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Abstract 
 

This is a mathematical study about tumor growth from a different perspective, with the aim 

of predicting and/or controlling the disease. The focus is on the effect and interaction of 

tumor cell with immune and drug. This paper presents a mathematical model of immune 

response and a cycle phase specific drug using a system of ordinary differential equations.  

Stability analysis is used to produce stability regions for various values of certain parameters 

during mitosis. The stability region of the graph shows that the curve splits the tumor decay 

and growth regions in the absence of immune response. However, when immune response 

is present, the tumor growth region is decreased. When drugs are considered in the system, 

the stability region remains unchanged as the system with the presence of immune 

response but the population of tumor cells at interphase and metaphase is reduced with 

percentage differences of 1.27 and 1.53 respectively. The combination of immunity and 

drug to fight cancer provides a better method to reduce tumor population compared to 

immunity alone. 

 

Keywords: Tumor growth, immune response, cycle phase specific drug, cell cycle, stability 

region 

 

Abstrak 
 

Kajian ini adalah berkenaan dengan pertumbuhan tumor daripada sudut perspektif yang 

berbeza, bertujuan untuk meramal atau mengawal penyakit tersebut. Fokus perspektif 

tersebut adalah kesan dan interaksi antara sel tumor dengan sistem imunisasi dan ubat. 

Kajian ini menerangkan sistem persamaan terbitan yang melibatkan pertumbuhan tumor 

bersama tindak balas imunisasi dan ubat yang bertindak mengikut fasa spesifik dalam 

kitaran sel. Kaedah analisis kestabilan digunakan untuk menghasilkan kawasan kestabilan 

bagi nilai-nilai parameter tertentu dalam fasa mitosis. Kawasan kestabilan untuk 

ketidakhadiran tindak balas imunisasi menunjukkan kawasan pertumbuhan tumor dan 

kawasan pereputan tumor dipisahkan oleh garis lengkuk. Dengan kehadiran tindak balas 

imunisasi, kawasan pertumbuhan tumor didapati berkurang. Apabila ubat untuk kitaran 

spesifik diambil kira dalam sistem, kawasan kestabilan tidak mengalami sebarang 

perubahan tetapi pertumbuhan sel-sel tumor pada kedua-dua fasa berkurang dengan 

perbezaan peratus masing-masing 1.27 dan 1.53. Ini menunjukkan bahawan gabungan 

antara imunisasi dan ubat adalah cara yang lebih baik untuk mengurangkan populasi sel 

tumor berbanding dengan hanya bergantung pada tindak balas imunisasi sahaja. 

 

Kata kunci: Pertumbuhan tumor, tindak balas imunisasi, ubat untuk kitaran fasa spesifik, 

kitaran sel, kawasan kestabilan 
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1.0  INTRODUCTION 
 

Every year more than 8.2 million people die from 

cancer worldwide [1]. World Health organization [2] 

reports that the majority of death caused by cancer 

occurs in countries that are economically well 

developed. This scenario forces scientists all over the 

world to develop theory and practical strategies to 

address the threat from cancer. On the whole, most 

researchers focused on particular issues since the 

interaction between tumor cells and other type of 

cells are very complex. Immune system plays an 

important role in human body to fight tumor. However 

there are limits for ability of immune system due to 

unpredictable tumor behaviour [3]. In medical 

treatment, chemotherapy offers a powerful 

mechanism among other tools to kill cancer cell, but 

it also kill the normal cells [4, 5, 6].  

The problem of modelling tumor growth is a vast 

study by researchers, with each focussing on different 

aspects on cancer development [7]. This includes the 

importance of the immune systems in fighting tumor 

that has been summarized by Adam and Bellomo [8]. 

Kuznetsov et al. [9] proposed an ordinary differential 

equation model of the cytotoxic T lymphocyte (CTL) 

response with population of tumor cells. They found 

that CTL and tumor cells competed like “predator-

prey” interaction in which CTL in the role of predator 

while tumor cell act as prey. Adam [10] then 

formulated the cell populations of a solid tumor and 

reactive lymphocyte and found that if the immune 

system is stimulated, the survival chance for tumor 

increases. In addition, whether growth rate and death 

rate increase or decrease, this condition will probably 

lead to an uncontrolled tumor growth. De Pillis et al. 

