
Synopsis 

LOGIC AND PROLOG DATABASE SYSTEM 
Mohamed bin Othman 

(Computer Science Unit) Mathematics Department 
University Pertanian Malaysia 
43400 UPM Serdang Selangor 

Malaysia 

This paper discusses an initial research of a subfield of first order predicate logic applied to the database. 
Consideration has been made toward the relational database system. Here, the logic used boths as an inference system 
as well as a representation language. The use of logic for knowledge representation and manipulation is previously 
due to the work of question-answering system, which have been mainly concerned with the deductive manipulation 
of a small set of facts and thus require an inferential mechanism provided by logic. Similar techniques have been 
adopted to databases to handle large set of facts, open queries, and others. 

Keywords: Relational database, Programming in logic, classical interpretation, unification and queries. 

Introduction 

PROLOG or PROgramming in LOGic is a higher-level programming language developed by Colmerauer A., et 
al 1977 at Marseilles University, France. Curiously enough, Hungary was one of the earliest countries to recognise 
its potential more than pure academic research. Since that time its adoption as the programming language for Japan's 
Fifth Generation Project has established its reputation worldwide. 

It is based on the first order predicate logic and has been used for applications of symbolic computation. It operates 
on tree structured data named, terms and composed of symbolics, variables and numbers. The basic operation is 
unification, which comparing two terms and trying to make equal by assigning values to the variables. I fit is succe ful, 
the result is then the list of subtitutions made on the variables. 

A database is a collection of interelated data stored without redundancy to serve one or more applications in an 
optimal fashion. The data is stored so that it is independent of the programs which use it. 

The architecture of a database management system as state in Date C. J., 1981, is divided into three levels; 

1) The conceptual level (Logical database). 
These level consists of the abstract representation of the database (i.e. independent from the physical im­

plementation), 

2) The internal level (Physical database). 
It is the implementation of the logical database and concerned with there presentation of data type record 

formats, storage structures and acces methods. It is there presentation of the databa e as is actually stored 
and retrieved, 

3) The external level (External database). 
It is concerned with views of the logical database as seen by the users. Each view consists of some portion 

of the logical database. 

There are three main approaches have been used to specify a conceptual model for database systems. These are 
hierarchical, network and relational approaches. Consideration has been made only on the relational approach, and 
it is because of their relational model of data that interrelated between the mathematical logic and data base are 
concerned. In the relational model, data are organised a a collection of relations. Gallaire H., et al 1977 state that a 
relation can be defined mathematically a follow ; 

"Let D 1, D2, ... , D" ben domains (not necessarily 
distinct) of elements. A relation defined on 
D 1, D2, ... , D" is a ubset of the cartesian 
product D 1X D

2
x ... X D.'' 

In a relational database, each relation is represented by a table and each column of the tabular relation correspond 
to a field (or attribute). Obviously, the order or the components in the tuples is meaningful. The relations of a database 
are best expressed in a "normal form" which eliminates redundancy and simplifies updating procedures. The various 
normal forms are discussed in tandard text such as Date C. J., 1981. 

41 



Mathematical Logic 

Mathematical logic has been applied to many different areas, including that of databases. It can be defined from 
two different viewpoints; the semantic view and syntatic view as state by Gallaire H. et all977. Both approaches are 
founded upon first defining a language as a collection of symbols and rules for building well-formed formulas(WFFs). 

A particular form of logic is called the first order predicate caJculus or predicate logic. These predicate logic consist 
of the following primitive symbols; 

1) Individual symbols. 
In other words; it consists of a variable and a constant, 

2) Function symbols. 
Which will be denoted by lower case letters such as f, g, ... , etc, 

3) Predicate symbols. 
Which will be denoted by upper case letters such asP, Q, ... , etc, 

4) Logical symbols. 
Such as "(and), v (or) and-, (not), 

5) Quantifier symbols. 
Such as 'If (for all) and 3 (that exist), 

6) Punctuation symbols. 
Such as ",'', "(" and ")'I, 

A term is defined (recursively) to a constant or a variable, or iff is a n-arys function and t
1
, t

2
, ... t

0 
are terms, then 

f(t
1
, t

2
, ... , t.) is a term and there are no other terms. 

