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Graphical abstract 
 

 Abstract 
 

Universiti Teknologi PETRONAS (UTP) has formed a high performance computing cluster 

(HPCC) inside the campus by utilizing most of the campus’ existing resources as the 

computing resources. All the resources are interconnected within a same network, enabling 

it to be accessed by users anywhere anytime within and outside the campus. The UTP HPCC 

is used by researchers, including lecturers and students from UTP also from external parties to 

compute intensive applications. However, the UTP HPCC has never been benchmarked 

before, hence the performance and the ability of UTP HPCC are still unverified. The 

benchmarking is imperative in order to measure the true performance and the ability of UTP 

HPCC. This paper aims to evaluate the performance of UTP HPCC using a suitable 

benchmarking tool as well as to determine the optimal parameters configuration of the 

selected benchmarking tool. A comparative study has been done in order to select the best 

benchmarking tool between High performance LINPACK (HPL) and the NAS Parallel. The 

results show that HPL is a more suitable benchmarking tool for UTP HPCC compared to NAS 

Parallel. A series of experiments were carried out to select the optimum parameter of HPL 

configuration for UTP HPCC. The results from benchmarking show that the peak 

performance is achievable under the test conditions. 

 

Keywords: Benchmarking, cluster computing, high performance LINPAC (HPL), NAS parallel 

 
 © 2016 Penerbit UTM Press. All rights reserved 

  

 

 

1.0  INTRODUCTION 
 

The high performance computing (HPC) cluster is 

made of separate machines or servers 

interconnected and running intensive applications 

using parallel processing. By using the parallel 

processing, it manages to run the application 

efficiently, reliably and quickly. This HPC term applies 

especially to the system that the performance is 

above teraflop or 1012 floating-point operations per 

second. Mostly, the HPC users are coming from 

academician and scientific background. In some 

country they even used and rely on HPC to run some 

complex application for their government agency, 

particularly in the military.  

Nowadays, there are a number of factors which 

result in the ubiquity of computer clusters such as the 

availability of high speed, computer 

interconnections, the reduction in the cost of 

components such as microprocessors, and the 

emergence of parallel programs or software where 

distributed computers can work together. So that, the 

benchmarking is needed in order to show the 

theoretical maximum performance and calculation 

ability of a computing cluster.  

There are some different type of benchmark, which 

are, real program, kernel, I/O, and parallel 

benchmark. There are also several groups of 

benchmarking tools, like open source benchmarks 

also Microsoft benchmarks. In this paper, two of the 
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open source benchmarking tools are evaluated and 

one of it will be selected as our benchmarking tools.   

The UTP’s High Performance Computing Cluster 

(UTP HPCC) has never been benchmarked before, so 

that the performance and the ability of UTP HPCC 

are unsure. As such, this research paper aims to study 

the use of benchmarking software in measuring the 

performance of a computing cluster and implement 

a benchmark test on a small scale computing cluster 

such as UTP HPCC using the appropriate benchmark 

tool. 

Therefore, the main objectives of this paper are to 

study on gauging the performance of a computing 

cluster through the use of benchmarking tool and 

also to carry out the benchmarking testing tool in a 

small scale computing cluster such as UTP’s High 

Performance Computing Cluster.  

The paper presents the benchmarking  results and 

is structured as follows: Section 2 presents the brief 

explanations on the computer cluster and the 

benchmarking tools. Section 3 presents the proposed 

design and methodology of the benchmarking 

process. Section 4 contains the results and 

explanation of our findings. Finally, Section 5 

concludes this paper and presents a brief outline of 

the research perspectives.  

