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Gcoidal heights can be computed for a ingle point value or a grid of value . A program to compute geoidal 
heights from a et of high degree potential coefficients wa developed. Backward recurrance formulas have been 
used to evaluate the value of normalized Legendre fun tions. The regional and global geopotential geoid evaluated 
from the available sets of potential coefficients were hown in the form of contoured maps. The computed geoidal 
heights denved from different ets of potential coefficients were compared with Doppler derived values at six 
points in Peninsular Malaysia. The results indicate that of the model tested OSU86 gives the best solution to 
the geopotenttal geoid m the region . 

Introduction 

The geoid has been loosely defined as the equipotential surface of the earth's gravity field which would coincide 
with the mean sea level if the latter were undi turbed and affected only by the earth's gravity field. It is an important 
urface to which many geodetic observations are related. While the geodetic coordinates of the point are referred 

to the ellipsoid, orthometric heights are referred to the geoid. The relationship between the terrain, geoid, and 
ellipsoid is hown in Figure \. The geoid is of increasing importance in modem development of geodesy, as it 
need to be known in order to convert ellipsoidal heights to orthometric heights. 
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Figure l: Topographic surface, geoid and ellipsoid 

If the terrain point P i to have all three defining parameter referred to the ellipsoid, a knowledge of the geoid a! 
height i required. 

Geoidal heights may be computed if a global estimate of the gravity anomaly field is used in the Stokes' equation. 
However, if we are given a set of potential coefficients describing the gravitational potential of the earth, the 
geoidal heights may al o be computed. These coefficients are determined from a combination of a satellite orbit 
perturbation , atellite altimeter data, and mean terrestrial gravity data. Once determined, they are valid everywhere 
on the earth's surface, i.e. thay can be used to compute geoidal height for any given latitude and longitude. 
Examples of such coefficients are the GEM I OB model (Lerch et al [ 1981 ]), the OSU81 and OSU86 models (Rapp 
[1981] and Rapp et al [1986]) and the GPM2 model (Wanzel [1985]). 

Approach used to compute geoidal heights 

The earth' s disturbing potential (T) is given by a et of fully normalized potential coefficients; 

T( e, /.., r) = GM I r i [a/ r l" i [c co m /.. + S sinm A. J P (cos 8) 
n 2 m = O nm nm nm 

... ( l) 

where 
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where 

GM 
r, e, A 

cnm ' snm 

p 
nm 

a 

geocentric gravitational constant 
geocentric coordinates 

fully normalized potential coefficients 

fully normalized Legendre function of degree n and order m 

equatorial radius of a reference ellipsoid. 

The above equation can be used to calculate the geoidal height (8, A, r) by using the Brun' formulla N=T/ 
y, where y is the normal value of gravity at the given point:, 

N(aA,r)=GM/ry i [a/r]" i [c cosm A+S sinm A]P (cos8) 
n = 2 m =O nm nm nm 

... (2) 

The lower even degree zonal coefficients i.e. C
2 

C4 and C 6 have to be corrected to remove the effect of 
the normal gravity field. The correction can be computed using the eries expansion of the normal gravity fiels 
(Heiskanen and Morits [ 1967]; 

where 

e 

I 

2 0 2 -1 -1[ - 2] 6C 20 = (4n+l) (-1) 3e"(2n+1) (2n+3) l-n+(5nC
2

/e) 

fully normalized correction term 

first eccentricity 

Method to compute the Legendre functions 

... (3) 

The normalized Legendre functions are required for the geoidal height computation. The e normalized values 
may be computed by using either a direct or recur ive method. The following backward recurrance formula 
derived from a combination of the two methods will be used to compute the normalized Legendrs functions ; 

P (t)=J2(2n+l) 2n(4nf
1 

2n-1(4n-4f
1 

••• n+l(4) - 1 sin"9 
nm 

p 
nn -I 

(t) = ~ p 
nm 

(t) cot e 

p (t) 
nm 

2( m + 1) cot e Jcn - m) -I (n + m + 1 f 
1 

P (t) 
nm+ I 

-.J(n-m -1) (n +m +2)(n -mf
1 

(n +m + 1)-
1 P (t) 

nm+2 
... (4) 

where 

t 

e 
cos e 
colatitude of computation point 

Description of the Program 

The program is written to be interactive and prompts the user throughout. The program offers the following 
options; 

A. Choice of case 

Geoidal heights can be computed for two differents cases. These include a single point value or a grid of 
values. The data required is depending upon the case selected by the user. 
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B. Maximum degree (N max) required 

Although equation (2) indicates a sum to infimty, in practice the urn is to a finite degree uch as 36,180,360, 
etc. The user may pecify any value for N max, up to a maximum of 360, for the computation of geoidal 
height. 