If Pis an n-arys predicate symbol and tl' tz, ... , t. are terms, then P(t1, tz, ... , t.) is an atmoic formula. When n = 0, 
the atomic formula is called a proposition. An atomic formula or its negation, will be refered to as a literal. 

Well-formed formulas are defcined using atomic formulas, parentheses, logical connectives, universal quantifiers 
and existential quantifiers as follows; 

1) Atomic formulas are well-formed formulas(WFFs), 

2) If A is a WFF andy is an individual variable, then (3y)A is a WFF, 

3) If A and B WFFs and y is an individual variable, then the following are also WFFs. 

a) -,A Not (negation). 
b) A v B Or (disjunction). 
c) A" BAnd (conjuction). 
d) A~B Implication i.e. if A sufficinet for B. 
e) A<=>B Equivalence i.e. if and only if A is sufficient and necessary for B. 
f) Universal quantifier, example (Vy)(A(Y) ~ B(y)). 
g) Existential quantifier, example (3y)(A(y) ~ B(y)). 

The above definitions defined those string of symbols which are valid statement in the first order predicate calculus 
and rule out the others. For instance, 

'v'x(3y(P(x, y) Q(y) ~ R(x,y))) is a WFF. 
'v')xQRS(3)Y is not a WFF. 

One can define and, or and equivalence in terms of truth tables. It is also posibble to defme implication such as: 

(A~ B)<=> (-,A B). 

Some of the well known equivalence are given below; 

I) Simple equivalences. 
-,(-,x) <=> x 
xvy<::>x~y 

2) De Morgan's Laws. 
-,(x 1\ y) <=> -,x v -,y 
-,(x v y) <=> -,x "-,y 

3) Distributive law. 
x" (y v z) <=> (x 1\ y) v (x 1\ z) 

42 



m 
e 
). 

x v (y" z) ¢:::> (x v y) "(x v z) 

4) Commutative laws. 
X AY¢:::>YAX 
xvy¢:::>yvx 

Equivalence with qualifications. 

1) -,(3x)P(x) ¢:::> (Vx)(--,P(x)) 
2) -.(Vx)P(x) ¢:::> (3x)(-,P(x)) 
3) (Vx)(P(x) "Q(x)) ¢:::> (Vx)P(x)" (Vy)Q(y) 
4) (3x)(P(x) v Q(x)) ¢:::> (3x)P(x) v (3y)P(y) 
5) (Vx)P(x) ¢:::> (Vy)P(y) 
6) (3x)P(x) ¢:::> (3y)P(y) 

It is possible for any WFF in the first order predicate calculus to be converted into the clause form, or in other word 
called PROLOG form by following nine steps of syntatic manipulation. Let us consider the English statement: 

"All persons who are clever or strong will win" 
and convert it into the WFF. 

(Vx)(per on(x) "(clever(x) v strong(x)) =:::) will_win(x)). 

The following steps are; 

1) Eliminate implication with the equivalence. 
(Vx)(--,(person(x) "(clever(x) v strong(x))) v will_win(x)), 

2) Reduce the cope of negation using De Morgan's Laws. 
(Vx)((-.person(x) v (-,clever(x) 1\ --,strong(x))) v will_win(x)), 

3) Standardise the variables so that the locai variables within the quantification become unique. Example; 
(Vx)--,P(x) v (3x)Q(x) ¢:::> (Vx)-.P(x) v (3y)Q(y), 

4) Eliminate the existential quantifiers using the kolem functions or skolem constants. 
a) (3x)P(x) ¢:::> P(b) where b is a skolem constant, 
b) (Vx)(3y)P(x,y) this is the same as (Vx)P(x,D(x)) where y = D(x) is a skolem function, 

5) Move all the universal quantifiers to the front. Example; 
(Vx)(P(x) " (3y)Q(y) =:::) Z(x, y)) ¢:::> 