 

 

2.0  LITERATURE REVEW 
 

2.1  Computer Cluster 

 

A computer cluster can be defined as a collection of 

stand-alone computers connected via a network 

which work together as a single system [1]. A 

computer cluster have each node set to perform the 

identical task, managed and planned by software 

and with all of its component subsystems are 

managed within a single administrative domain [2]. A 

cluster is normally enclosed within a room and 

handles as a single computer system [3]. The 

components of a cluster, also known as nodes are 

connected to each other through networks such as 

fast Local Area Networks (LAN) or a hierarchy of 

networks or even several dispersed network structures 

[3], with each node running its own instance of an 

operating system [1]. In most circumstances, all of the 

nodes are similar in terms of hardware and operating 

system. In a small-scale computer cluster with 

Beowulf architecture, most cluster nodes contain 

commercial hardware and can perform operations 

independently [2]. 

The UTP HPC cluster for the UTP campus comprises 

of 60 cluster nodes. Each of the nodes contains AMD 

processors and AMD/Nvidia GPUs in various 

configurations. Ten out of twenty cloud nodes in the 

HPC cluster have been chosen to run the 

benchmark, and a detailed hardware specification 

of the Cloud Nodes is as follows: AMD FX 3.1 GHz 

processor, 32GB DDR3 RAM, AMD 7970 graphics card 

and Ethernet interconnection. The suite of software 

running on the nodes includes the Ubuntu Linux 14.0.1 

LTS operating system, mpich2 Message Passing 

Interface (MPI) and Automatically Tuned Linear 

Algebra Software (ATLAS) as the Basic Linear Algebra 

Subprogram (BLAS). 

The working principle of parallel computation 

enables the high number of calculations or floating 

point operations per second (FLOPS) by 

interconnected computer cluster nodes. Parallel 

computation are effective when the calculations 

can be conducted in parallel and are calculated at 

the same time by dividing them to be handled by 

different processors [4]. A single calculation process 

usually consists of multiple parts. These parts can be 

broken down and translated into multiple instructions. 

The commands in each part can be completed by 

multiple processors at the same time, while under the 

regulation or synchronization of a central mechanism 

[4]. The time taken for the problem to be resolved 

can be significantly shortened by spreading the work 

load among several processors.  

Amdahl's law dictates this improvement in speed 

of execution when there are multiple processors [5]. 

Where n is the number of computational threads, 

and B is the portion of the process that can only run 

in serial, the time T(n) for the process for be 

completed is: 

 

𝐓(𝒏) = 𝐓(𝟏) (𝛃 +
𝟏

𝒏
 (𝟏 − 𝛃)) 

 

And the improvement in computation time, also 

known as speedup, S(n) is calculated by [5]:  

 

𝑺(𝒏) =
𝑻(𝟏)

𝑻(𝒏)
=  

𝑻(𝟏)

𝑻(𝟏) (𝑩 + 
𝟏
𝒏

(𝟏 − 𝑩))

=  
𝟏

𝑩 + 
𝟏
𝒏

(𝟏 − 𝑩)
 

 

 

Figure 1 Graph of Amdahl’s Law 

 

 

Figure 1 illustrates the improvement in speed (or 

speedup) of a process relative to the percentage of 

portion in the process that can run in parallel. The 

speedup in processing time is  significantly increase 

with the percentage of parallel portion in the process 

increases along with the number of processors. 

However the speedup will increase up to a certain 
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number of processors (again depending on the 

percentage, higher percentage has a limit of higher 

number of processors), after which the speedup will 

plateau. 

 

2.1  Benchmarking 

 

A benchmark's main function is to perform a 

selection of complex problem solving tests so as to 

evaluate the potential capability or performance of 

something. Generally, benchmarks are used against 

computer hardware to measure the maximum 

achievable performance under the test conditions, 

such as the floating point operations per second 

(FLOPs) of a CPU. The capabilities and profile of the 

clusters and the factors which influence their 

performance need to be comprehended and 

analyzed in order to improve on the processes and 

performance of the clusters. The benchmark results 

can also show how different configurations may 

affect the performance of the computation. 

A few different benchmarks are available. In this 

study, the High Performance LINPAC (HPL) 

benchmarking tool and NAS Parallel benchmarking 

tools are compared and examined. 

