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Thwaites' method can be applied to find the boundary layer characteristics for either similar or nonsimilar 
flow for a variety of boundaries ranging from a simple flat plate (Blasius's Solution111) to a symmetrical airfoil. 
The flow properties to be determined include potential flow velocity distribution , displacement thickness, momentum 
thickness and coefficient of friction. Furthermore, the location of flow separation is readily obtainable from the 
numeric value of local coefficient of friction . 

Thwaites' Method is able to provide satisfactory approximate solution to different types of simple boundary 
as long as the flow is laminar and not separated. For a complex curvature such a an airfoil Thwaite' Method 
is yet to be tested. In this context, we will look into the applicability of Thwaites' Method for a particular 
symmetrical airfoil, NACA 0012 . 

Nomenclature 

Symbols Definitions 

c 
c, 
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H 

L 
p 

RL 
Re 

u. 
U* 

u_ 
v 
1 

m 

r 

u 
u* 

v 

X 

y 

a constant 

coefficient of friction 

a subsidiary parameter for velocity distribution 

shape factor 

characteristic length of body 

fluid pressure 

Reynold's Number 

Reynold's Number 

flow velocity outside the boundary layer 

dimensionless flow velocity outside the boundary layer 

velocity of free stream 

velocity of free stream 

flow parameter defined by Eq. (AI.14) 

wedge angle parameter 

radius of circular cylinder 

x-component velocity 

dimensionless x-component velocity 

local velocity on the surface of the wing section 

horizontal or boundary coordinate system 

vertical or normal coordinate system 

angle of attack 

wedge angle parameter (1t~ = wedge angle) 

displacement thickness 

distance of the centre of circle to the centre of coordinates 

angular shift of stagnation point of a circle due to circulation 

angular coordinate, positive counterclockwise 

momentum thickness 

flow parameter defined by Eq. (A 1.13) or Eq. (A 1.15) 

boundary shear stress 
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u kinematic viscosity 

angle measured from the stagnation point 

magnitud of the imaginary part of the complex variable w 

average value of 'JI defined by Eq. (A2.21) 

Introduction 

Toward the end of the 19th century, the cience of fluid mechanics began to diverge into two distinct branches 
which had practically no points in common. There were the science of theoretical hydrodynamic and the highly 
empirical science of hydraulics. 

Theoretical hydrodynamics fundamentally describes the theory of a hypothetical frictionles and non-vi cous 
fluid, resulting in Euler's equation of motion. Hydraulics, on the other hand, was ba ed on a large number of 
experimental data. It differed greatly in its methods from the science of theoretical hydrodynamics. 

Therefore, scientists in the beginning of the 20th century began to look for a precise and compact solution. 
In thi a pect, L. Prandtl set the milestone by showing the way to unify these two divergent branches of fluid 
mechanics. He developed a remarkable boundary layer equation deduced from the more general Navier-Stoke's 
equation of motion. Prandtl discarded complexity by considering the "order" or "weight''(5>, of each term in the 
fluid motion equations. This equation was later pushed a step forward by Von Karman who merged the Prandtl's 
Boundary Layer Eqaution and the fluid continuity equation to form Yom Karman's Momentum Integral Equation. 
Thi equation is impler because it does not involve partial differential terms. 

In olving boundary layer problems, scientists in the early of the 20th century introduced the concept of 
similarity to certain class of flows and it had been proved very fruitful. "Similar" olution expresses the assumption 
that two velocity profiles u(x,y) located at different coordinates x differ only by a scale factor in u and y where 
u is the x-component of the velocity along the boundary. 

Historically, the flow along a thin flat plate was the first example illustrating the application of Prandtl's 
boundary layer theory. By making full use of the concept of flow similarity. Blasius ( 1907) di tinguished himself 
by solving the flat plate boundary layer problem, ended up with the famous Blasius' Equation in his doctorate's 
thesis at Goettingen. 

