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ABSTRACT

Coated fabrics are used in a variety of types and strengths for prestressed

membrane structures. To account properly for their behaviour more accurate

numerical models than those in common use have to be developed. A program

was writl.en to calculate the stresses in a uniform stress, triangular clement based

on the model using Dynamic Relaxation Method. This model is applied to

experimental results developed from a sample of coated fabrics and comparisons

are made between experimental results and model predictions. The model is

numerically simple and well suited to implementation in numerical schemes

necessary for non-linear analysis of complete structures.

INTRODUCTION

Coated fabrics function as a major load-resisting component in pneumatic

structures. tents, and net structures as well as in numerous industrial applications.

Even though these types of structure have been erected in many parts of the world,

the analysis, design and construction of fabric structures remain essentially skills

mastered by comparatively few practitioners.

The increased use of coated fabrics in recent years has focused attention on the

need for suitable models to be used in analyses where biaxial states of stress

prevail. Designers are confronted by a material that not only exhibits a nonlinear

response in uniaxial tension but also nonlinear anisotropic behaviour and. more

importantly, shows apparently anamalous behaviour under biaxial loading.

The use of linear orthotropic stress-strain relation as an approximation to nonlinear

stress-strain curves for fabric at this stage is not a good approach. So it is

necessary to develop a stress-strain model which will accurately represent the

behaviour of coated fabric.
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Previous studies[ 1,2,3] show that several models for coated fabrics have been

proposed [0 explain the biaxial mechanical response of the materials. Although

many of these works have produced a good agreement between theoretical and

experimental results. most are not formulated ia a manner which is well suited to

implementation in numerical schemes necessary for nonlinear analysis of complete

fabric structures.

BEHAVIOUR OF COATED FABRIC

A coated woven fabric is considered anisotropic because of the behaviour caused

by its intcrstructurc as well as the coating condition of the fabric (see Figure I).

The peculiarities of fabric response to applied loads may be attributed to the

deformation of one or morc mechanisms dominating in cenaln ranges of loading.

Some of (he mechanisms that govern the deformation of such fabrics include

crimp interchange between warp and weft, bending and torsion of yarns, the load

extension of yarns, crushing of yarns at crossover points, friction betwee yams at

point of contact, bending of coating and interaction between the fabric and coating

material.

BIAXIAL TEST CURVE

Typical curves from the result of biaxial tests for PTFE-glass fabric are shown on

Figure 2. On it, the curve obtained from tests in which eqval tensions are applied

to the warp and weft, are shown as the curves for biaxial 1:I. The curves 5:1 and

l:5 are for these ratios of warp to weft stresses. These curves show the

characteristics of PlFE-gJass fabric. In the biaxial 1:I curves the nearly harizontal

part, seen in the weft curve,represents the behaviour of the fabric when the crimp

is straightened out. The curves show that little force is required to do this.

NUMERICAL MODEL

General Equations.

It is evident that to correctly reproduce test curves in calculations a non-linear set

of equations is required. When investigating a similar problem in soil mechanics,

Day [4], suggested the expressions which proved easiest to use were based on

relating the mean and difference of the principal stress, to the mean and difference

of the principal strains. Because the shear stiffness of typical woven fabrics is low,

the malerial behaves essentially as an orthotropic material, so the pricipaJ stress

and strain can be taken as the warp and weft stress.
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Thus it appeared that a stress-strain relationship based on the following equations

could be used:

ax =Warp Stress

Ex = Warp Strain

era = (ax + uy)/2

l'" = ("" +<,)/2

<J, = f (l',,) + f (y)

cry=Weft Stress

Ey =Weft Strain

< = (<J, - <J,.)12

Y = (E, - £,)/2

<=f(l',,)+f(y)

For non-linear calculation various forms of function for mean stress (£,.) and

different strain (y) can be tried and in principle there is no restriction on the

number of coefficients or discontinuities which may be incorporated in the

coefficient of the equations. Thus in such a program each of the relationships in

the equation

<J, = fl (E,) + f, (y)

were given a curve relating the stress to the strain.