 

2.1.1 High Performance LINPAC (HPL)  

 

The HPL benchmarking tool is a portable application 

which works across various platforms and is written in 

C [6]. The LINPAC benchmark was primarily an 

auxiliary program which is developed from the 

LINPAC package. The LINPAC Benchmark is a 

measurement of the computing power by gauging 

the rate of calculation of a computer. FORTRAN 

functions are run which decomposes and resolves a 

dense matrix into complex linear equations systems 

and linear least-squares problems in double precision 

[7]. 

The HPL benchmark solves linear algebraic 

problems by breaking down the matrix using Lower-

Upper (LU) factorization. LU factorization 

decomposes a matrix as a by multiplying the lower 

triangular part of matrix with the upper triangular part 

of matrix. One example of an equation that the 

benchmark tool solves is: 

 

𝐴𝑥 =  𝑏;   𝐴 ∈  𝑅𝑛𝑥𝑛; 𝑥, 𝑏 ∈  𝑅𝑛                      (1) 
 

Provided a matrix A and right-hand-side vector b, 

the algorithm of the HPL performs an LU factorization 

calculation through partial pivoting of rows of the 

matrix [A b] = [[L,U] y] with the coefficient of n-by-n+1 

in order to solve a linear system with the order n in 

equation (1) [8].  

The decomposition of the dense matrix A is then 

commenced and the final outcome of the 

calculation is well-structured matrices where every 

one of its elements are non-zero. Calculating the 

equation of U x = y in the upper triangular resolves 

into the solution x given that the lower triangular 

factor L is applied to b as the factorization 

progresses. The only unpiloted part of the matrix is the 

lower triangular matrix L and is not returned to the 

calculation [9]. To make sure load balancing is well-

adjusted and the ability to scale to multiple 

computers, the results of calculation is allocated onto 

a two-dimensional P-by-Q grid of processes and 

structured using block-cyclic organisation. The matrix 

with n-by-n+1 coefficient is then segregated into NB-

by-NB blocks according to logic, which are 

intermittently distributed into the P-by-Q process grid. 

The process is repeated for width and height of the 

matrix [9]. 

The data is distributed onto a two-dimensional P-

by-Q grid of processes according to the block-cyclic 

scheme to ensure "good" load balance as well as the 

scalability of the algorithm. The n-by-n+1 coefficient 

matrix is first logically partitioned into NB-by-NB 

blocks, that are cyclically "dealt" onto the P-by-Q 

process grid. This is done in both dimensions of the 

matrix [9]. 

The right-looking variant has been chosen for the 

main loop of the LU factorization. This is mean that 

each of iteration of the loop a panel of NB columns is 

factorized, and the trailing sub matrix is updated. 

Note that this computation is thus logically 

partitioned with the same block size NB that was used 

for the data distribution [9].The main iteration of the 

LU factorization calculation will select and employ 

the right-looking variant. Each repetition of the 

calculation loop will factorize a section of NB 

columns and after that, updates to the trailing sub 

matrix is applied. The identical block size NB that was 

intended for distribution of data is used to logically 

divide the computation into partitions [9]. 

Every one of the panel factorization happens in 

one column of processes at a specific repetition of 

the main iteration and according to the distribution 

system’s Cartesian property. This specific calculation 

method is an important part of the critical path in the 

complete process. There are three recursive variants 

of matrix multiplication methods offered to the user, 

which are the Crout method, left-looking method 

and right-looking method. The user is similarly 

permitted to adjust the number of sub-panels the 

main panel is separated into when separation occurs 

in the repetition of algorithm.  

Another selection factor for the user is the criteria 

to stop the run-time of the recursion, such as how 

many columns are left to factorize.  Upon reaching 

this maximum limit, factorisation of the sub-panel will 

be calculated according to the user selected variant 

out of the three matrix-vector based variant (Crout, 

left- or right-looking) [10]. After that, every panel of 

column is communicated in a single process which 

merges the pivot search, the accompanying swap 

and broadcast procedure of the pivot row. The three 

processes are executed at the same time using a 

binary-exchange (leave-on-all) reduction [9]. 