[11] proceeded to develop and analyze a 

mathematical model in order to understand the 

dynamics between tumor and immune system. The 

model concluded out that the combination effect of 

natural killer (NK) and CD8+ T cells could eliminate 

larger tumors compared to the effect of individual 

immune cell. This is due to the depletion of NK cells 

having different impact to CD8+ T cells. 

Chemotherapy is usually the first treatment for 

cancer [4, 5, 6, 12, 13]. Pastorino et al. [14] reported 

that chemotherapy treatments are in the process of 

improvement for better distribution mechanism that 

will reduce the toxicity of anticancer drugs. Besides, 

most of the drug used are cycle phase specific drugs 

such as vincristine and paclitaxel which interfere with 

certain phases in cell cycle [15]. It may prevent the 

cell from continuing the cycle, causing the 

proliferation to be stopped. Immune system then 

target and kill the cancerous cell by their natural 

mechanism. By taking this advantage, it will minimized 

the loss of normal cells. The use of cycle phase specific 

drugs have been included in the model proposed by 

Villasana M. and Radunskaya [16]. However, they did 

not present results of analysis and numerical 

computation had not been shwn in their paper. 

A different approach was adopted by Villasana M. 

and Radunskaya [16]. They presented a system of 

differential equations without considering any delay 

terms. Numerical results were done as a contribution 

to investigate the stability of the presented model. The 

model takes the form of ordinary differential equation 

(ODE) which includes tumor cell population during 

interphase, tumor population during metaphase, 

immune response and cycle phase with specific 

drugs. Three different systems were discussed by 

analysing its stability and numerical examples using 

Fourth Order Runge Kutta Method. 

 

 

2.0  METHODOLOGY 

 
The tumor growth model considered in this paper is a 

system of first order differential equations with nth 

dimensional system. 

 
𝑑𝑥1
𝑑𝑡

= 𝑓1(𝑥1, 𝑥2, … , 𝑥𝑛) 

𝑑𝑥2
𝑑𝑡

= 𝑓2(𝑥1, 𝑥2, … , 𝑥𝑛) 

⋮ 
𝑑𝑥𝑛
𝑑𝑡

= 𝑓𝑛(𝑥1, 𝑥2, … , 𝑥𝑛) 

(1) 

 

where 𝑥1, 𝑥2, … , 𝑥𝑛 are the variables, 𝑓1 , 𝑓2, … , 𝑓𝑛 can be 

linear or nonlinear functions and the right hand side of 

the ODEs may depend only on the independent 

variable 𝑡 [17]. The first step is to find the steady state 

solution of the system 

 

2.1  Steady State Solution 

 

A steady state or equilibrium point, 𝑿̅ = (𝑥̅1, 𝑥̅2, … , 𝑥̅𝑛) is 
a situation in which the system does not appear to 

undergo any change [18]. To find the steady state of 

a system, set the derivatives equal to zero: 

 
𝑑𝑥1
𝑑𝑡

= 0 

𝑑𝑥2
𝑑𝑡

= 0 

⋮ 
𝑑𝑥𝑛
𝑑𝑡

= 0 

(2) 

 

There may exist one or several steady state points. 

 

2.2  Stability of Steady State 

 

The stability of steady state can be investigated by 

using Routh-Hurwitz condition/criteria [18, 19, 20].  

System (1) is linearized using Jacobian Matrix 

 

𝑱(𝑥̅1, 𝑥̅2, … , 𝑥̅𝑛) =

(

 
 

𝜕𝑓1
𝜕𝑥1

⋯
𝜕𝑓1
𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑛
𝜕𝑥1

⋯
𝜕𝑓𝑛
𝜕𝑥𝑛)

 
 

 (3) 

 

The next step is to find the eigenvalues, 𝜆 satisfying 
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det(𝑱 − 𝜆𝑰) = 𝟎 (4) 

 

This will yield a characteristic equation of the form 

 
𝜆𝑛 + 𝑝1𝜆

𝑛−1 + 𝑝2𝜆
𝑛−2 +⋯+ 𝑝𝑛 = 0 (5) 

 

where 𝑝𝑖′𝑠 will be functions of the elements of the 𝑛 ×
𝑛 matrix.  

