OPTIMAL CONTROL OF A BILINEAR SYSTEM SUBJECTED TO A QUADRATIC COST FUNCTION USING LIE ALGEBRA

Hishamuddin bin Jamaluddin
Faculty of Mechanical Engineering
Universiti Teknologi Malaysia.

Synopsis

Optimal control for a Biliner System subjected to a quadratic cost functional was derived by applying Lie Algerbra. Interesting results were obtained when the system matrice commute and when the Lie sub-algebra generated by the system matrices is nilpotent.

Introduction

Classical approach of calculus of variation and the Pontryagin Maximum Principle give an explicit expression for the optimal system of a linear quadratic regulator problem. An associated gain matrix is governed by a computable matrix Riccati equation. The existence and uniqueness of an optimal control to this problem is well known $(1,5)$. On the other hand, relatively little has been reported in literature concerning determination of optimal controls of bilinear system. Notable exception includes work by Mohler ${ }^{6}$. Jacobson ${ }^{4}$ and a few others. In this paper, results obtained by Banks and Yew ${ }^{2}$ are applied to a Bilinear System.

Problem Formulation

The optimal control problem can be stated as follows: Given
i) a set of a first order differential equation which represent a time-invariant control system, known as the state equation, and are represented by the following compact vector form

$$
\begin{equation*}
x(t)=f(x, u, t), \quad x\left(t_{0}\right)=x_{0} \tag{1}
\end{equation*}
$$

where the vector function $f(x, u, t)$ may be a bilinear function in the form

$$
\begin{equation*}
f(x, u, t)=\left(A+\sum_{i=1}^{m} u_{i} B_{i}\right) x(t) \tag{2}
\end{equation*}
$$

ii) a quadratic form scalar function known as the performance index or the cost functional, usually denoted by $J(u)$,

$$
\begin{equation*}
J(u)=\int_{t_{0}}^{t_{f}} f_{o}(x, u) d t \tag{3}
\end{equation*}
$$

So, the optimal control problem is to find an optimal control function $u^{*}(t)$ which minimise the performance index $J(u)$ by considering the Lie Algebra generated by the system matrices.

Optimal Control

Let us consider a Bilinear System

$$
\begin{equation*}
\dot{x}=A x+\sum_{i=1}^{m} u_{i} B_{i} x, \quad x(0)=x_{0} \tag{4}
\end{equation*}
$$

[^0]where $x \in R^{n}$ and u_{i} 's are scalar controls which minimise the simple cost functional
\[

$$
\begin{equation*}
J(u)=\int_{t_{0}}^{t_{f}} \sum_{i=1}^{m} u_{i}^{2}(t) d t+x^{T}\left(t_{f}\right) F x\left(t_{f}\right) \tag{5}
\end{equation*}
$$

\]

The Hamiltonian for the optimal control problem subjected to $(\ldots 4)$ is

$$
\begin{equation*}
H=\sum_{i=1}^{m} u_{i}^{2}+\lambda^{T}\left(A x+\sum_{i=1}^{m} u_{i} B_{i}\right) \tag{6}
\end{equation*}
$$

By Maximum Principle, we obtain the equation

$$
\frac{\partial H}{\partial x}=\lambda^{T} A+\lambda^{T} \sum_{i=1}^{m} u_{i} B_{i}
$$

Therefore

$$
\begin{align*}
& \dot{\lambda}^{T}=-\left(\lambda^{T} A+\lambda^{T} \sum_{i=1}^{m} u_{i} B_{i}\right) \tag{7}\\
& \dot{x}=A x+\sum_{i=1}^{m} u_{i} B_{i} x \tag{8}
\end{align*}
$$

and hence the optimal control

$$
\begin{equation*}
u_{j}=-\frac{1}{2} \lambda^{T} B_{j} x, 1 \leqslant j \leqslant m \tag{9}
\end{equation*}
$$

where u_{j} is the j 'th control.
Taking the derivative of (9)

$$
\begin{equation*}
-\dot{u}_{j}=\lambda^{T}\left[B_{j}, A\right] x+\lambda^{T} \sum_{i=1}^{m} u_{i}\left[B_{j}, B_{i}\right] x \tag{10}
\end{equation*}
$$