The resulting panel of columns is transmitted to the 

other process columns using broadcast with the 

completion of the panel factorization operation. 

When the panel has been broadcasted to the other 
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columns, updates are applied to the resulting sub 

matrix with the last panel in the look-ahead pipe. This 

is due to the factorization of the panel is one of the 

critical operations in the algorithm, so with the 

completion of factorization and broadcasting of 

panel k, the panel of k+1 will be factorized and 

broadcasted to the other columns ensues [9]. 

This method is known in literature as "look-ahead" or 

"send-ahead" method. The user can choose several 

depth values of look-ahead for this software. A zero 

depth value brings about no look ahead in normal 

situations, which means the panel presently being 

broadcast will affect the following sub matrix. The 

look-ahead technique retains all the panels of 

columns which are presently in the look-ahead pipe 

by using up extra memory. According to the authors, 

the value 1 or 2 of look-ahead depth value possibly 

enables the greatest improvement in terms of 

performance [9]. 

 

2.1.2 NAS Parallel Benchmark  

 

The NAS Parallel Benchmark (NPB) suite is a set of 

computer programs. The benchmark is designed for 

testing parallel computer clusters in order to gauge 

the performance of parallel computer clusters [11]. 

NAS Parallel Benchmarks are frequently used by 

organisations as an alternative of HPL to measure of 

cluster performance. The NAS benchmark was 

created as the widespread kernel benchmarks such 

as Livermore Loops, the LINPAC benchmark and the 

NAS Kernels are more suited to evaluate vector 

supercomputers, and not the highly parallel 

machines popularly used nowadays [11].  

There are eight benchmark modules available in 

the NAS Parallel Benchmark suite. In the newest NPB 

version, there are additional modules are included 

(UA, DC and DT). The five problem sizes available for 

each of the applications are class A, class B, class C, 

class D and class E, increasing in problem size with 

each class. The detailed working behind each of the 

NAS benchmarks is explained in the Table 1.  

After having a comparison study between HPL 

and NAS benchmarks, it is the decision of the author 

to use HPL as HPL measures performance using less 

number of modules. Having less number of modules 

possibly will take less time than complete than the 

NAS benchmark due to less number of modules to 

complete.  

 

 

 

Table 1 Operations of NAS Modules 

 

Benchmark Module Operations 

Multi Grid 
Employs the V-cycle multi grid technique to find the approximate solution to a 

three-dimensional (3D) discrete Poisson equation. 

Conjugate Gradient 

Applies the inverse iteration to approximate the lowest eigenvalue of a complex 

sparse symmetric positive-definite matrix problem. The conjugate gradient 

method is a sub procedure used to resolve the system of linear equations. 

Fast Fourier Transform 
Apply the fast Fourier transform (FFT) method to resolve a three-dimensional (3D) 

partial differential equation (PDE). 

Integer Sort 
Utilizes bucket sort algorithm to assign a list of integers positions in the final sorted 

list accordingly [12]. 

Embarrassingly Parallel 
Employing the Marsaglia polar process to produce independent Gaussian 

random variates. 

Block Tri-diagonal, Scalar 

Penta-diagonal, Lower-

Upper symmetric Gauss-

Seidel 

Find the answer to a nonlinear PDEs synthetic system using three different 

processes of calculations involving block tri-diagonal, scalar penta-diagonal or 

symmetric successive over-relaxation (SSOR) problem solving. 

Unstructured Adaptive 

Find the solution to a heat problem of a ball in motion with convection and 

diffusion effects. The mesh has to be adaptive to the conditions and is 

recalculated every five steps of calculation and the memory is retrieved 

dynamically and erratically. 
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Table 2 Comparative Study between HPL and NAS Benchmarks 

 

Categories Types of Benchmark 

High Performance LINPAC (HPL) NAS Parallel Benchmarks 

Problem solving Solves a dense matrix problem 

using LU factorization   

Solves calculations involving 

simulations.  

