8.

Table 8 Results of Test (Broadcast)

BCAST Time (s) Speed (Gflops)

1 ring 17.58 4.783

1 ring (modified) 18.35 4.542

2 ring 16.78 4.967

2 ring (modified) 16.77 4.972

Long message 19.94 4.181

Long message

(modified)

19.43 4.291

4.2

4.4

4.6

4.8

5

Left Crout Right

Computation Speed (Gflops)

3.8

4

4.2

4.4

4.6

4.8

Left Crout Right

Computation Speed (Gflops)

29 Izzatdin et al. / Jurnal Teknologi (Sciences & Engineering) 78: 9–3 (2016) 21–30

Figure 7 Computation Speed Results (based on broadcast

algorithms)

The broadcast parameter dictates the type of

panel broadcast algorithm to be utilised in

distributing messages to other processes. Six types of

broadcast algorithm are available for the user to

select: the increasing-1-ring, the increasing-1-ring

(modified), the increasing-2-ring, the increasing-2-ring

(modified), long (bandwidth reducing) and long

(bandwidth reducing modified) algorithms, in which

are the varied ways of message exchange between

the processes, which affects the time taken to

process and also the computation speed, according

to the results in Figure 7. The results of the test, as

shown in Figure 8, confirms that the increasing-2-ring

(modified) panel broadcast algorithm provides the

best performance in terms of the computational

performance of the cluster.

The results of the test to determine how look-

ahead depth, DEPTH, influence the speed of

processing and the time taken are as shown in

Table 9.

Table 9 Results of Test (Based on Depth)

DEPTH Time Taken (s) Speed of Processing (Gflops)

0 19.10 4.365

1 16.21 5.143

Figure 8 Computation Speed Results (based on look-ahead

depth)

Look-ahead depth dictates if the benchmark

changes the order of the operations so that less

efficient operations will run together will more efficient

operations. If the look-ahead depth is greater than

zero, the benchmark will “look ahead” by storing the

panels being factorized in memory and uses up more

memory in exchange for a better performance. The

results of the test, as according to Figure 9, indicate

that when the look-ahead depth is one, the

computation performance of the cluster is better than

when there is zero look-ahead depth.

Based on the results, these are the optimized

parameters:

Table 10 Optimised HPL Parameters

Parameters Parameter Value

Number of Nodes, P x Q 10

Problem Size, N 125,000

Block Size, NB 250

Panel Fact, PFACT Crout

Recursive Panel Fact, PFACT Crout

Look-ahead Depth, DEPTH 1

Broadcast Parameter, BCAST 2-ring (modified)

The results of the final test run are as follows:

Table 11 Results of the Final Test Run

Parameters Time Taken (s) Speed of Processing

(Gflops)

Optimized 12830.65 23.78

Random 13978.47 21.16

Figure 9 Final Test Results

As shown in Figure 9 and Table 11, the best results

for using HPL benchmarking tool on HPC cluster is

approximately 24 Gigaflops, while using random

parameters, the computation speed is around 21

Gigaflops, a reduction of approximately 12 percent.

This shows that having optimized parameters can

increase the performance of the cluster.

3.5
4

4.5
5

5.5

Computation Speed (Gflops)

3.5

4

4.5

5

5.5

0 1

0 1

18

20

22

24

Computation Speed (Gflops)

30 Izzatdin et al. / Jurnal Teknologi (Sciences & Engineering) 78: 9–3 (2016) 21–30

5.0 CONCLUSION

Through this research, the UTP HPC cluster has been

benchmarked using the HPL benchmarking tool. The

results from benchmarking also show the peak

performance achievable under the test conditions.

The factors which can affect the implementation of

HPL have also been discussed.

A few conclusions can be drawn from the findings

obtained in this research. One is that a lot of factors

and parameters need to be taken in account in

running the HPL benchmark process tool. The kind of

interconnection system employed, such as Gigabit

Ethernet, Infiniti Band and Myrinet, can influence the

effectiveness of the cluster and in turn the HPL

benchmark result [15]. A better interconnection

layout with higher bandwidth and lower latency will

improve the maximum performance of the

cluster.Parameters of the HPL.dat and the type of

BLAS library utilised can also affect the benchmark

result [10]. With different configurations of HPL

parameters or even different BLAS libraries employed,

a different result will be obtained.

For future work, a degree of optimisation should

be employed for the HPL benchmark, by changing

parameters off the benchmark for better results.

References

[1] El-Rewini, H. and Abd-El-Barr, M. 2005. Advanced

Computer Architecture and Parallel Processing. John

Wiley & Sons Inc.

[2] Sterling, T. 2001. An Introduction To PC Clusters For High

Performance Computing. International Journal of High

Performance Computing Applications. 15(2): 92-101.

[3] Bakery, M. and Buyyaz, R. 1999. Cluster Computing At A

Glance. High Performance Cluster Computing:

Architectures and Systems. 1: 3-47.

[4] Barney, B. 2012. Introduction To Parallel Computing,

Lawrence Livermore National Laboratory.

[5] Rodgers, D. P. 1985, June. Improvements In Multiprocessor

System Design. In ACM SIGARCH Computer Architecture

News). IEEE Computer Society Press. 13(3): 225-231.

[6] Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G.

W. 1979. LINPACK Users' Guide. Siam.

[7] Dongarra, J. J. 1988. The LINPACK Benchmark: An

Explanation. Supercomputing. Springer Berlin Heidelberg.

456-474.

[8] Dongarra, J. J., Luszczek, P. and Petitet, A. 2003. The

LINPACK Benchmark: Past, Present And Future.

Concurrency And Computation: Practice And

Experience. 15(9): 803-820.

[9] Petitet, A., Whaley, R. C., Dongarra, J. and Cleary, A. 2005.

HPL–A Portable Implementation Of The High–Performance

Linpack Benchmark For Distributed–Memory Computers,

2008. Available from Internet:< http://www. netlib.

org/benchmark/hpl.

[10] Jelas, I.M., Hamid, N.A.W.A. and Othman, M., 2013. The

High Performance Linpack (HPL) Benchmark on the

Khaldun Sandbox Cluster.

[11] Bailey, D. H., Barszcz, E., Barton, J. T., Browning, D. S.,

Carter, R. L., Dagum, L., Fatoohi, R. A., Frederickson, P. O.,

Lasinski, T. A., Schreiber, R. S. and Simon, H. D. 1991. The

NAS Parallel Benchmarks. International Journal of High

Performance Computing Applications. 5(3): 63-73.

[12] Grün, T. and Hillebrand, M. A. 1998, September. NAS

Integer Sort On Multi-Threaded Shared Memory Machines.

In Euro-Par’98 Parallel Processing. Springer Berlin

Heidelberg. 999-1009.

[13] Strohmaier, E., Meuer, H. W., Dongarra, J. and Simon, H. D.

2015. The TOP500 List and Progress in High-Performance

Computing. Computer. (11): 42-49.
[14] Microsoft. (n.d., 24 February). Building and Measuring the

Performance of Windows HPC Server 2008-Based Clusters

for TOP 500 Runs. Available:

http://go.microsoft.com/fwlink/?LinkId=134483.

[15] Yeo, C. S., Buyya, R., Pourreza, H., Eskicioglu, R., Graham,

P. and Sommers, F. 2006. Cluster Computing: High-

Performance, High-Availability, And High-Throughput

Processing On A Network Of Computers. Handbook Of

Nature-Inspired And Innovative Computing. Springer US.

521-551.

