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Synopsis

Optimal control for a Biliner System subjected to a quadratic cost functional was derived by
applying Lie Algerbra. Interesting results were obtained when the system matrice commute
and when the Lie sub-algebra generated by the system matrices is nilpotent.

Introduction

Classical approach of calculus of variation and the Pontryagin Maximum Principle give an
explicit expression for the optimal system of a linear quadratic regulator problem. An associa­
ted gain matrix is governed by a computable matrix Riccati equation. The existence and uni­
queness of an optimal control to this problem is well known (l ,5). On the other hand, relatively
little has been reported in literature concerning determination of optimal controls of bilinear
system. Notable exception includes work by Mohler". Jacobson" and a few others. In this
paper, results obtained by Banks and Yew? are applied to a Bilinear System.

Problem Formulation

The optimal control problem can be stated as follows: Given

i) a set of a first order differential equation which represent a time-invariant control
system, known as the state equation, and are represented by the following compact
vector form

x(t) = f(x ,u , t), x(t o ) = Xo · . .(1)

where the vector function f(x,u,t) may be a bilinear function in the form

m
f(x,u,t) = (A + L u . B. ) x (t)

i = 1 I I
· . .(2)

· ..(3)

ii) a quadratic form scalar function known as the performance index or the cost functional,
usually denoted by J(u),

t[
J(u) = J f (x , u) dt

t 0
o

So, the optimal control problem is to find an optimal control function u*(t) which minimise
the performance index J (u) by considering the Lie Algebra generated by the system matrices.

Optimal Control

Let us consider a Bilinear System

• m
X = Ax + LUi BiX, x(O) = Xo

i = 1
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· ..(4)



.... (5)

. ... (6)

... . (7)

.... (9)

... . (8)

.... (II)

.... (10)

[B., B .] x
J I

m
~

i = 1

m
r u. B.)

i = 1 I I
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u. B. x
I I

m
~

i = 1

=

=

1 T .
- - A B .x,I~J~m

2 J

= AT A + AT

= Ax +

m
H = ~

j = 1

u . =
J

u = 0

AT = -(ATA+AT

x

aH
ax

and so

By Maximum Principle, we obtain the equation

where x E R'' and uj's are scalar controls which minimise the simple cost functional

tf m
J (u) = f ~ u j

2 (t) dt + x" (t r) Fx (tr)
to j = 1

The Hamiltonian for the optimal control problem subjected to ( . . 4) is

Therefore

Proposition 4

If I Bj , Bj ] = [B j , A]= O,(i.e. Bj , B i and A commute), then the optimal control u* is a constant.

Proof:

From (7) and (8)

i (AT B. x) = XT B. x + AT B.~
dx J J J

where uj is the j'th control.

Taking the derivative of (9)

and hence the optimal control



Proposition 5

Under the assumption of proposition 4, the constant optimal controls, uj* are the solution of
the equation

2u + X Texp ( (AT +
o

Proof:

m
1: u. B.) T) (B.TF + FB.) exp «A +
j=l I I J J

Since u. *'s are constant, we have
J

J (u*) =

However

x

and so

=
rn

(A + 1: u j B j ) X

i = 1

x(T)

Hence

= exp «A +
m
1: u. *B . ) T) x

j = 1 I I 0

J(u*)
m m

= 1: u . *2T + x T(exp «AT + 1: u .*B. T)T) )F.
j=l 1 0 j=l I 1

m
(exp I I A + 1: u .*B .)T»x

j = 1 1 I 0

aJ(u*)
=

auj

m
2u .*T+TxT (exp«AT + 1: u.B .T)T».

J j = 1 1 1

m
(B .TF+FB.)(exp«A+ 1: u.B .)T»x

J J j=l I 1 0

Since A and Bj's commute.

It is very clear that the condition l Bj, A] = lB j , Bd = 0 is very strong. Naturally we seek
similar conditions on the control to those above when [B,: A] '* 0 and lB j , Bd '* O. Of course
Uj'S will no longer be constants.