 

 

The Hurwitz matrix is defined as follows: 

 
𝑯𝟏 = (𝑝1), 

𝑯𝟐 = (
𝑝1 1
𝑝3 𝑝2

), 

𝑯𝟑 = (
𝑝1 1 0
𝑝3 𝑝2 𝑝1
𝑝5 𝑝4 𝑝3

),… 

𝑯𝒋 =

(

 
 

𝑝1
𝑝3
𝑝5

1
𝑝2
𝑝4

  0    0
  𝑝1   … 0

  𝑝3  0

…    ⋱  
𝑝2𝑗−1 𝑝2𝑗−2 𝑝2𝑗−3 … 𝑝𝑗)

 
 

,… 

𝑯𝒏 =

(

 
 

𝑝1
𝑝3
𝑝5

1
𝑝2
𝑝4

  0    0
  𝑝1   … 0

  𝑝3  0

…    ⋱  
0 0     0     … 𝑝𝑛)

 
 

 

 

where the (𝑙,𝑚) element in the matrix 𝐻𝑗 is 

 

           𝑝2𝑙−𝑚            for 0 < 2𝑙 −𝑚 < 𝑘 

              1                for 2𝑙 = 𝑚 

              2                for 2𝑙 < 𝑚 or 2𝑙 > 𝑘 + 𝑚 

 

 

 

 

 

 

 

 

(6) 

 

Hence, all eigenvalues have negative real parts 

(steady state stable) if and only if the determinants of 

the Hurwitz matrix are positive: 

 

det(𝑯𝒋) > 0, (𝑗 = 1,2,… , 𝑘) (7) 

 

2.3  Numerical Method 

 

Runge Kutta (RK4) method is applied to present 

several graphical results using MATLAB software. Tay et 

al. [21] considered an initial value problem of the first 

order differential equation given below: 

 
𝑑𝑥

𝑑𝑡
= 𝐹(𝑡, 𝑥, 𝑦) 

𝑑𝑦

𝑑𝑡
= 𝐺(𝑡, 𝑥, 𝑦) 

(8) 

 

with 𝑥(𝑡0) = 𝑥0, 𝑦(𝑡0) = 𝑦0 and 𝑡0 ≤ 𝑡 ≤ 𝑡𝑛. This problem 

is a system of ODEs, which consists of a single pair of 

ordinary differential equations. The solution domain is 

discretized such that 𝑡0, 𝑡1 = 𝑡0 + ℎ, 𝑡𝑛 = 𝑡0 + 𝑛ℎ, where 

ℎ is the step size of 𝑡. The solution that is obtained by 

the RK4 method is given as 

 

𝑥𝑖+1 = 𝑥𝑖 +
1

6
(𝑓1 + 2𝑓2 + 2𝑓3 + 𝑓4), 

𝑦𝑖+1 = 𝑦𝑖 +
1

6
(𝑔1 + 2𝑔2 + 2𝑔3 + 𝑔4), 

(9) 

 

where  

 
𝑓1 = ℎ𝑓(𝑡𝑖 , 𝑥𝑖, 𝑦𝑖) 

𝑓2 = ℎ𝑓 (𝑡𝑖 +
ℎ

2
, 𝑥𝑖 +

𝑓1
2
, 𝑦𝑖 +

𝑔1
2
) 

𝑓3 = ℎ𝑓 (𝑡𝑖 +
ℎ

2
, 𝑥𝑖 +

𝑓2
2
, 𝑦𝑖 +

𝑔2
2
) 

𝑓4 = ℎ𝑓(𝑡𝑖 + ℎ, 𝑥𝑖 + 𝑓3, 𝑦𝑖 + 𝑔3) 
𝑔1 = ℎ𝑔(𝑡𝑖 , 𝑥𝑖 , 𝑦𝑖) 

𝑔2 = ℎ𝑔 (𝑡𝑖 +
ℎ

2
, 𝑥𝑖 +

𝑓1
2
, 𝑦𝑖 +

𝑔1
2
) 

𝑔3 = ℎ𝑔 (𝑡𝑖 +
ℎ

2
, 𝑥𝑖 +

𝑓2
2
, 𝑦𝑖 +

𝑔2
2
) 

𝑔4 = ℎ𝑔(𝑡𝑖 + ℎ, 𝑥𝑖 + 𝑓3, 𝑦𝑖 + 𝑔3) 

 

 

 

3.0  RESULTS AND DISCUSSION 

 

The system considers three population which are 

population of tumor cells during interphase (G1 + S + 

G2) denoted by 𝑇𝐼 , population of tumor cells during 

mitosis denoted by 𝑇𝑀 and population of immune 

response denoted by 𝐼. In this research, Cytotoxic T 

Lymphocytes (CTL) is assume to be main 

representative of the immune system in fight cancer. 