Modules 
Single (LINPAC) 

Multiple (CG, MG, FT, IS, EP, BT, 

SP, LU, UA, DC, DT) 

Suited for Parallel Computation Designed for Parallel Computers  Designed for Parallel Computers 

Used widely as standard   Yes (TOP 500 list) No 

 

 

3.0  METHODOLOGY 
 

In the first part of methodology, the problem is 

defined and clearly detailed. The problem which the 

author has defined is that the performance of the 

HPC cluster in UTP has not been measured using a 

benchmark tool. One of the benchmark 

configurations needed in running the benchmark is 

to setup the High Performance LINPAC 

configurations. Determining and selecting the correct 

compiler for C and FORTRAN is one of the parts in this 

stage. The message passing interface (MPI) also 

needs to be preinstalled and setup. For the UTP 

cluster, mpich2 will be used.  

The Basic Linear Algebra Subprograms (BLAS) 

which is responsible for the basic mathematical 

procedures involving vector and matrix also needs to 

be setup and configured. The BLAS library contains a 

specific collection of low-level sub procedures for 

common linear algebraic operations. BLAS contains 3 

levels: Level 1 is employed in vector procedures; 

Level 2 completes processes between matrix and 

vector, whereas at Level 3, matrix-matrix processes 

are calculated. BLAS is frequently utilized in creating 

software tools which need to perform linear algebra, 

such as LINPAC and LAPACK, as they have high 

efficiency, are transferrable across platforms and 

have many open source implementations [13].  

The Automatically Tuned Linear Algebra Software 

(ATLAS) is another BLAS routine alternative which 

employs practical procedures for better execution 

and portability across platforms. The interfaces of 

ATLAS are written using C and includes some LAPACK 

routines [13].  The LINPAC does not have high 

efficiency in resolving matrix computations because 

of the memory access method by both the algorithm 

and software, which decreases the overall efficiency, 

and has been superseded by LAPACK [13]. LAPACK is 

a suite of software which can resolve linear algebra 

involving matrices, with distinctive specialization 

towards series of linear equations, least squares 

calculations, eigenvalue calculations, and 

decomposition of singular value [13]. The basis of the 

software emulates the use of block partitioned matrix 

techniques in order to accomplish great 

performance on systems with RISC architecture, 

vector computers, and parallel processors with 

common memory [13]. The ATLAS library will be used 

as BLAS library for the HPL benchmark. 

In the following phase, the parameters to HPL.dat 

are tuned. There are 17 parameters which need to 

be assigned to HPL.dat. In these 17 parameters, only 

seven of these parameters are usually configured 

according to the cluster during benchmarking 

process. The default good start value will normally be 

used for the remaining parameters as suggested by 

HPL. The seven parameters which need to be 

configured are: problem size (N), processor grid (P x 

Q), broadcast (BCAST), block size (NB), panel 

factorization (PFACT), recursive panel factorization 

(RFACT), and look-ahead depth (DEPTH). 

 

𝑁 =  √𝑇𝑜𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑀𝑒𝑚𝑜𝑟𝑦 (𝑖𝑛 𝑏𝑦𝑡𝑒𝑠) × 0.80       (2) 

 

The solution to equation (2) shown above is 

theoretically the best problem size, N to be solved. 

Research by Petitet,Whaley, Dongarra and Cleary 

suggest that the largest size of N which can fit around 

80% of the memory should be used [9]. However, 

when assigning the size of N too large, data swap 

can happen between memory and disk, which will 

lead to a reduction in the overall performance, as 

the system will need to read from the disk instead of 

directly from the memory. Thus, only 80% of the total 

problem size will be utilized, with the remaining 20% 

left for other uses.  