C. Normal gravity field 

The parameters defining the geocentric reference system used in this program (a. f, C2 and GM) could 
be changed if desired. By changing f or C

2 
the coefficients of the normal gravity field (equation (3) ) are 

altered. 

Discussion on the method of computation 

In order to check the tability of computing the normalized Legendre functions using equations (4), the related 
subroutine was tested for different latitudes and varying degree and order. The normalized values obtained from 
different values of N max were compared. For each case the normalized Legendre functions agreed. This shows 
the tability of the method being used to compute thhe e values. 

Next, the subroutine was timed for the calculation of the normalized values for varying degree and order. The 
following graph in Figure 2 shows the C.P.U. times required to compute the normalized values for different N 
max. 
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Figure 2: C.P.U. time for the 
normalized Legendre functions 
calculation. 
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Figure 3: C.P.U. time for a geoidal 
height calculation 

The main program was also timed for a single geoidal height calculation and the second graph in Figure 3 hows 
the results for varying degree and order. These times include the computation of the normalized Legendre 
functions. 

The accuracy of th ecomputed geoidal heights is mainly dependent upon two fctors. First, the accuracy of the 
potential coefficients being used and second, the degree and order at which the infinite series in equation (2) is 
truncated. 

Discussion of the results 

Geoidal heights at six Doppler points in Peninsular Malaysia were computed from the different sets of potential 
coefficients. The results were then compared with the geoidal heights derived from satellite Doppler derived 
po itions. Prior to this, the Doppler derived cartesian coordinates which are given in WGS72 have been transfonned 
to GRS80 using the parameters given by Cross. [1987]. 
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Table 1: Comparison of Doppler derived geoidal heights in Peninsular Malaysia with values from different sets of potential 
coefficients 

Doppler points 
Geoidal heights (m) 

I 2 3 4 l-2 1-3 l-4 

Lat Long Dopp Gem lOB 0 U8l OSU86 

36 180 360 

3.4638 102.6217 0.80 3.31 -0. 12 0.25 -2.5 1 0.92 0.41 

3.0247 101.1156 -3.22 -3.31 -3.17 -2.25 -3.53 -0.05 -0.98 

6.0387 102.3205 -6.12 -3.09 -6.19 -5.39 -3.03 0.07 -0.73 

L3765 103.6080 6.50 8.21 7.99 6.46 -7.7 1 -1.49 0.04 

6.1397 100.3849 -12.28 -8.70 -12.82 -11.26 -3.58 0.54 -1.02 

1.4689 103.2564 4.57 7.13 6.22 5.00 -2.56 -1.65 -0.43 

RMS 0.65 0.96 0.53 

The results shown in Table I indicate that the best solution considering the root mean square of the difference 
is given by OSU86 with expansion complete to degree and order 360 (rm =0.53). 

The program was also used to evaluate the geopotential geoid in the Malaysian region (0° < <1> < 8° , 96° < 
"A< 120°) using the OSU86 potential coefficients et which is complete to degree and order 360. A map showing 
the geoid above the GRS80 ellipsoid which has been constructed from point of 0.5° x 0.5° grid intersection i 
shown in Figure 4. We can see that the Malaysian region has a teep geoid in the eastwest direction. 

Finally the program was u ed to compute the global geopotential geoid from the GEM lOB lower degree field 
which is complete to degree and order 36. A contour of the geoid above the reference ellipsoid used in GEMIOB 
(a=6378138 m, f= 1/298.257) is shown in Figure 5 together with its block diagram. The contoured map was then 
compared with the one prepared by Lerch et al [ 1981) and showing a good agreement. 

Conclusions 

This paper has discus ed a computer program that can be used for the calculation of geoidal heights from a 
set of potential coefficients. Several computations were carried out to determine the geoidal heights u ing three 
et of potential coefficients with the expansion up to degree and order 360. The compari on with the Doppler 

derived geoidal heights indicates that OSU86 gives the best solution to the geopotential geoid in Penin ular 

Malaysia. 
The geoid determined here can only repre ents the long wavelengths feature of the geoid in the region. Since 

the current holding of gravity data is lacking, the remaining features of the local geoid in the Peninsular of Malay ia 
cannot be evaluated. In future, the long w!lvelength geoidal heights information could be combined with the 
remaining feature evaluated gravimetrically to determine a local gravimetric geoid in the region. 
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Figure 4: Malaysian Geopotential Geoid computed from the OSU86 Model 
(C.J. = 1 metre, Ref. Ellip oid = GRS80) 

Figure 5: Global G potential Geoid computed from the GEM lOB Model 
(C.I. = 5M, Ref. Ellipsoid a ·= 6378138m and£= 1/298.257) 
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