A certain amount of cycle phase specific drug is 

included to analyze the effect on the system. The 

model takes form 

 

     
𝑑𝑇𝐼
𝑑𝑡
= 2𝑎4𝑇𝑀 − (𝑐1𝐼 + 𝑑2)𝑇𝐼 − 𝑎1𝑇𝐼 

(10) 

    
𝑑𝑇𝑀
𝑑𝑡

= 𝑎1𝑇𝐼 − 𝑑3𝑇𝑀 − 𝑎4𝑇𝑀 − 𝑐3𝑇𝑀𝐼

− 𝑘1(−𝑒
−𝑘2𝑢)𝑇𝑀 

𝑑𝐼

𝑑𝑡
= 𝑘 +

𝜌𝐼(𝑇𝐼 + 𝑇𝑀)
𝑛

𝛼 + (𝑇𝐼 + 𝑇𝑀)
𝑛 − 𝑐2𝐼𝑇𝐼 − 𝑐4𝑇𝑀𝐼 − 𝑑1𝐼

− 𝑘3(1 − 𝑒
−𝑘4𝑢)𝐼 

    
𝑑𝑢

𝑑𝑡
= −𝛾𝑢 

 

where parameter 𝑎1 and 𝑎4 represent the rates of cell 

cyle and rates of cell reproduction respectively.  

Besides, the proportion for cell deaths are represent by 

the term 𝑑2𝑇𝐼, 𝑑3𝑇𝑀 and 𝑑1𝐼. Note that the term 2𝑎4𝑇𝑀 

present in the equation because in fact, one parent 

cell will split into two new daughter cells during mitosis. 

The parameter 𝑐𝑖 then represent the losses of immune 

cell or tumor cell during the event of an encounter for 

both cell. Due to the presence of tumor, the growth 

for immune population is assumed to be nonlinear 

which indicated by the term 
𝜌𝐼(𝑇𝐼+𝑇𝑀)

𝑛

𝛼+(𝑇𝐼+𝑇𝑀)
𝑛. Another 

parameter which are 𝜌, 𝛼, and 𝑛 in the equations are 

influence by the type of tumor itself together with the 

healthiness of patient’s immune system. 

The impact of drug towards tumor population in 

mitosis and immune are modeled by the killing terms 
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𝑘1(1 − 𝑒
−𝑘2𝑢)𝑇𝑀 and 𝑘3(1 − 𝑒

−𝑘4𝑢)𝐼 respectively. Since 

the drug is decay over time, it assumed to be 

exponential while parameter 𝛾 acts as both 

elimination and absorption effects. This paper 

highlights only an application of single drug dose 

treatment, otherwise it is beyond the scope of this 

paper. 

It is important to know that the parameter values 

are vary for any model presented since patients have 

different types of tumor. Thus, it is allowed to vary the 

parameter values in order to understand better of 

tumor problem. This research will used the non 

dimensionalized parameter that have been set by 

Villasana and Ochoa [21]. 

 

𝑎1 = 0.98; 𝑎4 = 0.8; 𝑑1 = 0.29; 𝑑2 = 0.11; 𝑑3 = 0.4 

𝑐1 = 𝑐3 = 0.9;  𝑐2 = 𝑐4 = 0.085;  𝑘 = 0.029 
𝑘1 = 0.47;  𝑘2 = 0.57;  𝑘3 = 0.49; 𝑘4 = 0.061 

𝛼 = 0.2;  𝜌 = 0.1;  𝑛 = 3;  𝛾 = 0.85 

 

The analysis is divide into three cases which are 

tumor system without immune response, tumor system 

with the presence of immune response and tumor 

system with single drug. The behavior of these system 

are depended on fixed point and its stability. 

Numerical examples for certain chosen parameters in 

stability region are then computed using Fourth Order 

Runge Kutta Method. 