The processor grid (P x Q) is a parameters that 

denote the size or proportions of the process grid. In 

the processor grid (P x Q), P represents the process 

rows while Q represents the process columns. The size 

of both P and Q should be determined by the 

physical interconnection network. For a mesh or a 

switch network, which is preferred, the values of P 

and Q should be approximately equal, with Q having 

a slightly larger value than P. Nevertheless, the 

research conducted in Universiti Teknologi MARA on 

their Khaldun Sandbox Cluster, after trying a number 

of configurations, their findings was that the best 

values for the processor grid are P is 2 while Q is 16 in 

order to achieve the best benchmark results among 

the configurations of 26.88 Gflops [10]. This finding is a 

little contrasting with the recommended processor 

grid configuration, and will need to be checked out. 

There are also panel factorization and recursive 

panel factorization variants to choose from, which 
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are: right-looking variant, left-looking variant and 

Crout variant. These three variants are different 

methods in which these computations are carried 

out [9], and can have minor performance 

differences in the result. 

Once the factorization of the panel had been 

calculated, HPL broadcasts panel factorization 

column from one process column to other process 

columns. There are 6 alternatives of broadcast 

algorithms available can be employed, which are 

Increasing-ring, Modified Increasing-ring, Increasing-

2-ring, Modified Increasing-2-ring, Long bandwidth 

reducing and modified Long bandwidth reducing 

[9]. Research has suggested that the Modified 

Increasing-ring algorithm is one of the best in 

efficiency [14]. However, in the research conducted 

in Universiti Teknologi MARA on their Khaldun 

Sandbox Cluster, the results from their benchmark test 

saw that the Modified Increasing-ring does not 

perform as well as compared to the Long bandwidth 

reducing algorithm. The Long bandwidth reducing 

algorithm allows them to obtain their best results of 

31.33 Gflops [10]. These findings will be tested when 

benchmarking the UTP HPC cluster. 

 

 

4.0  RESULTS AND DISCUSSION 
 

Seven test runs are conducted on the HPC cluster 

based on the seven main parameters to be 

configured in the HPL benchmark. The results of the 

test to determine how the number of nodes, P x Q, 

influence the speed of processing and the time 

taken are as shown in Table 3. 

 

Table 3 Results of Test based on Number of Nodes 

 

Number 

of Nodes 

Time 

Taken 

(s) 

Computation 

Speed 

(Gflops) 

Speedup 

in 

Processing 

1 29.62 2.815 1.00 

2 59.65 1.398 0.50 

4 39.86 2.092 0.75 

6 26.21 3.181 1.13 

8 23.17 3.597 1.28 

10 18.79 4.436 1.58 

 

 
 
 
 
 
 
 
 
 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Computation Speed and Speedup Results (based 

on number of nodes) 

 

 

As the number of nodes increases from one node 

to two nodes, the computation speed drops as 

shown in Figure  due to a delay of communication. 

This delay is caused by the computation problem 

being transmitted over an Ethernet network through 

Message Passing Interface (MPI) and distributed 

among the cluster nodes. The delay in 

communication increases the overhead for problem 

computation and can cause a slowdown in 

performance as shown in Figure 2. But when the 

number of nodes keeps increasing, the delay in 

communication is compensated by the speed of 

processing of the cluster nodes. Thus, the speedup in 

processing increases until all the processors are 

saturated with computations (saturation point), then 

the increase in speed remains constant. 

The results of the test to determine how the 

problem size, N, influence the speed of processing 

and the time taken are as shown in Table 4. 
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Table 4 Results of Test based on Problem Size 

 

Problem 

Size, N 

Time 

Taken (s) 

Computation 

Speed (Gflops) 

Speed

up 

5000 18.79 4.436 1.00 

10000 114.68 5.815 1.31 

15000 374.78 6.003 1.35 

20000 812.09 6.568 1.48 

25000 1605.56 6.488 1.46 

 

 

 
Figure 3 Computation Speed and Speedup Results (based 

on problem size) 

 

 

Problem size dictates the size of the matrix to be 

decomposed. A larger problem size engages more 

processing power in finding the solution, and thus 

resulting in a higher computation speed as shown in 

Figure 3. However the increase in computational 

speed or speedup will only keep increasing until a 

saturation point, where all the processors are being 

used to solve the problem, then the increase in 

speed stabilizes. This is due to the maximum 

effectiveness and efficiency of processing power 

had been reached. 