(Vx)(3y)(P(x) 1\ Q(y) =:::) Z(x, y)), 

6) Convert to the conjunctive normal form (make up into the conjunction clause). 
(Vx)((--,person(x) v -.clever(x) v will_win(x)) 

(-.person(x) v -.strong(x) v will_win(x))), 

7) Delete all the universal quantifiers. From now on all variables will be assumed to be universal quantified. 
((-.person(x) v -,clever(x) v will_win(x)) 
(--,person(x) v --,strong(x) 1\ will_win{x))), 

8) Split into the clause form by eliminating the "top level" conjuction. 
(--,person(x) v --,clever(x) v will_win(x)) and 
(-.person(x) v -.clever(x) v will_win(x)), 

9) Standardise the variables apart (i.e. making the variables local and unique). 
(-.person(x) v -.clever(x) v will_win(x)) and 
(--,person(y) v -.clever(y) v will_win(y)). 

We can write in PROLOG form by converting back into the in plication form, if the above resulting clauses are HORN 
clause. 

person(x) "clever(x) fi will_win(x) and 
person(y) "strong(y) fi will_win(y) 

That is the same as; 

will_ win(x) :- person(x), clever(x). 
will_ wi~(y) :- person(y), strong(y). 

The point of all this is that the conversion process can be mechanised hence leading weight to the claim that PROLOG 
really is a programming in logic. 

43 



Database Viewed Through Logic 

First of all, before considering the formalization of database in terms of logics, we have to mention , orne 
assumptions that given query (and integrity constraint) evaluation of database . We define three such as umption ; 

I) The closed world or convention for negative information which state that facts not know to be true are assumed 
to be false, 

2) The unique name which states that individual. with different name are different, 
3) The domain closure which state that there are no other individuals than those in the databases. 

With reference the above assumptions, we can an wer queries involving negation. For example the query like: 
"Who is not a full time student" 

addre ed to a databa e whose current state consi ts of; 

full_time_student(ahmad). 
full_time_ tudent(majid) . 
part_time_ tudent(azmi). 
part_time student(ismail). 

so, we will get an answer I azmi , ismail}. Here, the domain clo ·ure assumption restricts the individuals to be 
con idered to the set of I ahmad, majid, azmi. ismail}. According to the unique name assumption, we have the 
following: ahmad not equal tomajid, ahmad not equal toazmi,etc. Con. equently,ahmad not ub etofpart_time_student, 
which according to the closed world assumption, lead to -.part_time_student(allmad). 

A database can be con idered from the viewpoint of logic in two different way ; 

1) Interpretation. 
The querie and intergrity constraints are formulas that are to be evaluated on the interpretation by using 

the emantics definitions of truth, 

2) Theory. 
The querie · and the integrity constraint are considered to be theorem that are to be proved. 

The u e of logic for data de cnption will aboli . h the distinction between the database and program , even the 
techniques apply to the problems in both field . A strategy which applie to the execution of a program might also 
apply to the retrieval of answers to databa e queries. Methods for proving propertie of program apply to verification 
of integrity constraint and retrieval of answers to queries. 

The relationship between the relational query language and u er-interfaces have o many problems which can 
be transformed into logic. For instance; 

1) A databa e sy tern can be considered as a question-answering system. This is from the viewpoints of the 
theorem proving, 

2) A database y. tern can be viewed a an intelligent knowledge-based system if the queries can be written in 
very high level non-procedural query language to perform certain task , 

3) A database can be viewed a. a logic program. retrieval is automatically taken care of through resolution . 
Because of the non-distinction between input and output, any argument or combination of any argument can 
be chosen for retrieval, 

4) The efficiency of access trategy directly effects the performance of database system. 

Logic should have a positive effect on database de ign and u age as it provide a conceptual framework for 
expressing facts, integrity con traint and queries. 