A combined method of analysis and experiments is termed semi-emperical, such as Thwaites' Method. Tl;waite 
introduced two flow parameter , I and A., where 

ou Ue 
-=-t ay e 

92 dUe 
A.=--

v dx 

which relies primarily on experiment data as well as analytical exact solutions. 
For about twenty years after its inception by L Prandtl in 1904 (in a paper on "Fluid Flow With Very Small 

Friction" pesented before the Mathematical Congress in Heidelberg), the boundary layer theory was being 
developed almost exclusively in his own institute in Goettingen. This period ended with Prandtl's Wilbur Wright 
Memorial Lecture in 1927 at a meeting of the Royal Aeronautical Society in London. Today, the study of boundary 
layer theory has pread all over the world, constituting one of the most important pillars in fluid mechanics. 

The Application Of Thwaites' Method 

Introduction 

In this chapter, applicability of Thwaites' Method is investigated for various types of boundary, ranging from 
a simple shape to a complex feature. 

Section 2.2 gives theoretical background of Thwaites' Method and its applicability to provide approximate 
solution for laminar boundary layers. 

Specific attention is given to cater for determination of potential flow velocity di tribution over an arbitrary 
airfoil. 
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If 

s 

Thwaites' Equation 

Thwaites' Equation, as given in [2], can be expressed as 

... (2.1) 

In term of dimensionless quantities defined by 

U
*= _u_ u• Ue R UrerL e=u• L=-y-
-Uref' ref 

Eq. (2.1) can be rewritten as 

( )

2 X 5 

.! R = 0.45 J (u;) dx* 
L L ( u:( o 

( )

2 { ( u:) -]
6 

+ ~ R x-0 
L • 

x=O U e 

... (2.2) 

By collecting known solutions of Prandtl's Boundary Layer Equation, Thwaites plotted Hand Las functions 
of A. as shown in Figure I below, where H is the shape factor and l and A. are two flow parameters. 
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Figure 1 Functions in Thwait.es' Method 
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The two functions in Graph I may be fitted by the following equations, 

-0.1 ~A.~ 0 O~A.~O.l 

0.018A. 2 
I= 0.22+ 1.420A. + I = 0. 22 + 1. 57 A. - 1. 8 A. 

0. 107 +A. 
(2. 3b) 

(2 3a) 
... 

... 
2 

H= 0.0731 + 2088 H = 2. 61- 3. 75 A.+ 5. 24 A. 
0. 14 + A. ... (2.4b) 

... (2.4a) 

Validity of Thwaites' Method for Simple Boundaries 

The application of Thwaites' Method ha been found satisfactory for various types of simple boundaries such 
as a flat plate, a wedge or a circular cylinder. Table of re ult and certain significant graphs of thi approximate 
method are included in the appendix. 

Velocity Distribution Over An Arbitrary Airfoil 

In order to apply most existing methods to determine boundary layer properties, the potential flow velocity 
must fir t be known. Equivalently, the boundary effect i not accounted for initially, i.e. the boundary is assumed 
frictionless. 

The potential velocity distribution of an arbitrary can be derived from the potential flow theory. A double
transformation is introduced which includes; 

1) Joukowski Transformation, 
2) An infinite Fourier Series Transformation due to Theodor en. 

The skeleton of the method comprise of three main procedures<6> and it can be summarized as; 

i) Derivation of relation between the flow in the plane of the wing section (~-plane) and in the plane of 
the distorted circle (z' plane), 

ii) Derivation of relations between the flow in the z' plane and in the plane of the true circle (z plane), 
iii) Combination of the foregoing relations to obtain the final expression for the velocity distribution in the 

~ plane in terms of the ordinates of the wing section. 

The potential flow velocity distribution around a symmetrical airfoil can be expressed as 

where 

~ =F [sin(9+a 0 + E] + sin(<X 0 + ET]] 

( 1 + dE)e'V• 

where <l
0 

is the angle of attack and E,- is a fluid parameter at the airfoil trailing edge. 

