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Abstract 
 

Tracking the user location in indoor environment becomes substantial issue in recent research High accuracy and fast 

convergence are very important issues for a good localization system. One of the techniques that are used in localization systems 

is particle swarm optimization (PSO). This technique is a stochastic optimization based on the movement and velocity of particles. 

In this paper, we introduce an algorithm using PSO for indoor localization system. The proposed algorithm uses PSO to generate 

several particles that have circular distribution around one access point (AP). The PSO generates particles where the distance 

from each particle to the AP is the same distance from the AP to the target. The particle which achieves correct distances 

(distances from each AP to target) is selected as the target. Four PSO variants, namely standard PSO (SPSO), linearly decreasing 

inertia weight PSO (LDIW PSO), self-organizing hierarchical PSO with time acceleration coefficients (HPSO-TVAC), and constriction 

factor PSO (CFPSO) are used to find the minimum distance error. The simulation results show the proposed method using HPSO-

TVAC variant achieves very low distance error of 0.19 meter. 
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1.0  INTRODUCTION 
 

Nowadays, navigation systems have been widely used 

in outdoor and indoor environments. There are many 

types of navigation systems such as marine navigation 

system, global position system (GPS), wireless sensor 

network and robotic mapping. These systems have 

been designed to estimate the target at particular 

places within network coverage. However, an indoor 

localization system that usually covers a small area 

compared to outdoor environment has a small 

location error. Recently, indoor localization systems 

have become recent interested research due to 

increase the tracking applications. 

There are many techniques that are used for 

tracking the user such as radio frequency 

fingerprinting [1-2], angle of arrival (AOA) [3] and 

triangulation [4]. The typical localization system should 

have a good accuracy with less complexity. However, 

the accuracy of the system depends on the type and 

size of the environments. Thus, indoor environment 

requires a good accuracy compare to outdoor 

environment. The indoor localization systems require 

different types of pre-knowledge information such as 

physical testbed, received signal strength (RSS) and 

orientation of the user. Moreover, fingerprinting 

technique considers the most accurate technique that 

has minor error distance compare to other techniques 

[5-6]. However, fingerprinting technique is suffering 

from high system complexity which consists of two 

operating phases (offline and online phase) [7]. 

Besides, it requires big size of radio map in order to 

obtain high location accuracy.  

There are several algorithms that are used for 

improving the accuracy of estimated location. One of 

the optimization algorithms is particle swarm 

optimization which was developed by [8]. PSO is a 

collection of huge particles which have different 
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positions and velocity. It used to improve the accuracy 

of localization system. Recently, POS has considered 

by many research communities due to high 

convergence, more fixable and less complexity. The 

high accuracy obtains when the propagation 

condition line of sight (LOS) whereas non line of sight 

(NLOS) condition achieves low accuracy [9]. In indoor 

localization, the position of the particle represents the 

optimized position of the target, whereas the velocity 

represents the particle movement within a particular 

environment. In this paper, we propose a method to 

enhance the system accuracy by using PSO which 

generates a swarm of particles around each AP 

circularly. 

This paper is organized as follows. Section 2 

introduces the related work that has been done in the 

indoor tracking environment. Section 3 explains in 

details the methodology that has been proposed to 

minimize the distance error using PSO. Section 4 

describes the simulation setup of the indoor 

environment. Section 5 shows the results obtained and 

compare the results for the four PSO variants. Lastly, 

section 6 summarizes this work. 

 

 

2.0  RELATED WORK 

 

The usage of PSO depends on the level of localization 

problem. Some of the researchers used a single object 

optimization model to solve simple problems of 

localization system. Random time variable PSO 

algorithm is an adaptive PSO proposed by [10], which 

called random time varying inertia weight and 

acceleration coefficients (PSO-RTVIWAC). This 

algorithm combined of two different algorithms which 

are: the random inertia weight (PSO-RANDIW) and 

time-varying acceleration coefficients (PSO-TVAC). It 

used to enhance the performance of the original PSO. 

However, this algorithm does not compatible for NLOS 

environments. In [11], the authors proposed a new 

distributed selection technique to minimize the number 

of selected nodes in wireless sensor network. These 

selected number of nodes considered the main part 

of the technique to establish the grid coordinate 

system. However, the localization accuracy depends 

on the grid nodes in the system. Unlike [12], a 

distributed and cooperative algorithm for multipath 

environments in wireless sensor network is proposed. 