Proposition 4

If $\left[B_{j}, B_{i}\right]=\left[B_{j}, A\right]=0$, (i.e. B_{j}, B_{i} and A commute), then the optimal control u^{*} is a constant. Proof:
From (7) and (8)

$$
\begin{align*}
\frac{d}{d x}\left(\lambda^{T} B_{j} x\right) & =\dot{\lambda}^{T} B_{j} x+\lambda^{T} B_{j} \dot{x} \\
& =-\left(\lambda^{T} A+\lambda^{T} \sum_{i=1}^{m} u_{i} B_{i}\right) B_{j} x+\lambda^{T} B_{j}\left(A x+\sum_{i=1}^{m} u_{i} B_{i} x\right) \\
& =\lambda^{T}\left[B_{j}, A\right] x+\lambda^{T} \sum_{i=1}^{m}\left[B_{j}, B_{i}\right] x \tag{11}
\end{align*}
$$

and so

$$
\begin{gathered}
\dot{u}=0 \\
\text { if }\left[B_{j}, A\right]=\left[B_{j}, B_{i}\right]=0
\end{gathered}
$$

Proposition 5

Under the assumption of proposition 4, the constant optimal controls, uj* are the solution of the equation

$$
\begin{equation*}
2 u+x_{o}^{T} \exp \left(\left(A T+\sum_{i=1}^{m} u_{i} B_{i}\right) T\right)\left(B_{j} T F+F B_{j}\right) \exp \left(\left(A+\sum_{i=1}^{m} u_{i} B_{i}\right) T\right) x_{o}=0 \tag{12}
\end{equation*}
$$

Proof:
Since $\mathrm{u}_{\mathrm{j}}{ }^{*}$'s are constant, we have

$$
\mathrm{J}\left(\mathrm{u}^{*}\right)=\sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{u}_{\mathrm{i}}{ }^{* 2} \mathrm{~T}+\mathrm{x}^{\mathrm{T}}\left(\mathrm{t}_{\mathrm{f}}\right) \mathrm{Fx}\left(\mathrm{t}_{\mathrm{f}}\right)
$$

However

$$
\dot{x}=\left(A+\sum_{i=1}^{m} u_{i} B_{i}\right) x
$$

and so

$$
x(T)=\exp \left(\left(A+\sum_{i=1}^{m} u_{i} * B_{i}\right) T\right) x_{0}
$$

Hence

$$
\begin{aligned}
& \mathrm{J}\left(\mathrm{u}^{*}\right)= \sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{u}_{\mathrm{i}}^{* 2} \mathrm{~T}+\mathrm{x}_{\mathrm{o}}^{\mathrm{T}}\left(\exp \left(\left(\mathrm{AT}+\sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{u}_{\mathrm{i}}^{*} \mathrm{~B}_{\mathrm{i}}^{\mathrm{T}}\right) \mathrm{T}\right)\right) \mathrm{F} \\
&\left(\exp \left(\left(\mathrm{~A}+\sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{u}_{\mathrm{i}}^{*} \mathrm{~B}_{\mathrm{i}}\right) \mathrm{T}\right)\right) \mathrm{x}_{\mathrm{o}} \\
& \frac{\partial \mathrm{~J}\left(\mathrm{u}^{*}\right)}{\partial \mathrm{u}_{\mathrm{j}}}=\quad 2 \mathrm{u}_{\mathrm{j}}^{*} \mathrm{~T}+\mathrm{Tx}{ }^{\mathrm{T}}\left(\exp \left(\left(\mathrm{~A}^{\mathrm{T}}+\sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{u}_{\mathrm{i}} \mathrm{~B}_{\mathrm{i}}^{\mathrm{T}}\right) \mathrm{T}\right)\right) \\
&\left(\mathrm{B}_{\mathrm{j}}{ }^{\mathrm{T}} \mathrm{~F}+\mathrm{FB} \mathrm{~B}_{\mathrm{j}}\right)\left(\exp \left(\left(\mathrm{A}+\sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{u}_{\mathrm{i}} \mathrm{~B}_{\mathrm{i}}\right) \mathrm{T}\right)\right){x_{o}}
\end{aligned}
$$

Since A and B_{j} 's commute.
It is very clear that the condition $\left[B_{j}, A\right]=\left[B_{j}, B_{i}\right]=0$ is very strong. Naturally we seek similar conditions on the control to those above when $\left[B_{j}, A\right] \neq 0$ and $\left[B_{j}, B_{i}\right] \neq 0$. Of course u_{j} 's will no longer be constants.