Flow Over A Symmetrical Airfoil 

... (2.5) 

... (2.6) 

The external-velocity distribution (i.e. the velocity distribution outside the boundary layer) is a prerequisite in 
order to apply Thwaites' Method. In fact, a variety of methods are applicable as long as this specific prerequisite 
is met. This velocity distribution is given in Eqs. (2.5) and (2.6). 

From Eq. (2.2), the momentum thickness is 

... (2.7) 
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Numerical integration may be performed by using the trapezium rule, which is a numerical integration method 
to find the area bounded by a curve and the axes. Eq. (2.7) becomes 

... (2.8) 

An approximation of shape function H is given in Eq. (2.4). Shape function relates displacement thickness and 
momentum thickness. Therefore, known values of H and momentum thickness ensure a complete knowledge of 
displacement thickness. The displacement thickness may be expressed as 

... (2.9) 

This equation provides direct computation of non-dimensional displacement thickness. 
To compute the coefficients of friction along an airfoil boundary, we apply the same concept as descriped 

previously. Nevertheless, a function of flow parameter, L(A,) as given in Eq. (2.3), is included instead of H. The 
coefficient of friction is 

CrL 2/(A.) 
u-R-L = -U-*...,.(-'::-0-'R~) 

e L L 

... (2.10) 

The location of flow separation may be deduced from a series of coefficient of friction as given in Eq. (2.10). 
It is defined as a point on a solid boundary with null friction. 

or 

CrL 
-=0 
uRL 

determines the point of flow separation. 

Analysis 

Conditions Of Analysis 

... (2.11) 

Some fundamental conditions are imposed on the airfoil boundary layer analysis. The specific airfoil considered 
is NACA 0012, a 4-digit series airfoil, which possesses the following geomep-ic characteristics; 

i) It is a symmetrical airfoil where the mean line and the chord of airfoil are identical, 
ii) Its maximum thickness is 12% of the chord. 

Besides, the basic aerodynamic assumptions include, 

i) The angular shift of stagnation point of the transformed circle due to circulation, t,.. is zero, 
ii) The flow is entirely laminar. 

The analysis is not reliable, or rather to say invalid at all, at the regions of leading and trailing edges. The two 
main causes of this invalidity are; 

i) The thickness distribution equation at the leading edge'3) is 
r, = 1.1019 e 

ii) In order to perform numerical differentiation there are not enough data at the vicinity of leading edge 
and trailing edge. Therefore, numerical differentiation at both ends of the airfoil is not accurate. 

A series of flow data is obtained for various angles of attack ranging from -0.20 rad to 0.12 rad 
(-11.46° to 6.88°). All aerodynamics parameters are made dimensionle s in order to gain generality. 
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General Discussion 

From a series of numerics for flow over NACA 0012 at various angles of attack (ranging from -0.20 rad to 
0.12 rad). we may summarized the following facts; 

i) The momentum thicknes and the displacement thtcknes increa. e along the airfoil boundary and as the 
angle of attack increa e • 

ii) The coefficient of friction increases as the angle of attack increases but it decreases along the airfoil 
boundary, 

iii) The location of flow separation at the upp r boundary keep. moving forward as the angle of attack 
increa es. For the lower urface, location of flow separation is unreliable whereby the causes of unre
liability might be; 

a) A. i out of range of reliable data, 
b) numerical error while performing numerical differentiation or integration. or during the process of trans

formation from an airfoil to a circle. 

Table I shows a serie of location of separation point for various angles of attack ranging from 
-0.10 rad to 0.15 rad (-5.73° to 8.59°). 