Interpretation Of Prolog 

The execution of a PROLOG program can be considered a a search in an absract tree. The clas ical interpretation 
is from left to right and depth first search, checking one solution at a time. A more eficieny strategy for databa e acces 
will be to globally process ets of solution produced by every search ( olution of goal ). The e olutions may, in tum, 
produce set of goals (predicate to be verified), which can be globally verifies through filtering (i.e. the filter will 
be compo ed of four parts such as transfer controller. lextcal automation, syntatic automation and result election 
operator). Consider the following example: 

z(X, Y) :- z I (X ), z2(Y). 
z I (a). 
z l (b). 
z2(c). 
z2(d). 

44 



If we query the above example with ?-z(X, Y) then the search on zl return. two solutions: X~ a and X~ b which 
in turn produce two et of goals, there are z(a, Y) and z(b, Y). These two set of goals may be earched in a single pass 
on z2, through the backtracking and equential processing. Finally, the first set of goal consists of I (X~ a, Y ~c) 
and (X~ a, Y ~d)} and the second et consists of I (X~ b, Y ~c) and (X ~ b, Y ~d) 1. 

The concept of backtracking and cut(!) are explained more details in the standard text by Clockin W. F., et al1981. 

Unifications 

A major difference between a PROLOG database and a relational database is the possibility of having variable 
in the data. The variables can be dependant and define relations between the argument. Unification is a process of 
finding a substitution of constant terms for variable to make expressions identical and check the substitutions for Its 
consistency. It could be informally described a two-way or symmetrical matching, in a much as the distinction 
between the pattern and the data has been eliminated and variables can be bound on each side. It is possibly to unify 
more than two patterns at a time. 

Not all variables need be instantiated (bound to con tants) in the final identical expre sions. The final expression 
is called the common instance or ground in tance if all variable are instantiated. The minimal set of substitution 
necessary to produce the common instance by applying the sub titutions to any of the original pattern which is called 
most general unifier. The most general unifier is not unique but the common in tance i . 

Now, we give a unification procedure to find the most general unifier for any given clause P if Pis a variable and 
results failure if Pis not unifiable. The unification procedure makes use of two "program variables" Rk and k, which 
are initially et toE (i.e. empty substitution E = I I) and 0 respectively. Through out the e operations, the unification 
will alter the values. Thus k = 0 and R. = E. The eventual value of Rl is the mo t general unifier of the given clause 
P if Pis unifiable and is E (i.e. not unifiable) if Pis not unifiable. Below are the teps of the unification procedure; 

1) If PRk contains only one literal, then return Rk as the most general unifier and stop, 

2) If PRk contains more then one literal, find the first symbol position (see arrow below) for each literal m 
which not all literals have the same symbol. For instance: 

PRk = I Q(g(x), a, f(u, v)) I Q(u, a, z) 1. 
i i . 

where "/" means substitutions, 

3) Construct the disagreement set for PRk, (i.e. contains the WFF expressions (terms or literals) form each literal 
in PRk that begin at the valued position). Disagreement set for the above example is I g(x)lu I, 

4) If there exi t two terms sk and tk in the disagreement set such as that sk is a variable symbol and ~ does not 
contains sk, than take any two such terms sk and~. replace Rk by Rk+l = Rk I (t, s) I and replace k to k+ 1 and 
go to step I. Form the above example: Let take ~ to be u and ~ to be g(x). Thus 

Rk+l = ~ I (G(x) I u) 
and P~+l = I Q(g(x), a, f(u, v)) I Q(g(x), a, z)}. 

5) lftheredonotexisttwo terms sk and~ in the di agreement set, then reports thatPcannot the unified and stop. 

No proof will be offered that the unification procedure does in fact find the most general unifier. With the above 
example ifP were initially the clause I Q(g(x), a, f(u, v)), Q(u, a, z) I then the procedure would return the most general 
unifer ~ = I (g(x), u), (f(g(x), v), z)} and the most general unifier of P would be 

P~ = IP(g(x), a, f(g(x), v) 1. 

PROLOG use the unification process for three important purposes; 

I) To "decide which clause to invoke" (i.e. only the ones whose heads can be unified with the current goals), 

2) To "pass the actual parameters to the clause". This can be achieved by substituting for the local variables 
to the corresponding terms found in the goal (call) pattern, 

3) To "deliver the results of a clause" by computing terms to be substituted for the corresponding variables in 
the goal (call) pattern. It means that any numbers of the results can be returned and different invocation of 
the same clause. 