Lemma 6

For any (n by n) matrix X we have

$$
\begin{align*}
\frac{d\left(\lambda^{T} X x\right)}{d t} & =\lambda^{T}\left[X, A+\sum_{i=1}^{m} u_{i} B_{i}\right] x \\
& =\lambda^{T}[X, A] x+\sum_{i=1}^{m} u_{i} \lambda^{T}\left[X, B_{i}\right] x \tag{13}
\end{align*}
$$

Proof:
From (7) and (8), we have

$$
\dot{\lambda}^{T} X x=-\lambda^{T}\left(A+\sum_{i=1}^{m} u_{i} B_{i}\right) X x
$$

$$
\lambda^{T} X \dot{x}=\lambda^{T} X\left(A+\sum_{i=1}^{m} u_{i} B_{i}\right) x
$$

Hence

$$
\begin{aligned}
& \frac{d\left(\lambda^{T} X x\right)}{d t}=\dot{\lambda}^{T} X x+\lambda^{T} X \dot{x} \\
& =-\lambda^{T}\left(A+\sum_{i=1}^{m} u_{i} B_{i}\right) X x+\lambda^{T} X\left(A+\sum_{i=1}^{m} u_{i} B_{i}\right) x \\
& =\lambda^{T}[X, A] x+\sum_{i=1}^{m} u_{i} \lambda^{T}\left[X, B_{i}\right] X
\end{aligned}
$$

Now consider the Lie Algebra M of all n by n matrices and let $M\left(A, B_{1}, \ldots, B_{m}\right)$ denote the Lie subalgebra generated by $A, B_{1}, \ldots \ldots, B_{m}$. Thus $M\left(A, B_{1}, \ldots \ldots, B_{m}\right)$ consists of $A, B_{1}, \ldots \ldots, B_{m}$ and their combination. Since M is a finite-dimensional Lie Algebra (of dimension n^{2}), $\mathrm{M}\left(\mathrm{A}, \mathrm{B}_{1}, \ldots, \mathrm{~B}_{\mathrm{m}}\right.$) must be finite dimensional with dimension $\mathrm{m}<\mathrm{n}^{2}$. Let x_{1}, \ldots, x_{n} be a basis of $M\left(A, B_{1}, \ldots, B_{m}\right)$, and write

$$
\begin{aligned}
& \mathrm{v}_{1}=2 \mathrm{u}_{1}=\lambda^{\mathrm{T}} B_{1} \mathrm{x} \\
& \cdot \\
& \mathrm{v}_{\mathrm{k}}=2 \mathrm{u}_{\mathrm{k}}=\lambda^{\mathrm{T}} B_{k} x, 1 \leq \mathrm{k} \leq \mathrm{m}
\end{aligned}
$$

$$
\mathrm{V}_{\mathrm{m}+1}=\lambda^{\mathrm{T}} \mathrm{X}_{1} \mathrm{X}
$$

$$
v_{n}=\lambda^{T} X_{n-m} X
$$

$$
\mathrm{v}_{\mathrm{n}+\mathrm{m}}=\lambda^{\mathrm{T}} \mathrm{X}_{\mathrm{n}} \mathrm{X}
$$

Then

$$
\begin{align*}
& \dot{v}_{1}=\lambda^{T}\left[B_{1}, A\right] x+\lambda^{t} \sum_{i=2}^{m} u_{i}\left[B_{1}, B_{i}\right] x \\
& \dot{v}_{k}=\lambda^{T}\left[B_{k}, A\right]+\lambda^{T} \sum_{\substack{i=1 \\
i \neq k}}^{m} u_{i}\left[B_{k}, B_{i}\right] x, 1 \leqslant k \leqslant m \\
& \dot{v}_{m+1}=\lambda^{T}\left[X_{1}, A\right] x+\lambda^{T} \sum_{i=1}^{m} u_{i}\left[X_{1}, B_{i}\right] x \tag{15}
\end{align*}
$$

$$
\begin{aligned}
& \dot{v}_{n}=\lambda^{T}\left[X_{n-m}, A\right] x+\lambda^{T} \sum_{i=1}^{m} u_{i}\left[X_{n-m}, B_{i}\right] x \\
& \dot{\cdot} \\
& \dot{v}_{n+m}=\lambda^{T}\left[X_{n}, A\right] x+\lambda^{T} \sum_{i=1}^{m} u_{i}\left[X_{n}, B_{i}\right] x
\end{aligned}
$$