 

3.1  Tumor System without Immune Response 

 

Consider a system of ordinary differential equations: 

 
𝑑𝑇𝐼
𝑑𝑡
= 2𝑎4𝑇𝑀 − (𝑑2 + 𝑎1)𝑇𝐼 

𝑑𝑇𝑀
𝑑𝑡

= 𝑎1𝑇𝐼 − 𝑑3𝑇𝑀 − 𝑎4𝑇𝑀 

  (11) 

 

The auxiliary equation at tumor free point (𝑇𝐼 , 𝑇𝑀) =
(0,0) is 
 
𝜆2 + (𝑎1 + 𝑑 + 𝑑2)𝜆 + 𝑑(𝑎1 + 𝑑2) − 2𝑎1𝑎4 = 0 (12) 

                                                        𝜆2 + 𝑝1𝜆 + 𝑝2 = 0 (13) 

 

where 

 
∴  𝑝1 = 𝑎1 + 𝑑 + 𝑑2 (14) 

                     𝑝2 =  𝑑(𝑎1 + 𝑑2) − 2𝑎1𝑎4 (15) 

 

The value of 𝑝1 from Eq. (14) is always positive [15, 16, 

22]. The value of 𝑝2 can be negative or positive. 

According to the Routh-Hurwitz stability criteria, the 

tumor free point will be stable if 𝑝1 > 0 and  𝑝2 > 0. 

Thus, the necessary condition for the tumor growth is 

given by Eq. (16). 

 

𝑑 <
2𝑎1𝑎4
𝑎1 + 𝑑2

 (16) 

 

 
 

Figure 1 Stability region for the case without immune 

response when 𝑎4 = 0.8 and 𝑑2 = 0.11 

 

 
 

Figure 2 Numerical example for stable fixed point (0,0) when 

𝑎1 = 1 and 𝑑 = 1.9 with initial condition 𝑇𝐼(0) = 1.3 and 𝑇𝑀(0) =
1.2 

 

 
 

Figure 3 Numerical example for unstable fixed point 
(0,0) when 𝑎1 = 1 and 𝑑 = 0.8 with initial condition 𝑇𝐼(0) = 1.3 

and 𝑇𝑀(0) = 1.2 

 

 

II 

I 
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From Figure 1, the region for tumor growth where (0,0) 
unstable is given by I and the region for tumor decay 

where (0,0) stable is given by the complement II. The 

values were chosen from different regions to observe 

the solution of the system as presented in Figure 2 and 

Figure 3. 
 

3.2 Tumor System with the presence of Immune 

Response 

 

In this case, the effect of immune response is added 

to the model. The system of equations now becomes 

 

     
𝑑𝑇𝐼
𝑑𝑡
= 2𝑎4𝑇𝑀 − (𝑐1𝐼 + 𝑑2)𝑇𝐼 − 𝑎1𝑇𝐼 

(17)    
𝑑𝑇𝑀
𝑑𝑡

= 𝑎1𝑇𝐼 − 𝑑3𝑇𝑀 − 𝑎4𝑇𝑀 − 𝑐3𝑇𝑀𝐼 

      
𝑑𝐼

𝑑𝑡
= 𝑘 +

𝜌𝐼(𝑇𝐼 + 𝑇𝑀)
𝑛

𝛼 + (𝑇𝐼 + 𝑇𝑀)
𝑛 − 𝑐2𝐼𝑇𝐼 − 𝑐4𝑇𝑀𝐼 − 𝑑1𝐼 

 

One of the tumor free point is (𝑇𝐼 , 𝑇𝑀, 𝐼) = (0,0,
𝑘

𝑑1
) with 

zero tumor population. This is our starting point since it 

represents a tumor free condition. The factorization 

form of the auxiliary equation at this steady state yields 

Eq. (18). 

 

(−𝑑1 − 𝜆)[(−𝑐1𝑑1̅̅ ̅ − 𝑑2 − 𝑎1 − 𝜆)(−𝑑 − 𝑐3𝑑1̅̅ ̅

− 𝜆) − 2𝑎1𝑎4] = 0 
(18) 

 

where 𝑑1̅̅ ̅ =
𝑘

𝑑1
. Clearly, one of the eigenvalue is 𝜆 =

−𝑑1. The remaining eigenvalues are given as the 

solution to the auxiliary equation 

 

𝜆2 + [𝑎1 + 𝑑2 + (𝑐1 + 𝑐3)𝑑1̅̅ ̅ + 𝑑]𝜆

+ (𝑎1 + 𝑑2 + 𝑐1𝑑1̅̅ ̅)(𝑑

+ 𝑐3𝑑1̅̅ ̅) − 2𝑎1𝑎4 = 0 

(19) 

𝜆2 + 𝑝1
∗𝜆 + 𝑝2

∗ = 0 (20) 

 

where 

 

      ∴  𝑝1
∗ = 𝑎1 + 𝑑2 + (𝑐1 + 𝑐3)𝑑1̅̅ ̅ + 𝑑 (21) 

          𝑝2
∗ = (𝑎1 + 𝑑2 + 𝑐1𝑑1̅̅ ̅)(𝑑 + 𝑐3𝑑1̅̅ ̅) − 2𝑎1𝑎4 (22) 

 

The value of 𝑝1
∗ is always positive [15, 16, 22]. The value 

of 𝑝2
∗ can be negative or positive. According to the 

Routh-Hurwitz stability criteria the fixed point (0,0,
𝑘

𝑑1
) 

will stable if 𝑝1
∗ > 0 and 𝑝2

∗ > 0. Thus, the necessary 

condition for the tumor growth is given by Eq. (23). 