Example Of Prolog + Relational Database And Query 

PROLOG can be considered as a representing both relational algebra and relational calculus in a relational database. 
Every relational operator can be expressed in PROLOG and additional operators are available (e.g. implication) 

45 



together with others facilities (e.g. list processing). Queries can be done by two operations; 

1) Primitive operations. 
Assume we have a relation schema which specifies names, domains and order or attributes, example; 

STUDENT(integer matno, char name, integer schoolno, integer schship, char lecno). 
student(l2,AHMAD, 01,4500,Ll9). 
student(21 ,NATHEN,02,3000,Ll2). 
student(22,ISMAIL,03,41 OO,L42). 

a) Selection. 
The procedure selection can be used to generate all tuples for students of school 2 earning 

scholership over $2700.00. 

select(Matno,Name,Scholership,Lecno ); 
student(Matno,Name,2,Scholership,Lecno), 
Scholership > 2700. 

b) Projection. 
The procedure projection can be used to generate all the tuples and then project all the tuples with 

attributes name, matno and scholership, 

project(N ame,Matno,Scholership ); 
student(Matno,Name,_,Scholership,_). 

c) Join. 
The procedure join is joining two relations (i.e. STUDENT and SCHOOL) and display all the tuples. 

Assume we have relation schema:SCHOOL (integerschno, charname, charlecno). 

join (Matno, STDName, SCHoo, Scholership, Lecno, SCHName); 
student (Matno, STDName, SCHoo, Scholership, Lecno), 
school (SCHoo, SCHName, Lecno). 

d. Composition of two operations. 
The procedure select_then_project is acomposition of two operations (i.e. select and project). Select student 
from school 1 and scholership over $3700.00 and project all tuples with atributes name, matno and schol­
ership. 

select_then_project(Name,Matno,Scholership); 
student(Matno,Name, l,Scholership,_), 
Scholership > 3700. 

2) Set of operations are even more straight forward by applying the PROLOG language to the relational database. 
Assume we have two relations schema (i.e. a and b) with n-arys. 

a(Yl,Y2, ... , Yn). 
b(Yl,Y2, ... , Yn). 

The primitive operations are: 

i) Union. 
a_UNION_b (Yl,Y2, ... ,Yn) 

a(Yl,Y2, ... ,Yn); b(Yl,Y2, ... ,Yn). 

ii) Intersection. 
a_INTERSECTION_b (Yl,Y2, ... ,Yn). :-

a(Yl,Y2, ... ,Yn), b(Yl,Y2, .... Yn). 

iii) Difference. 
a_DIFFERENCE_b (Yl,Y2, ... ,Yn) :­

a(Yl,Y2, ... ,Yn), not b(Yl,Y2, ... ,Yn). 

All of the query operations can be explained in terms of static interpretation of procedures (i.e. predicate). Queries 
which involve only primitive operations can be answered without actually creating the resulting relation. Its tuples 
can be generated by a failure-driven loop and displayed immediately. We also can use a "bagof' predicated and 
sometime its more efficient. Let see the commands below: 

a) "bagof' command. 
We look for the maximum scholership from relation STUDENT. 

46 



bagof(Scholership, student(_,_,_,Scholership,_), SCH), maximum(SCH,STDScholer), 
write(STDScholer), nl. 

b) Failure-driven .. 
We look for student of school 2 who earns not more than $5000.00 and who are members of AI CLUB 

since at least 1980. Assume we have ralation schema: AICLUB(integer matno, char name, integer status, 
integer datejoined). 

student(Matno,Name,2,Sno,_), 
Sno = <5000m 
aiclub(Matno,_,_,Datejoined), 
Datejoined = < 1980, 
write(Matno,Name), nl, 
fail. 