This algorithm based on the multipath propagation 

that allows sensors to cooperatively self-localize with 

respect to a single anchor node in the whole network. 

The single anchor node is computed by using the 

range and direction of arrival measurements. 

The authors in [13] proposed group discriminant (GD) 

algorithm to improve the accuracy of the location 

fingerprinting. GS depends on the AP selection 

approach which focusing on measuring the 

localization capabilities of each group of APs. The 

mean error obtained by GS is 3 meters for five APs. 

Unlike the traditional techniques that treat the APs 

based on their individual importance [14-15].  

The working [16 -20] focus on multi-objective particle 

swarm optimization to solve the localization issues. The 

multi-objective particle swarm optimization improved 

the accuracy and convergence of the localization 

system. However, in [16] the system suffered from slow 

convergence and limitless size of the archive. Thus, the 

authors in [20] addressed these issues by considering 

the geometric topology constraint to increase the 

accuracy of localization system and using the global 

optimum solution in order to get better convergence. 

However, this method obtained an average 

localization error of 10 meters when many number of 

anchor points were used. 

In this work, we apply the SPSO [8], LDIW-PSO [21], 

HPSO-TVAC [22], and CFPSO [23] in order to find the 

minimum distance error. In LDIW-PSO, the Inertia 

weight is decreasing during the searching process 

based on the following formula: 

   

       max min min

T t
w t w w w

T

 
    

 
         (1)

    

where maxw  is 0 .9, minw  is 0.4, T  is the maximum 

number of iterations, and t  is the current iteration.  

HPSO-TVAC improved the performance of the SPSO by 

controlling the acceleration coefficients 1 2,c c . The 

values of 1c  and 2c  are expressed as follows: 

 1 1 1 1f i i

t
c c c c

T
                     (2) 

 2 2 2 2f i i

t
c c c c
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                             (3) 

where 1ic  is 2.5, 
1 fc   is 0.5, 2ic  is 0.5, and

2 fc   is 2.5. 

The velocity of the SPSO has been modified by Clerc 

and kenndey [23] resulting in a new PSO variant 

named constriction factor PSO. The velocity of the 

constriction factor PSO is written as follows: 
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3.0  METHODOLOGY 

 

PSO is used to estimate the user location in indoor 

environments. We assume that there are five access 

points, which are deployed in the indoor environment 

with dimension of 80 m x 50 m. The coordinates of the 

four access points are determined. At the initial stage 

the distance between access points and the target 

location is calculated using Equation (5), 
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where (X𝐴𝑃,Y𝐴𝑃) and (xt,yt) Indicates the location of 

deployed access points and estimated target location 

respectively. Max[dm] is the maximum value of 

measured distance error. χn represents the random 

number which is defined as a uniform distribution 

between  0 ≤ χn ≤ 1. 

The objective of this work to minimize the distance 

error using the following equation: 

 

2 2min( ( ) ( ) )error t e t ed x x y y                 (6) 

where 
ex  and 

ey  indicate estimated location of the 

target. 

The distance from the access point to the target can 

be measured using RSS. However, the position of the 

target cannot be determined since there are other 

coordinates that can produce the same distance. To 

overcome this problem we proposed a method that 

generates N particles in a circular distribution using 

PSO. The numbers of particles that are generated in 

the circle are abbreviated as NPC. It should be noted 

that each particle represents a position.  Each of these 

particles is a potential to be the target (since all the 

generated particles have the same distance as the 

distance from the AP to the target). To confirm that our 

solution produces the exact location of the target, we 

test every generated particle in the circle by 

calculating the distance from each AP to that 

generated particle and confirming that the selected 

particle satisfies all distances (d1,d2,….d5) (It is 

noteworthy that we choose the AP that achieves the 

highest RSS which has the minimum measurement 

distance error).  

At the beginning of the process, we generate N 

particles randomly in the area. In order to get the best 

particle that has the same distance as DAP,t . Then, in 

each iteration, PSO is used to find the particle which 

has the closest distance as DAP,t by using the following 

fitness function: 

 

, ,( ) min ( )Ap t Ap Pf d abs D D      (7) 

 

Where DAP,p is the distance from the AP to the 

particle which is written as follows: 

 

2 2

, ( ) ( )Ap p Ap p AP pD x x y y      (8) 

 

The accuracy of the system depends on the 

optimization fitness function. In other word, the 

optimization fitness function is inversely proportional to 

the system accuracy.  