 

      𝑑 <
−(𝑐1 + 𝑐3)𝑑1̅̅ ̅ + 2𝑎1𝑎4

𝑑2 + 𝑎1
 (23) 

 

 

 
 

Figure 4 Stability region for the case with the presence of 

immune response when 𝑎4 = 0.8, 𝑐1 = 𝑐3 = 0.9, 𝑑2 = 0.11 and 

𝑑1̅̅ ̅ = 0.1241 

 

 
 

Figure 5 Stability region for both cases 

 

 
 

Figure 6 Numerical example for stable fixed point (0,0,
𝑘

𝑑1
) 

when 𝑎1 = 1 and 𝑑 = 1.3 with initial condition 𝑇𝐼 = 1.3, 𝑇𝑀 = 1.2 

and 𝐼 = 0.9 
 

IV 

III 
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Figure 7 Numerical example for unstable fixed point (0,0,
𝑘

𝑑1
) 

when 𝑎1 = 1 and 𝑑 = 1.15 with initial condition 𝑇𝐼 = 1.3, 𝑇𝑀 =
1.2 and 𝐼 = 0.9 

 

 

From Figure 4, the region for tumor growth, where 

(0,0,
𝑘

𝑑1
) is unstable is given by III and the region for 

tumor decay where (0,0,
𝑘

𝑑1
) is stable is given by the 

complement IV. It can be seen in Figure 5 that the 

region of tumor growth without immune response for 

system (11) is larger than the region of tumor growth 

with the presence of immune response for system (17). 

Thus, system (17) is more stable compared to system 

(11). Various values were chosen from different regions 

to observe the solution of the system as presented in 

Figure 6 and Figure 7. 

 

3.3 Tumor System with Single Drug 

 

Now, consider the effect of single drug to the system 

 

     
𝑑𝑇𝐼
𝑑𝑡
= 2𝑎4𝑇𝑀 − (𝑐1𝐼 + 𝑑2)𝑇𝐼 − 𝑎1𝑇𝐼 

(24) 

   
𝑑𝑇𝑀
𝑑𝑡

= 𝑎1𝑇𝐼 − 𝑑3𝑇𝑀 − 𝑎4𝑇𝑀 − 𝑐3𝑇𝑀𝐼

− 𝑘1(1 − 𝑒
−𝑘2𝑢)𝑇𝑀 

      
𝑑𝐼

𝑑𝑡
= 𝑘 +

𝜌𝐼(𝑇𝐼 + 𝑇𝑀)
𝑛

𝛼 + (𝑇𝐼 + 𝑇𝑀)
𝑛 − 𝑐2𝐼𝑇𝐼 − 𝑐4𝑇𝑀𝐼 − 𝑑1𝐼

− 𝑘3(1 − 𝑒
−𝑘4𝑢)𝐼 

      
𝑑𝑢

𝑑𝑡
= −𝛾𝑢 

 

One of the tumor free point for this system is 

(𝑇𝐼 , 𝑇𝑀, 𝐼, 𝑢) = (0,0,
𝑘

𝑑1
, 0) with zero tumor and drug level. 

This represents a tumor and drug free condition and 

serves as the base for reference. The factorization form 

of the auxiliary equation at this steady state yields Eq. 