If $\left[X_{i}, A\right],\left[X_{i}, B_{k}\right],\left[B_{k}, B_{i}\right],\left[B_{k}, A\right]$ belongs to $M\left(A, B_{1}, \ldots, B_{m}\right)$ we may write

$$
\begin{align*}
& {\left[X_{i}, A\right]=\sum_{j=1}^{m} \alpha_{i j} X_{j}} \\
& {\left[X_{i}, B\right]=\sum_{j=1}^{m} \beta_{k i j} X_{j}} \tag{16}\\
& {\left[B_{k}, A\right]=\sum_{j=1}^{m} b_{k i} X_{j}} \\
& {\left[B_{k}, B_{i}\right]=\sum_{j=1}^{m} b_{k i j} X_{j}} \tag{17}
\end{align*}
$$

for some constants $\alpha_{i j}, \beta_{k i j}, b_{k j}, b_{k i j}$. Substituting (17) and (16) into (15), we have

$$
\begin{align*}
& \dot{v}_{k}=\sum_{j=1}^{m} b_{k j} v_{m+j}+\sum_{\substack{i=1 \\
i \neq k}}^{m} 2_{i} v_{i} \sum_{j=1}^{m} b_{k i j} v_{m+j} l \leqslant k \leqslant m \tag{18}\\
& \dot{v}_{1}=\sum_{j=1}^{m} \alpha_{1 j} v_{j+m}+\sum_{\substack{i=1 \\
i \neq k}}^{m} \sum_{i} v_{i} \sum_{j=1}^{m} \beta_{i 1 j} v_{j+m}
\end{align*}
$$

These equations (18) may be written in the form

$$
\begin{equation*}
\dot{\mathrm{v}}=\mathrm{f}(\mathrm{v}) \tag{19}
\end{equation*}
$$

for some (non-linear) function of v. We may solve equation (19) numerically for u_{1}, u_{2}, \ldots, u_{m} in terms of to, t_{f} and some initial value v_{o}, so we may write

$$
\begin{equation*}
u_{j}(t)=U_{j}\left(t: t_{\mathrm{o}}, \mathrm{t}_{\mathrm{f}}, \mathrm{v}_{\mathrm{o}}\right), \quad 1 \leqslant \mathrm{j} \leqslant \mathrm{~m} \tag{20}
\end{equation*}
$$

where

$$
\mathrm{v}_{\mathrm{o}}=\left(\mathrm{v}_{1}\left(\mathrm{t}_{\mathrm{o}}\right), \mathrm{v}_{2}\left(\mathrm{t}_{\mathrm{o}}\right), \ldots, \mathrm{v}_{\mathrm{m}+\mathrm{n}}\left(\mathrm{t}_{\mathrm{o}}\right)\right.
$$

Substituting (20) into (4) we have

$$
\begin{equation*}
\dot{x}=A_{x}+\sum_{j=1}^{m} U_{j} B_{j} x, x\left(t_{o}\right)=x_{o} \tag{21}
\end{equation*}
$$

Solving (21) numerically, then we have

$$
\begin{equation*}
x=\xi\left(t ; t_{0}, t_{f}, v_{o}\right) \tag{22}
\end{equation*}
$$

Substituting (22) and (20) into cost functional (5), we have

$$
\begin{equation*}
J(v)=\int_{t_{o}}^{t_{f}} \sum_{j=1}^{m} U_{j}^{2}\left(t ; t_{o}, t_{f}, v_{o}\right) d t+\xi^{T}\left(t ; t_{o}, t_{f}, v_{o}\right) F \xi\left(t ; t_{o}, t_{f}, v_{o}\right) \tag{23}
\end{equation*}
$$

and we minimise J with respect to vo to obtain control initial value $1 / 2 \mathrm{uj}^{*}\left(\mathrm{t}_{\mathrm{o}}\right)$.