Table 4.1 Locations of Separation point 

angle of attack 
a (rad) 

-0.10 

-0.09 

-0.08 

-0.07 

-0.06 

-0.04 

-0.03 

-0.02 

-0.01 

0.00 

0.01 

0.02 

0.03 

0.04 

0.05 

0.06 

0.07 

An~le of Attack a (rad) 
0.07 
0.06 
0.05 
0.04 
0.03 
O.u2 
0.01 

0 
-{).01 
-{).02 
-{).03 
-{).04 
-{).05 
-{).06 
-{).07 
-{).08 
-{).09 

-{).I 0 0.2 

location of eparation point 
x. (% of chord) 

0.7803 

0.7846 

0.7904 

0.7929 

0.7905 ?" to be reviewed 

0.7800 

0.7321 

0.7140 

0.6705 

0.6380 

0.5886 

0.5393 

0.4827 

0.4391 

0.3748 

0.3069 

0.2347 

Along The Boundary 

"\~ 
0.4 0.6 

Boundary Coordinate (% of chord) 

Figure 2 Location of separation 
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Effects Of Flow Separation 

Flow eparation occurs f01 positive pressure gradient, ~~ > 0 , along the boundary fa body. Therefore, 

only flat and convex . urfaces can develop flow separation. A concave surface has negative pressure gradient. 

Therefore. flow will never separate for this type of curvature.(4l 

When a body with convex boundary is immersed in a flowing fluid, the ·tatic pre ·sure increases rapidly in 
the streamline direction . A dramatic and unde irable change in the tlow pattern happens. Streamlines in the 
boundary layer near the surface suddenly depart from the surface. This flow eparation is undesirable because 
the body was designed to produce a given static pres ure variation for a , pecific purpose, uch a to produce ltft 
for an airfoil or to provide efficient deceleration of a flow in a diffuser. If the flow separates, the intended static 
pres. ure distribution will obviously be disrupted. Furtheimore, tlow separation will disturb an intended distributiOn 
of heat or mass Iran fer. 

When a flow separates, the viscou region i no longer thin, even at high Reynold!> numbers, and the boundary 
layer assumptions are no longer valid. Thus, the condition for the applicability of the boundary layer assumption 
mu t be high-Reynolds-number flow over streamlined boundarie . 

Conclusion 

Thwaite ' Method provides a much simpler way to find the boundary layer properties for fluid flow over a 
variety of two dimen ional obstacle a long as velocity out ide the boundary layer U.(X) is knownm. It discards 
complicated numerical calculation and reveal approximate elutions. 

However, applicability of Thwaites' Method i very much dependent on the validity of A., a flow parameter. 
Exten. ion of the relationship between A., flow parameter /(A.) and shape function H(A.) helps to generalize thi 
method. 

References 

I. Schlichting, H., Boundary-layer Theory, McGraw-Hill Book Company, U.S.A., pg. 135 & 141, 1979. 

2. Cebeci, T. & Bradshaw, P., Momentum Tramfer In Boundary Layer, Hemisphere Publi hing Corporation, 
U.S.A., pg. 108-112, 1977. 

3. Abbott, I.H. & Doenhoff, A.E., Theory of Wing Section, Dover Publication , Inc., pg. 113-115, 1959. 

4. Schlichting, H., Boundary-layer Theory, McGraw-Hill Book Company, U.S.A., pg. 131-133, 1979. 

5. Cebeci, T. & Bradshaw, P., Momentum Transfer In Boundary Layer, Hemisphere Publishing Corporation, 
U.S.A., pg. 39-44, 1977. 

6. Abbott, I.H. & Doenhoff, A.E., Theory of Wing Section, Dover Publications, Inc., pg. 53-60, 1959. 

Appendix 1 Boundary layer now parameters of wedge-now 

Flow Pre sure Wedge Momentum Displace- Friction 
Parameter Gradient Angle L(lamda) H(lamda) Thickness ment Coefficient 

I. s· 2 
m p L()..) H()..) !!.Fo; ~ cr(~) (rad) X X 

-0.1000 -0.1053 -0.7392 -0.0601 3.9111 0.9747 3.8120 -0.1232 
-0.0910 -0.1006 -0.7024 -0.0025 3.6601 0.9513 3.4819 -0.0053 
-0.0905 -0.1003 -0.7003 0.0001 3.6485 0.9500 3.4661 0.0003 
-0.0900 -0.1000 -0.6981 0.0027 3.6371 0.9487 3.4504 0.0058 
-0.0500 -0.0714 -0.4833 0.1203 3.0888 0.8367 2.5843 0.2875 