(24) 

 
(−𝛾 − 𝜆)(−𝑑1 − 𝜆)[(−𝑐1𝑑1̅̅ ̅ − 𝑑2 − 𝑎1 − 𝜆)(−𝑑

− 𝑐3𝑑1̅̅ ̅ − 𝜆) − 2𝑎1𝑎4] = 0 
(25) 

 

where 𝑑1̅̅ ̅ =
𝑘

𝑑1
. Clearly, two of the eigenvalues are 𝜆 =

−𝛾 and 𝜆 = −𝑑1. The other eigenvalues are given as 

the solutions to the auxiliary equation 

 

𝜆2 + [𝑎1 + 𝑑2 + (𝑐1 + 𝑐3)𝑑1̅̅ ̅ + 𝑑]𝜆

+ (𝑎1 + 𝑑2 + 𝑐1𝑑1̅̅ ̅)(𝑑

+ 𝑐3𝑑1̅̅ ̅) − 2𝑎1𝑎4 = 0 

(26) 

                                               𝜆2 + 𝑝1
∗∗𝜆 + 𝑝2

∗∗ = 0 (27) 

 

where 

 

 

    ∴  𝑝1
∗∗ = 𝑎1 + 𝑑2 + (𝑐1 + 𝑐3)𝑑1̅̅ ̅ + 𝑑 (28) 

         𝑝2
∗∗ = (𝑎1 + 𝑑2 + 𝑐1𝑑1̅̅ ̅)(𝑑 + 𝑐3𝑑1̅̅ ̅) − 2𝑎1𝑎4 (29) 

 

The value of 𝑝1
∗∗ is always positive [15, 16, 22]. The value 

of 𝑝2
∗∗ can be negative or positive. According to the 

Routh-Hurwitz stability criteria the fixed point (0,0,
𝑘

𝑑1
, 0) 

will be stable if 𝑝1
∗∗ > 0 and 𝑝2

∗∗ > 0. Thus the necessary 

condition for the tumor growth is given by Eq. (30) 

 

                        𝑑 <
−(𝑐1 + 𝑐3)𝑑1̅̅ ̅ + 2𝑎1𝑎4

𝑑2 + 𝑎1
 (30) 

 

Notice that Eq. (30) is the same as Eq. (23). Hence, it 

has the same stability region as the previous system. It 

can be concluded that this system has the same 

stability characteristics as the tumor system without 

the application of drug. 

To observe the effect of the drug towards the 

tumor population, numerical calculations were 

carried out, with results plotted using three different 

amounts of drug or initial value, 𝑢0 which are 𝑢0 =
0.05, 𝑢0 = 0.1, and  𝑢0 = 0.15. These values are chosen 

from the range 0 ≤ 𝑢0 ≤ 0.15 founded in [23]. 

 

 
 

Figure 8 Numerical example for tumor system with the 
presence of immune response and drug when 𝑎1 = 1 and 𝑑 =
1.15 with initial condition 𝑇𝐼 = 1.3, 𝑇𝑀 = 1.2, 𝐼 = 0.9 and 𝑢 = 0.05 
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Figure 9 Numerical example for tumor system with the 

presence of immune response and drug when 𝑎1 = 1 and 𝑑 =
1.15 with initial condition 𝑇𝐼 = 1.3, 𝑇𝑀 = 1.2, 𝐼 = 0.9 and 𝑢 = 0.1 

 

 
 

Figure 10 Numerical example for tumor system with the 

presence of immune response and drug when 𝑎1 = 1 and 𝑑 =
1.15 with initial condition 𝑇𝐼 = 1.3, 𝑇𝑀 = 1.2, 𝐼 = 0.9 and 𝑢 = 0.15 

 

 

In Figure 8, the graph of the solution shows that the 

tumor population is growing when the amount of drug 

is 𝑢0 = 0.05. Next, the initial amount of drug is increased 

to 𝑢0 = 0.1, and the graph of the solution is shown in 

Figure 9. 

From Figure 9, the tumor population is still growing 

even when the amount of drug have been increased. 

According to [23], the upper limit of reasonable drug 

is 0.15. By taking this highest amount of drug as a final 

selection, the graph of solution is then produced in 

Figure 10 to see whether the population of tumor grow 

or decay as time progresses. 

It is obvious that the population of tumor still does 

not display any change with time. It can be 

concluded that the system maintains stability even 

though the maximum amount of drug have been 

delivered. However, the numerical values explain the 

differences between these figures.  

These value were presented in the Table 1 while 

another comparison of numerical values between 

tumor system with immune response and drug system 

with 𝑢0 = 0.15 have been tabulated in Table 2. 
 