     The results of the test to determine how the 

distribution size, NB, influence the speed of 

processing and the time taken are as shown in  

Table 5.  

 

Table 5 Results of Test based on Distribution Size 

 

Distribution 

Size, NB 

Time 

Taken (s) 

Computation 

Speed (Gflops) 

100 19.36 4.307 

125 17.86 4.667 

150 20.99 3.973 

175 18.54 4.497 

200 23.17 4.406 

225 22.30 3.738 

250 21.30 4.706 

 

 

 
 

Figure 4 Computation Speed Results (based on distribution 

size) 

 

 
The distribution size dictates the block size of the 

problem to be decomposed and distributed among 

the nodes. The optimal distribution sizes will vary 

depending on computational performance and 

network configuration. We have tested distribution 

sizes ranging from 100 to 250 in increments of 25, and 

the results from the test found that block size 250 

provides the best performance in terms of 

computation speed. A bigger block size means fewer 

messages to be sent over the network, hence less 

communication delay. 

The results of the test to determine how the panel 

factorization, PFACT, influence the speed of 

processing and the time taken are as shown in 

 Table 6.  
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Table 6 Results of Test (Panel Factorization) 

 

PFACT Time Taken 

(s) 

Comp. Speed 

(Gflops) 

Left 18.33 4.549 

Crout 17.20 4.847 

Right 18.19 4.583 

 

 

Figure 5 Computation Speed Results (based on panel 

factorization) 

 
 

Panel factorization dictates the type of panel 

factorization algorithm to be employed in solving the 

matrix decomposition problem. There are three types 

of algorithm: the left looking, right looking and Crout 

algorithms, which are three different ways of solving 

the computation problem. The results of the test, as 

shown in Figure 5, indicate that the Crout algorithm in 

panel factorization increases the computation 

performance of the cluster as compared to other 

algorithms. 

The results of the test to determine how the 

recursive panel factorization, RFACT, influence the 

speed of processing and the time taken are as 

shown in Table 7. 

 
Table 7 Results of Test (Recursive Panel Fact.) 

 

RFACT Time Taken (s) Comp. Speed (Gflops) 

Left 18.46 4.516 

Crout 17.93 4.649 

Right 19.97 4.175 

 

 

 

 

 

 

 
 

Figure 6 Computation Speed Results (based on recursive 

panel factorization) 

 

 

Recursive panel factorization dictates the type of 

recursive panel factorization algorithm to be 

employed in solving the matrix decomposition 

problem. There are three types of algorithm: the left 

looking, right looking and Crout algorithms, which are 

three different ways of solving the computational 

problem. The results of the test, as shown in Figure 6, 

indicate that the right looking algorithm in recursive 

panel factorization has the highest computation 

performance as compared to the other algorithms. 

The results of the test to determine how broadcast 

algorithms, BCAST, influence the speed of processing 

and the time taken are as shown in Table 8. 