Proposition 9

If $X \in\left(\operatorname{Ad} M\left(A, B_{1}, \ldots, B_{m}\right)^{1} B_{1}\right.$ then

$$
\underset{d t}{d\left(\lambda^{T} X x\right)}=\lambda^{\mathrm{T}} \mathrm{Yx}+\sum_{\mathrm{i}=1}^{\mathrm{m}} \mathrm{u}_{\mathrm{i}} \lambda^{\mathrm{T}} Z_{i} \mathrm{X}
$$

where $\mathrm{Y}, \mathrm{Z}_{1}, \ldots, \mathrm{Z}_{\mathrm{m}} \in\left(\operatorname{AdM}\left(\mathrm{A}, \mathrm{B}_{1}, \ldots, \mathrm{~B}_{\mathrm{m}}\right)^{1+1} \mathrm{~B}_{1}\right.$
Proof: This follows from Lemma 6
Corollory 11
If $M\left(A, B_{1}, \ldots, B_{m}\right)$ is nilpotent and $\left(\operatorname{Ad} M\left(A, B_{1}, \ldots B_{m}\right)\right)^{k=0}$,
then

$$
\lambda^{T} X x=0
$$

for any $\mathrm{X} \in\left(\operatorname{AdM}\left(\mathrm{A}, \mathrm{B}_{1}, \ldots, \mathrm{~B}_{\mathrm{m}}\right)\right)^{\mathrm{k}-1}$
Applying the descending central series, the basis $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{m}}$ can be chosen ${ }^{2}$. Using this basis of $\mathrm{M}\left(\mathrm{A}, \mathrm{B}_{1}, \ldots, \mathrm{~B}_{\mathrm{m}}\right)$ it is easy to see that (18) takes the form

$$
\begin{align*}
& \dot{v}_{k}=b_{k}{ }^{T} v+\sum_{\substack{i=1 \\
i \neq k}}^{m} \frac{1}{2} v_{i} b_{k i}^{T} v, 1 \leqslant k \leqslant m \tag{24}\\
& \dot{v}=\tau v+\sum_{i=1}^{m} \frac{1}{2} v_{i \Delta i^{\prime}} v \tag{25}
\end{align*}
$$

where $\tau, \Delta \mathrm{i}$ are nilpotent matrices, and

$$
\begin{aligned}
& b_{k}=\left(b_{k 1}, \ldots, b_{k m}\right) \\
& b_{k i}=\left(b_{1 k i}, \ldots, b_{m k i}\right)
\end{aligned}
$$

Conclusion

In this paper, we have considered the minimum fuel problem for a Bilinear System with m -controls and have shown how to obtain the optimal control by considering the Lie Algebra generated by the system matrices. We have shown that if A and B_{i} 's commute, then the optimal controls are constant and if $\mathrm{M}\left(\mathrm{A}, \mathrm{B}_{1}, \ldots, \mathrm{~B}_{\mathrm{m}}\right)$ is a nilpotent Lie Algebra then the optimal controls can be solved numerically.

Acknowledgement

I am grateful towards Dr. S.P. Banks, Lecturer, University of Sheffield, U.K. for his guidance and advice on this project.

References

1. Athan, M. and Falb, P.L.: "Optimal Control: An introduction to the Theory and its Applications", McGraw-Hill Book Comp., N. Y. 1966.
2. Banks, S.P. and Yew, M.K.: "On the optimal Control of Bilinear Systems and its relation to Lie Algebra", Dept. of Control Eng., University of Sheffield, Research Report no 275.
3. Hishamuddin Jamaluddin: "Optimal Control and Stability of Bilinear System" M. Sc. Dissertation. Dept of Control Eng. University of Sheffield.
4. Jacobson, D.H.: "Extensions of Linear-Quadratic Control, Optimisation and Matrix Theory", Academic Press, 1976.
5. Lee, E.B. and Markus, I.: "Foundation of Optimal Control Theory", John Wiley \& Sons, Inc., N.Y. 1967.
6. Mohler, R.R.: "Bilinear Control Process", A. P., 1973.

[^0]: *Lecturers in Faculty of Mechanical Engineering, UTM.