At the end of the PSO iterations, PSO records the best 

particle that has the same distance as DAP,t. This 

process is repeated K times where in each time a new 

particle (position) is generated around the circle. After 

that, we test each generated particle to confirm that it 

satisfies all other distances. Our methodology for the 

SPSO is explained in the following steps: 

 

STEP   1: Define the swarm size N. 

STEP  2: Locate the positions of APs randomly in the 

area 

STEP 3: Measure the distances from each AP 

(d1,d2,…., dx)  to the target using RSS. 

STEP  4: Determine the AP that achieves the highest 

RSS (the minimum measurement distance error) and 

record its distance from target  

STEP  5: For i=1:N. 

STEP 6: Generate the positions of N particles and 

define them as X and set Pbest =X and V=0 

STEP  7:  For t=1:T. 

STEP  8: Calculate the distance from AP (highest RSS) 

to the position of the particle ( ix ) using Equation 8. 

STEP  9: If ( )if x  < ( )if Pbest  then do   

                i iPbest x
 

                 End 

STEP 10: Calculate the distance from AP (highest 

RSS) to the position of the particle using iPbest   

STEP  11: Record the gbest which is the best particle 

that achieves , ,min ( )Ap t Ap Pabs D D    

STEP 12: Update the velocity of the particle using 

Equation 9. 

STEP 13: Update the position of the particle using 

Equation 10. 

STEP  14:  Next T and i 

STEP 15: Stop when all the N particles have been 

generated. 

STEP 16: For each generated particle, find the 

particle that satisfies all the distances from the APs.    

STEP   17:  End for loop. 

STEP 18: Return the position of this particle and 

calculate the distance error using Equation 6. 

 

The flowchart of the proposed method that used to 

estimate the target location is shown in Figure 2. PSO 

uses position and velocity update equations which 

can be written as follows: 

 

1 1

2 2

( ) ( ( )

( )) ( ( ) ( ))

id id id

id id id

v w v t c r Pbest t

x t c r gbest t x t

   

 
          (9)  
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where c1 and c2 indicates to the acceleration 

constants, w is the inertia weight, r1, r2, are uniformly 

distributed random numbers between 0 and 1. 

 

 

4.0  SIMULATION SETUP 

 

The testbed dimension of environment is 80m X 50m 

with five APs are deployed. The coordinates of five APs 

that deployed in the environment are (10, 10), (70, 10), 

(10, 40), (70, 40) and (40, 25) as shown in Figure 1. 

The particles were initialized for each AP with size of 

100. The distance between particles and AP is 

calculated by Equation (11). 

 
2 2

, ( ) ( )

1,2,..........,100

AP p AP p AP pD X x Y y

p

   


          (11) 

 

where xp and yp are the position of  initialized 

particles at each AP. 

 

 
Figure 1 Testbed with five deployed APs 

 

 

The number of particles that used in the simulation 

is 100 particles with maximum of 100 iterations for all 

four PSO variants as shown in Table 1. 

 

Table 1 Specification of PSO parameters 

 

Approach  Parameter Setting 

All Number of iterations  100 

Runs  20 

Swarm size 100 

SPSO 1 2, ,c c w  2,2,0.9 

LDIW-PSO 1 2, ,c c w   2,2,0.9-0.4 

HPSO-TVAC 
1 1 2 2, , ,ci f i fc c c   2.5,0.5,0.5,2.5 

CFPSO 1 2, ,c c k   2.05,2.05,1 

 

 

  

 

 

 
Figure 2 Flowchart of the proposed method 

 

 

5.0  RESULTS AND DISCUSSION 

 

The proposed method has been evaluated to 

investigate minimizing the distance error using four PSO 

variants that have been mentioned in section 3.  

 
Figure 3 Cumulative distribution function of four PSO variants 

when NPC=30 

 

 

We study the effects of three different cases of NPC 

which are 30, 60, and 100. Table 2 shows the statistics 

of four PSO variants. 
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Figure 3 shows the comparison of PSO variants versus 

the distance error when NPC is 30. It can be observed 

that the SPSO achieved a maximum and minimum 

distance error of 14.59 meters and 0.30 meters, 

respectively. However, the maximum distance error of 

14.59 is considered a high distance error that has a 

negative effect on the system accuracy. Likewise, 

LDIW-PSO achieved slight improvement compared to 

SPSO. Unlike CFPSO and HPSO-TVAC, the minimum 

and maximum of distance error is significantly 

improved by 82.14% compared to the previous two 

PSO variants. Besides, CFPSO outperformed HPSO-

TVAC and minimized the maximum distance error by 

45.26%. 