 
Table 8  Results of Test (Broadcast) 

 

BCAST Time (s) Speed (Gflops) 

1 ring 17.58 4.783 

1 ring (modified) 18.35 4.542 

2 ring 16.78 4.967 

2 ring (modified) 16.77 4.972 

Long message 19.94 4.181 

Long message 

(modified) 

19.43 4.291 
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Figure 7 Computation Speed Results (based on broadcast 

algorithms) 

 

 

The broadcast parameter dictates the type of 

panel broadcast algorithm to be utilised in 

distributing messages to other processes. Six types of 

broadcast algorithm are available for the user to 

select: the increasing-1-ring, the increasing-1-ring 

(modified), the increasing-2-ring, the increasing-2-ring 

(modified), long (bandwidth reducing) and long 

(bandwidth reducing modified) algorithms, in which 

are the varied ways of message exchange between 

the processes, which affects the time taken to 

process and also the computation speed, according 

to the results in Figure 7. The results of the test, as 

shown in Figure 8, confirms that the increasing-2-ring 

(modified) panel broadcast algorithm provides the 

best performance in terms of the computational 

performance of the cluster. 

The results of the test to determine how look-

ahead depth, DEPTH, influence the speed of 

processing and the time taken are as shown in  

Table 9. 

 
Table 9 Results of Test (Based on Depth) 

 

DEPTH Time Taken (s) Speed of Processing (Gflops) 

0 19.10 4.365 

1 16.21 5.143 

 

 
 

Figure 8 Computation Speed Results (based on look-ahead 

depth) 

Look-ahead depth dictates if the benchmark 

changes the order of the operations so that less 

efficient operations will run together will more efficient 

operations. If the look-ahead depth is greater than 

zero, the benchmark will “look ahead” by storing the 

panels being factorized in memory and uses up more 

memory in exchange for a better performance. The 

results of the test, as according to Figure 9, indicate 

that when the look-ahead depth is one, the 

computation performance of the cluster is better than 

when there is zero look-ahead depth. 

Based on the results, these are the optimized 

parameters: 

 
Table 10  Optimised HPL Parameters 

 

Parameters Parameter Value 

Number of Nodes, P x Q 10 

Problem Size, N 125,000 

Block Size, NB 250 

Panel Fact, PFACT Crout 

Recursive Panel Fact, PFACT Crout 

Look-ahead Depth, DEPTH 1 

Broadcast Parameter, BCAST 2-ring (modified) 

 

The results of the final test run are as follows:  

 
Table 11 Results of the Final Test Run 

 

Parameters Time Taken (s) Speed of Processing 

(Gflops) 

Optimized 12830.65 23.78 

Random 13978.47 21.16 

 

 
Figure 9 Final Test Results 

 

 

As shown in Figure 9 and Table 11, the best results 

for using HPL benchmarking tool on HPC cluster is 

approximately 24 Gigaflops, while using random 

parameters, the computation speed is around 21 

Gigaflops, a reduction of approximately 12 percent. 

This shows that having optimized parameters can 

increase the performance of the cluster. 

3.5
4

4.5
5

5.5

Computation Speed (Gflops)

3.5

4

4.5

5

5.5

0 1

0 1

18

20

22

24

Computation Speed (Gflops)



30                                            Izzatdin et al. / Jurnal Teknologi (Sciences & Engineering) 78: 9–3 (2016) 21–30 

 

 

5.0  CONCLUSION 
 

Through this research, the UTP HPC cluster has been 

benchmarked using the HPL benchmarking tool. The 

results from benchmarking also show the peak 

performance achievable under the test conditions. 

The factors which can affect the implementation of 

HPL have also been discussed.  

A few conclusions can be drawn from the findings 

obtained in this research. One is that a lot of factors 

and parameters need to be taken in account in 

running the HPL benchmark process tool. The kind of 

interconnection system employed, such as Gigabit 

Ethernet, Infiniti Band and Myrinet, can influence the 

effectiveness of the cluster and in turn the HPL 

benchmark result [15]. A better interconnection 

layout with higher bandwidth and lower latency will 

improve the maximum performance of the 

cluster.Parameters of the HPL.dat and the type of 

BLAS library utilised can also affect the benchmark 

result [10]. With different configurations of HPL 

parameters or even different BLAS libraries employed, 

a different result will be obtained. 

For future work, a degree of optimisation should 

be employed for the HPL benchmark, by changing 

parameters off the benchmark for better results. 
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