Table 1 Comparison of numerical values for tumor on each       

phase with respect to different amount of drug 

 

t 
𝒖𝟎 = 𝟎.𝟎𝟓 𝒖𝟎 = 𝟎. 𝟏 𝒖𝟎 = 𝟎. 𝟏𝟓 

𝑻𝑰 𝑻𝑴 𝑻𝑰 𝑻𝑴 𝑻𝑰 𝑻𝑴 

10 0.2185 0.1700 0.2173 0.1691 0.2162 0.1683 

20 0.2562 0.1994 0.2550 0.1984 0.2539 0.1976 

30 0.3282 0.2554 0.3269 0.2543 0.3255 0.2533 

40 0.4131 0.3214 0.4115 0.3202 0.4100 0.3190 

50 0.5147 0.4005 0.5127 0.3990 0.5108 0.3975 

60 0.6511 0.5067 0.6483 0.5045 0.6456 0.5024 
 

Table 2 Comparison of numerical values for tumor on each 

phase for tumor system in the presence of immune response 

and tumor system with the presence of immune response 

and drug 

 

t 

without drug, 

immune is present 

with drug 𝒖𝟎 = 𝟎. 𝟏𝟓, 

immune is present 

𝑻𝑰 𝑻𝑴 𝑻𝑰 𝑻𝑴 

10 0.2197 0.1710 0.2162 0.1683 

20 0.2574 0.2003 0.2539 0.1976 

30 0.3296 0.2565 0.3255 0.2533 

40 0.4147 0.3277 0.4100 0.3190 

50 0.5168 0.4021 0.5108 0.3975 

60 0.6541 0.5090 0.6456 0.5024 

 

 

From Table 2 above, the population of tumor cells 

at interphase and metaphase decrease at 1.27% and 

1.53% respectively. This shows that the system with 

implementation of drug provide a better way for 

treatment in patients.  

 

 

4.0  CONCLUSION 

 

This research considers three cases which are tumor 

system without immune response, tumor system with 

the presence of immune response and tumor system 

with single drug. Same procedure of stability analysis 

were done on each cases. For tumor system without 

immune response, the only steady state obtained is at 

origin. In this steady state, two regions of stability can 

be produced by fixing all parameters except for 

parameter 𝑎1 and 𝑑. The regions are tumor growth 

region and tumor decay region, denoted by I and II 

respectively. By choosing a specific pair specific pair 

of value for parameter a1 and d in each region, the 

system is solved numerically using Fourth Order Runge 

Kutta Method. The result shows the population of 

tumor at interphase and metaphase increases when 

the values of parameter 𝑎1 and 𝑑 are fixed at the 

tumor growth region I. While the population of tumor 

decreases when the value of parameter a1 and d are 

fixed at the tumor decay region II. This implies that 

different values of parameter 𝑎1 and 𝑑 affect the 
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stability of the system. It is important to maintain the 

value of 𝑎1 and 𝑑 so the system will maintain at tumor 

decay region.  

Previous models were not realistic since the system 

did not include immune response. By adding the 

immune response, the model now involves the 

competition of three populations. This system has 

more than one steady states. However, this study only 

analyse the steady state in which tumor populations 

on both phases are zero. The stability region 𝑎1 and 𝑑 

again is produced and then compared to the 

previous systems. From the stability region, the curve 

built in this system shows reduction in the tumor growth 

region compared to the previous system. It shows that 

this system is more stable since immune system 

naturally fights infections, including tumor. With the 

presence of immune system, numerical examples 

show that the population of tumor is decreased 

compared to the previous system. It can also be seen 

that the immune population maintain at a constant 

rate as time progresses. However, drug is needed to 

fight tumor since tumor growth persists even with the 

presence of immune response. 

The drug effect is added into the tumor system with 

immune response. There exists another steady states 

but this research only looks at the steady state with 

zero tumor population and drug with positive immune 

level. From the stability analysis, the steady states have 

the same stability characteristics as tumor system with 

immune response. This means that if a certain amount 

of drug is given to the patient, this system will exhibit 

the same behaviour as the previous system. However, 

the population of tumor is decreased by 1.27% at 

interphase and 1.53% at metaphase. This implies that 

combination of immune and drug provide a better 

way to kill tumor cells. 

Several recommendations are presented as 

guides for future study. These include the effect of 

delay in the cell cycle may improve our findings. It 

seems more realistic since the tumor are trapped for a 

certain time in the mitosis for immune cells to kill it after 

being affected by drug. Besides, including quiescent 

phase could help us to understand either this phase 

will contribute or delay the progression of the 

population of tumor. A more detailed modelling 

involving immune systems also may provide many 

ideas. One such possibility is to include more types of 

immune cells to the model for analysis. 
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