0.0000 0.0000 0.0000 0.2095 2.6430 0.6708 1.7729 0.6246 
0.0500 0.2500 1.2566 0.3006 2.3558 0.4472 1.0535 1.3442 
0.0750 1.0000 3.1416 0.3350 2.2908 0.2739 0.6274 2,4466 
0.0900 ••••••• 6.2832 0.3508 2.2630 .0000 .0000 ••••••• 
0.1000 -2.0000 12.5664 0.3596 2.2448 ERR ERR ERR 
0.1500 -0.5000 -6.2832 0.3902 2.1218 ERR ERR ERR 
0.2000 -0.3636 -3.5904 0.4199 2.0735 ERR ERR ERR 
0.2500 -0.3125 -2.8560 0.4800 2.0312 ERR ERR ERR 

••• 
ERR complex number 
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Figure 3 Flow over a wedge 

Appendix 2 Boundary layer now parameters or flow over a circular cylinder 

phi phi 1amda L (lamda) H (1amda) momentum disp1sacement friction 
(de g) (rad) thickness thickness coefficient 

Cf 

0.00 0.000000 ERR ERR ERR ERR ERR ERR 
10.00 0.174533 0.074711 9,334672 2.291381 0.194761 0.446272 1.193607 
20.00 0.349066 0.073805 0.333598 2.293208 0.198168 0.454442 2.303106 
30.00 0.523599 0.072150 0.331602 2.296616 9,204098 0.468734 3.249540 
40.00 0.698132 0.069488 0.328296 2.302311 0.212968 0.490318 3.963625 
50.00 0.872665 0.065350 0.322924 2.311779 0.225463 0.521221 4.388873 
60.00 1.047198 0.058889 0.313973 2.328392 0.242670 0.565032 4.482076 
70.00 1.221730 0.048519 0.298215 2.360960 0.266326 0.628785 4.208966 
80.00 1.396263 0.031107 0.268399 2.436423 0.299279 0.729171 3.532884 
90.00 1.570796 .000000 0.209510 2.642950 0.346410 0.915545 2.419288 

100.00 1.745329 - 0.060263 0.100386 3.191840 0.416558 1.329588 0.949345 
103.00 1.797689 -0.088815 0.008770 3.610792 0.444309 1.604306 0.076929 
103.10 1.799434 - 0.089887 0.003332 3.634513 0.445302 1.618454 0.029156 
103. 15 1.800307 - 0.090426 0.000516 3.646792 0.445800 1.625739 0.004509 
103.20 1.801180 - 0.090967 - 0.002368 3.659361 0.446299 1.633170 - 0.508234 
104.00 1.815142 - 0.099927 - 0.059508 3.908655 0.454452 1.776296 - 0.508234 
105.00 1.832596 - 0.111970 - 0.172870 4.412022 0.465090 2.051988 - 1.436153 
110.00 1.919862 -0. 189921 - 3.978187 24.753765 0.526921 13.043802 - 28.379126 
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Figure 4 Cf for now over a circular cylinder 

Appendix 3 Comparison 

Exact Solution Approximate Solution 
(Thwaites' Method) 

a· 1.721 a• 1.771 
-= 

F. 
-= 

F. X X 

Flate Plae 

c = 0.664 

f ~ 
c = 0. 626 

r F, 

Separation Separation 
wedge angle wedge angle 

Wedgw Flow 
~ 1t = ...{).629 rad ~ 1t = ...{).698 rad 

Dimen ionless Dimensionless 
pressure gradient pressure gradien 
parameter parameter 

m =...{).091 m = ...{).100 

Circular Separation angle Separation angle 
Cylinder '= 108.8° ' = 103.2° 
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