Lemma 6

For any (n by n) matrix X we have

d(XTXx)

dt
=

m
XT[X , A + 1: ujB j] x

j = 1

Proof:

m
= ~T[X,A]x+ I: ujXT[X,Bj]x

j = 1
.... (13)

From (7 ) and (8 ), we ha ve

.
XTXx =

m
- XT( A + 1: llj Bj) Xx

j = 1
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~TXX = ~T X( A +
m
~ u .B.)x

I I
i = 1

Hence

d(~TXX)

dt
=

. .
~TXx + ~TXx

m m
= _ ~T (A + ~ u .B .)Xx + ~TX (A + ~ u . B.) x

I I I Ij=l j=l

m
= XT[X ,A]x + 1: ui;\TrX,Bi]X

j = 1

Now consider the Lie Algebra M of all n by n matrices and let M (A , Bl, , Bm )

denote the Lie subalgebra generated by A, Bl, , Bm . Thus M(A, B1, •• ••••• , B m )

co nsists of A, Bl, . . . .. , B m and their combination. Since M is a finite-dimensional Lie Algebra
(of dimension n") , M ( A, Bl , . . . . , Bm ) must be finite dimensional with dimension m < n",
Let xl ' ... , x n be a basis of M(A, Bl, . . . , B m ) , and write

VI = 2uI = ~T B1 X

.... (14)
Vk = 2 Uk = ~TBk X I k m,

Vm + I = ~TXI X

v- = ~TXn _m X

Yn-s m = ~T Xnx

Then

=

=

m
~T[Bl ,A]x + ~ l ~ u j[Bl ,B j] x

j= 2

m
~T[Bk ,A]+~T ~ U j[Bk ,Bj]x,l~k~m

i = 1
j*k

m
= ~T[XI ,A]x+~T ~ uj[X1 ,Bj]x

j = 1
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for some (non-linear) function of v. We may solve equation (19) numerically for UI , U2, ...,

Um in terms of to , tr and some initial value Vo, so we may write

.... (16)

.... (17)

.... (20)

.... (18)

.... (19)

m
~ ui[Xn,Bi]x

i =1

m 1 m
~ 2 vi .~ b k ij Vm + j I ,;:;;; k ,;:;;; m

i=1 J=1
i*k

m
~ bk·v . +. J m rr ]

J = 1

= AT[X ,A]x + AT
n

AT [Xn _ m ,A] x + AT

m m 1 m
= ~ Q1j Vj + m + ~ 2 vi ~ 13 T

V .+
j = 1 i = 1 j = 1

I J J m

i*k
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= f(v)

=

=

m
[Xi'A] = ~ QijXj

j = 1

m
[Xi' B] = ~ 13 k · · X .

j =1 IJ J

mrs, ,A] = ~ bk iXj
j =1

m
[Bk, Bi] = ~ b k . .X.

j = 1 IJ J

v

Vn

V n + m

for some constants Qi j' 13kij' b k j' bk ij" Substituting (17) and (16) into (15), we have

These equations (18) may be written in the form

If [Xi' A], [Xi' Bk], [Bk, Bi], rs.. A] belongs to M (A, B1 , ... ,B m ) we may write



where

=

Substituting (20) into (4) we have

x = .... (21 )

Solving (21) numerically , then we have

x = ... . (22)

Substituting (22) and (20) into cost functional (5), we have

... . (23)

and we minimise J with respect to Vo to obtain control initial value 1/2 Uj * (to)'

Proposition 9

IfXE(AdM(A,BI, . · · ,Bm)l B1 then

d(ATXX)

dt
=

m
AT yx + ~ u. AT z .x

. 1 1
1 = 1

where Y j Zj , .... , z m E(AdM(A,Bl' .. . ,B m)l+l B1

Proof: This follows from Lemma 6

Corollory II

IfM (A, BI , . .. , Bm) is nilpotent and (Ad M (A , BI , . .. 8 m ) )k = 0 ,

then

AT Xx = 0

for any X E (Ad M (A, 8
1

, • •. , Bm ) ) k - 1

Applying the descending central series , the basis Xl' X
2

' • •• , X m can be chosen". Using this
basis of M (A, B 1 ' • •• , Bm) it is easy to see that (18) takes the form

v =k

m
b Tv + ~

k
i = 1
i:Fk

... . (24)

m 1
V = tv + ~ "2 v i.,~ i v

i = 1

where '1:, 6 i are nilpotent matrices, and

b k = (b k 1 , . . . , b k m)

b ki = (blkp·· ·,bm ki)
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Conclusion

In this paper , we have considered the mmunum fuel problem for a Bilinear System with
m-controls and have shown how to obtain the optimal control by considering the Lie Algebra
generated by the system matrices. We have shown that if A and Bj's commute, then the optimal
controls are constant and if M (A, BI , .. . , Bm ) is a nilpotent Lie Algebra then the optimal
controls can be solved numerically.
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