Sometimes the queries cannot be expressed in terms of a composition like the above operations so we must use the 
concept of programming in logic and recursion. The main advantages of using PROLOG is that these queries can be 
represented in terms of tuples of facts and rules. 

Conclusions And Future Works 

On the whole, PROLOG is a powerful tool for database applications. However the saiz of a real database may far 
exceed the capacity of any existing PROLOG implementation. Suprisingly, PROLOG is in a sence, too strong and 
too unrestricted. Unrestrained use of "assert/retract" may be also run the integrity of a database. 

Consequently, PROLOG should rather be considered a tool for implementing more restricted user interfaces; 
queries and commands in a user language are analysed (types checked, integrity ensured, etc) and only then translated 
into PROLOG. 

It has been designed and used with the software engineer "mind" rather than computer. It also allow the engineer 
to set up a precise definition of what the problem is and it enables the computer to apply the fundamental logic or logical 
reasoning to database problem. 

We have atempted to explain how mathematical logic provides a conceptual framework for database systems, in 
particular we have shown how it is use to represent and manipulate facts, formulate and evaluate queries. Indeed, logic 
provides an appropriate framework for many database system. For example in previous section we saw how 
programming in logic, relational database system and query are closely interrelated. The following is a list of research 
and development (R&D) topics; 

1) Research on parallel processing for optimizing the disc access: distribution of search on several disc units, 
parallel verification of clause (OR-parallelism) (i.e. several clauses matching a goal are processed concur­
rently). Parallel verification of independent literals in a single clause (AND-parallelism) (i.e. several goals 
in a clause are executed concurrently), 

2) Designing a natural language query system for database, 

3) Optimizing query evaluation which is based on the semantic knowledge (i.e. interactive access to the database 
and in natural language context), 

4) The efficiency of the algoritham (i.e. already developed) for executing a disributed PROLOG program on a 
broadcast network, 

5) Embedding date manipulation languages in programming languages.lt is possible to interface a DBMS with 
a logic programming language such as PROLOG. 

6) There are many new types of databases which may be considered for special treatment in the future; 

a) Numeric database 
The main problem is the representation of vast and often sparse matrice. This database is for compact 

storage and se1ective usage, 

b) Text database 
This database deals with textual information, such as in document retrieval system and word-proc­

essing environment, 

c) Image database 
This database is used to store the images/pictures of objects using either graphic and/or digitisation 

such as storage of thumb prints, 

47 



d) Speech database 
Sound would be stored, analysed and selectively combined and reproduced. This should also allow 

operations and conversion of sound into text. 

Logic and database systems are the core research in "Japanese Fifth Generation Project". Lastly, logic provides a 
firm theoretical basis upon which are can purpose database theory. in general. There are many research areas that 
remain to be investigated in addition to those listed above. 

References 

1) Cambell J. A., Implementation Of PROLOG, Ellis Horwood Series, 1984. 

2) Clockin W. F. and Mellish C. S., Programming In PROLOG, Springer-Verlage, 1981. 

3) Chao-Chin Yang, Relational Databases, Prentice-Hall Int. Series, 1986. 

4) Date C. J., An Introduction To Database System, Addison-Wesley Pub. Co., 1981. 

5) Gallaire H. and Minker J., Logic and Database, Addison-Wesley Pub. Co. , 1977. 

6) Gray P., Logic, Algebra and Database, Ellis Horwood Series, 1984. 

7) Inria F. B., International Conference On Very Large Database, Proc. of IEEE Computer Society, ACM and 
Canadian Information Processing Society, 1980. 

8) Knuth K. D., The Art Of Computer Programming: Fundamental Algorithms, Vol. 1, Addison-Wesley Pub. Co., 
1979 

9) Kowalski R., Predicate Logic As A Programming Language, Ellis Horwood Series, 1974. 

10) Nilsson N.J., Principle of Artificial Intelligence , Springer-Verlage Pub., 1982. 

11) Warren H. D., PereiraL. M. and Pereira F., "PROLOG: The LanguageAnditsimplementationComparedWith 
LISP", Proc. of ACM Symposium On AI Programming Language, 1977. 

48 