Reproduction of Test Result

To reproduce the test curve on Figure 2 , values for points on the curve are

derived. Consider point A on Figure 2(a), where the mean stress is 10 kN/m, and

the mean strain ea = 0.02. However, if the x and y strain were both equal to 0.02,

the stress would lie on line B, i.e, there is a difference between the stresses, so t

has a value for the mean strain of 0,02, From different points on the 1: I stress ratio

curve a first approximation to the curve 0a = f(e) and t = f(fa) can be made.

Data for the stresses related to (y) are obtained from the 5: 1 and 1;5 curves.

Consider the curve for stress ratio (Warp; Weft) 5; 1, at oJ\= 10, O"y = 2, E,; = 0.008

and "" = 0.0055. Then,

<J"a = (<J"lI + <J"y)/2 = 6 = Ga'

"-,= (E, + £,)12 = 0.0031

t = (0"J\-O"y)/2=4

y = (E, - £,)/2 = 0.0024

Now for lhis value of (eJ) there will be a value of O"a from O"a = f (Ea). In the final

O"a = f (fa) curve, <J"a = 1.0 for Ya= 0.0031, not 6 as above. In general the value of

<J"a will not be equal to O"a' so the difference must be due to the difference strain
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(t),Le. data for O"a = f (Ea) curve. The value of t = 4 for y = 0,0024 is used as an

estimate for the points on the curve can now be made using different stress levels.

It is very attractive to try to use algebraic form for fl, f2, f) and [4, for example a

polynomial but it was not possible because of the discontinuities in the behaviour

of material. A better approach was to try multilinear curve in which each linear

curve will represent the value of stress for certain range of strain.

Basically four curves required to represent the function f]l f2, £) and £4_ But, it was

found that four curves are not enough to reproduced all the biaxial curves

required. So another two curves were added to the function t = fey) and O'a = f (y).

As a result six curves and six equations were used to defined the model parameters

and to reproduced the test curves. The curves and the equations are;

Curves:

0. = fJ (y)

for y>O

t = f4(y)

0. = f, (y)

for 'Y <0

Equations:

j

0y = f, (e,.) + f, (y) - f, (y) - f, (€,)

0, = f, (~.) + f, (y) + f4(y) - f, (E.)

0, = f, (e,.) + fJ (y) - f,(y) + f, (€,)

0y = f, (e,.) + fJ (y) - f, (y) + f, (~.)

0.•<Oy

for

y>O

0 .• <Uy

for

y <0

0 .• >uy

for

y <0
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In the first estimate for the stress. strain curves the values for the function

parameters are derived directly from the biaxial test curves. In the first estimate

there will be discrepancies from the test result. Systematic adjusment of the

function curves is now required, until the accuracy cannot be improved.

One way lO do this is to use a program which subjects a single element, of unit

size simulating a test piece. To produced the various stress strain curves, the

stresses are incremented and the element strain calculated at each stress.

This program allows systematic changing of the values given for the terms of the

stress strain curves. Because alteration of anyone stress strain curve can alter all

the resulting biaxial results, it is necessary to run all the biaxial curve for any

change.

IMPLEMENTATION OF

RELAXATION ANALYSIS

FABRIC MODEL IN DYNAMIC

The success of numerical model in reproducing the test curve for coated fabric can

be detemtined by implementing the model in computer program. Dynamic

Relaxation Method was chosen because it can easily incorporate the nonlinear

stress-strain relation and hence closely simulate the behaviour of tensile or

membrane structures when subject to loading. The basis of this method method is

to trace step by step, for small time increments, the dynamic behaviour of a

structure from the time when it is initially disturbed to the time, due to imposed

viscous damping, it reaches a steady equilibrium state. The method which is

proposed originally by Day[5] has been widely applied to form finding and static

analysis of tension structuresl6] and the solution of nonlinear problems in general.

In developing and implementing the proposed numerical model two main

computer programs have been developed.

Single Element Program

This program was wriuen to calculate the stress in a double, uniform stress

triangular element based on the numerical model.

The purpose of this program is [0 be used as a trial program for deriving the model

parameters for multi-element programs. The single element can be considered to

represent any of the element of the multi-elcment calculation, when it is subjected

to arbitrary strain or stresss, so that its behaviour can be studied in isolation. In

addition, the single element can be taken as a numerical representation of

specimen of fabric and made to follow numerically the imposed stress or strain of

testing apparatus.
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It should be emphasized that the single element program was written purely for

convenience as it could be easily and quickly altered to test modifications and

variations of the model parameters.