Figure 4 Cumulative distribution function of four PSO variants 

when NPC=60 

 

 

Figure 4, shows the distance errors for the four PSO 

variants when NPC is 60. It can be seen that SPSO 

improved its performance by reducing the minimum 

and maximum distance error by 23.33% and 51.61%, 

respectively. However, LDIW-PSO significantly 

improved with approximately 6 times better than SPSO. 

Finally, CFPSO and HPSO-TVAC achieved remarkable 

improvements which the maximum distance error 

closes to 1 meter. Therefore, the best PSO variants that 

have been tested to minimize the distance error are 

CFPSO and HPSO-TVAC. 

Figure 5 Cumulative distribution function of four PSO variants 

when NPC=100 

Figure 5 shows the comparison of PSO variants when 

NPC is 100. The SPSO obtained the optimum value of 

the maximum distance error (4.60 meters when 

NPC=100) compared to NPC=30 AND 60. However, 

LDIW-PSO does not positively affected by increasing 

the NPC from 60 to 100. The last two PSO variants 

(CFPSO and HPSO-TVAC) obtained the smallest 

distance error compared to the previous results. 

Specially, HPSO-TVAC considered the best variant that 

minimized the maximum distance error to 0.5 meter. 

 
Table 2 The distance error of the four PSO variants when 

NPC=30, 60 and 100 

 

 

Figure 6 Average error of the four PSO variants for NPS=30, 60 

and 100 

 

 

The localization accuracy depends on the PSO 

variants as well as NPC. Figure 6 and Table 2 shows the 

HPSO-TVAC achieved the best average accuracy of 

0.19 meter while the SPSO achieved the poor average 

accuracy of 1.58 meter when NPC is 100. To conclude, 

When NPC increases the minimum distance error 

decreases. HPSO-TVAC achieved the best results in 

terms of accuracy as well stability when NPC is 100 

followed by CFPSO, LDIW-PSO, and SPSO. The most 

stable PSO variant is HPSO-TVAC since it has a very low 

standard deviation. 

 

PSO variant NPC Min 

(m) 

Max 

(m) 

Mean 

(m) 

Std.  

SPSO 

30 0.30 14.59 4.20 5.35 

60 0.23 7.06 1.32 1.94 

100 0.11 4.60 1.58 1.71 

LDIW-PSO 

30 0.97 13.69 3.76 4.40 

60 0.15 2.66 0.98 0.84 

100 0.21 2.13 0.84 0.59 

CFPSP 

30 0.09 1.79 0.67 0.53 

60 0.06 0.67 0.40 0.22 

100 0.17 1.53 0.44 0.38 

HPSO-TVAC 

30 0.09 3.27 0.80 1.08 

60 0.07 1.08 0.38 0.32 

100 0.025 0.50 0.19 0.15 
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6.0  CONCLUSION 
 

Localization systems are still a considerable issue in 

wireless communication, especially in indoor 

environments. PSO is a well-known optimization 

algorithm that is used for obtaining good results. In this 

paper, we proposed a method that uses PSO to 

improve the system accuracy in the indoor 

environments. The idea of our proposed method is to 

generate N particles in a circular distribution where the 

particle distances are the same distance from the AP 

to the target. Then, we test each particle if it satisfies 

the other distances (distances from each AP to the 

target) and not only the distance from the selected AP 

to the target. We select the particle which satisfies all 

distances as the target. The proposed method has 

been evaluated in simulation with the deployment of 

five APs in a dimension area of 80 x  50 m2. Four PSO 

variants, namely, SPSO, LDIW-PSO, CFPSO and HPSO-

TVAC are used to observe their effect on minimizing 

the distance error. Based on the obtained results, 

HPSO-TVAC is the best PSO variant that minimizes the 

distance error with average distance error of 0.19 

meters when NPC is 100. Other PSO variants can be 

used to further minimize the distance error since it is not 

optimal yet.  
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