Multi-element Program

The main objective of these programs was to examine convergence afthe dynamic

relaxation process when using the numerical model for an assembly of finite

elements.

The structure chosen for this analysis is a plane fabric cruciform with slitted anTIS

orientated along the principal directions of the fabric weave as shown in Figure 3.

The analysis thus simulate biaxial testing for fabric using cruciform specimen.

Duc to symmetry of loading and geometry along the principal axes, only a

quadrant of the cruciform structure was analysed. The idealization employed 130

constant strain triangular elements. and along the slit double nodes and links were

used to allow parting.

In trial analysis it was found that this program was difficult to converge even for a

simple stress-strain relation. This may be because of the wrong idealization of the

sliued arms.

To overcome this problem, the structure was simplified by discarding the slitted

anTIS and loading was applied to the boundaries of the central square of the

cruciform structure (Figure 5). Analysis for this simplified structure achieved

convergence for stress ratios ranging from 0.2 to 5.

DISCUSSION OF RESULTS

The model parameters obtained by the single element program for the fabric

sample are summarized in Table I and the corresponding curves are shown in

Figure 7. These model parameters were then used in the multi-element program to

generate biaxial stress-strain curves for the same biaxial ratio use in the

experimental result. These predicted biaxial curves were then ploued together with

the experimental results. and the two sets of curves compared in Figure 2.

The model prediction for the 1 : I load ratio biaxial test shown in Figure 2(a). For

the entire response range, the fit is good. Figure 2(b) and 2(c) show the model

prediction for load ratio 5 : 1 and I : 5 respectively. Note that the sudden changes

in the curvature and the higher initial stiffness are also reproduced.

~
I
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Table I : Model Parameters

al = 2.5

051=0.01509

bl=O.8

bs 1=0.009

cl=1.132

csl=O.OI

dl=2.85

dsl=O.02

el=2.23

051=0.002

fl=1.5

fsl=O.002

a2= 5.0

as2=O.02

b2=1.7

bs2=O.02

c2=2.0

cs2=O.0I5

d2=1.35

ds2=O.025

e2=3.52

es2=0.00275

f2=2.45

fs2=0.0028

a3 = 12.5 a4 = 2.0 a5=40

as3=O.025 as4=O.029 as5=O.037

b3=2.4 b4=3.0 b5=3.0

bs3=O.03 bs4=O.04 bs5=O.06

c3=1.5 c4=8.0 c5=11.0

cs3=O.025 cs4=O.0277 cs5=O.033

d3=5.0 d4=IO.O d5=18.0

ds3=O.0265 ds4--{).03 ds5=O.035

e3=5.8 <4=8.5 e5=11.0

es3=O.003 e54=O.0318 es5=O.00467
,
/

13=1.0 f4=6.0 f5=10.0

fs3=O.003 f54=O.003204 fs5=O.0072

Noles : a1 = Stress at point I (Curve a)

as 1 =- Strain at point 1 (Curve a)

Note that all the theoretical curves are the best fit that can be obtained from the

model. If there is an attempt to change the model parameters to get a bener fit for a

certain curve e.g. for 1 : I curve, it will change the others curves. However, as

stated earlier there is always the option of adding additional terms, parameters or

relationships to improve accuracy.

Another curves in Figure 8 show the prediction for fabric sample with load ratio 1

2 and 2 ; 1. Unfortunately, because no data arc available from experiment,

comparison cannot be done. However, these plotted show the possibility of the

model to produced biaxial response of coated fabric with any load ratio within the

ranges 5 : 1 to 1 : 5.

CONCLUSION

In this paper a numerical model representing the ncn-Iinear stress-strain properties

of a coated fabric has been developed. The data or material properties required to

define the model have been presented. Furthermore a systematic method of

developing, testing and implementing the model was proposed and computer

programs following the procedure also presented. The program was used to

calibrate the model againts a sample of coated fabric. For this sample of fabric, the

model predictions and experimental results for several load ratios were compared.

In general, the model closely predicts the basic behaviour of coated fabrics.
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