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Abstract

The dual boundary element method (DBEM) incorporated with
fictitious crack model (FCM) is used to analyse and simulatethe
crack propagation .in concrete. The fracture in concrete is rep­
resented by the FCM in which the fracture zone is replaced by
applying closing forces on both crack surfaces. When the force at
the ficti tious crack tip exceeds the maximum tensile strength of
the concrete, the fictitious crack will propagate perpendicular to
the maximum principal stress. Three-point bending specimen is
used to check the numerical analysis and the res ults is compared
to the analysis by finite element method and experimental results.

1 Introduction

T he boundary element method (BEM) is nowa days recognized as an
efficient numerical technique appropriate to solve many engineering
problems [1]. T he met.hod appears to be part.ic ularly recommended
to solve crack problems mainly due to the simple discretization and
remeshing required by t.he technique, Several fracture mechanics
form ulations in the standard BEM have already bee n developed.
These form ulations has been presented and discussed in many pub­
lications, such as Aliabadi & Rooke [2] and also in Cruse [3]. In
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this paper an alternat ive formulat ion to deal with crack analys is
in concrete is proposed. The procedure is derived from the well
known dual boundary element metho d (DBEM) and the fict itious
crack model (FCM).

The DBEM reported by P ort ela , Aliabadi & Rooke [4] has been
established as an alte rnative to solve the general mixed mode crack
propagation using a single-region formulation. The technique is
based on the displacement boundary integral equation applied on
one of the crack surfaces and t rac tion boundary int egral equation
on the other crack surface. This method overcomes t he difficulty of
modelling the crack surfaces in the convent ional BEM as two coin­
cidentsource points are in the same integration path. The DBEM
allows the simulat ion of crack growth in a straight forward manner _
without remeshing as the crack path is calcul ated from the previous
step . The application of boundary element method (BEM) to the
analysis of cracking in concrete is relatively new and there are only
a few publications on the subject. Cen & Maier [5] for example,
used the multidomain BEM to simulate crack propagation in con­
crete . Later Saleh & Aliabadi [6] extended the DBEMformulation
to include cohesive forces to represent the fra cture zone in concrete.

On the other hand, FCM is used to simulate fracture zone ()c­
curing in concrete when it is subjected to tensile loading. The FCM
is a theory applicable to numerical calculat ion of crack propagation
in concrete structure or a structure of similar materials having a
low ultimate tensile stress [7]. The application .of FCM using t he
finite element method (FEM) is well established either -for mode

.I or mixed mode crack propagation 'which has been reported, for
example by Petersson [8], Ingraffea & Gerstle [9], Carpinteri and
Valente [10] and Gers tle & Xie [11] .

In this paper, the three-point bending test specimen is used
to demonstrate the results using t he BEM approach. The results
are compared with the results by FEM .analysis and experimental
results. .

2 The fictitious crack model

The FCM is based on the assumption that t he fracture zone starts
to develop at one point when the maximum principal stress reaches
the maximum tensile stress .of the material. The fracture zone
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develops perpendicular to the maximum principal stress. The ma­
terial in the fra cture zone is partly destroyed but is stilI able to
t ransfer stress. The stress is dependent on the crack opening dis­
placement. It is also assumed that the material properties outside
the fracture zone are linear elastic and given by the a - 10 relation­
ship. In the-numerical implementation, the fracture zone is replaced
by the closing force (or cohesive force) acting on both crack sur­
faces in which the intensity of these forces is dependent on the crack
opening displacement. This crack that appears on the particular
viewing surface of the concrete is not a real crack but rather a fic­
t itious crack. Fig. _l (a) shows these forces acting on both sides of
the crack in the fracture zone . The linear and bilinear variation of
stress-displacement is considered as shown in Fig. l (b) and I(c) .

The iteration process of the crack propagation is controlled by
the crack length as a monotonic increasing function. At every it­
eration, the final deformation of the structure can be evaluated.
Hence, the crack opening displacement can be calculated as a post­
processing parameter, once the fina l deformation was performed.
When the crack opening displacement is greater than the criti­
cal value, lluc , the fictitious will become a real crack (traction-

-free crack). The elastic---softening fracturing process for the linear
stress-deformation curve (SL) can be summarized as follows:

a = EcE . for f:$ t u .

a(L\ucr ) = f: (1 -1.':::) for O:S: llucr :s: lluc (1)
a(L\ucr) = 0 - for llucr > lluc

where a , 10 and Ec are the stresses, the strains and Young 's mod­
ulus of concrete, respectively; if and IOu are the ultimate tensile
strength and the ultimate tensile strain of concrete respectively ;
and a(L\ucr ) is the stress corresponding to .t he crack opening, 6ucr ,

at the fictitious crack .

3 DBEM formulation for the fictitious
crack model

The dual equations , on which the DBEM is based, are the displace­
ment boundary integral equation and traction boundary integral
equation. T he boundary integral rep resentation of the displace­
ment components can be written in te rms of the boundary point
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as

Cij (X')Ui(X') · + 1Tij(x' , X)Uj(x)dr(x)

= 1Uij (X' ,x)tj(J:(}dr(x)

where i and } denote Cartesian components, 1ij (x' ,x) and Uij(x ' ,x )
represent the Kelvin traction and displacement fundamental solu­
tions, resp ectively. The coefficient Cij (X') is given by Oij /2 for the
smoot h boundary at the point x' (Oij is the Kronecker delta) and
J the Cauchy principal value integral.

The boundary integral representation of the traction compo­
nents, can be written for a point on a crack surface as

Cij (x' )tj (x') + ni(X' )1Skij (~' , x}uk()()dr(:x:)

= ni(X')1Dkij (x' ,x)tk(x)dr(x) .
(3)

where Skij{X' ,x) and Dkij(X' ,x) are linear combinations of deriva­
tives of 1ij(x',x) and Uij(x' ,x), respectively. The ni denotes the
it h component of the unit outward normal to the boundary at point
x'. The coefficient Cij(X') is given by Oij /2 for the smooth boundary
and J denotes the Hadamad principal value integral.

In FCM, the cohesive forces in the fracture zone create an extra
unknown which should be evaluated simultaneously during each of
t he iteration processes. These forces are related to tractions by
t he definition of the DBEM cont ext. They can be introduced into
the dual boundary element formulation by separating the bound­
ary into two parts , i.e. the non-crack boundary represented-by r
and the crack boundary represented by r cr : Hence, the boundary
integral of the displacement components, eqn (2) can be written in
terms of boundary point as

Cij (X')Ui (x') + i Ti3(x' , x)uj(x)dr(x)
r -rc r

+ r Tij(xi,x)uT(x)drcr(x)i:
l Uij(x', x)tj~(x)drcr(X)i:

= r Ui3(X',x)tj(x)dr(x)
Jr - rcr

(4)

I
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where.ur (x) is the component of the displacement and tr (x) is
the unknown distribut ed cohesive forces applied at one of the crack
surfaces, T er -

The boundary integral representation of the traction compo­
nents, eqn (3), can be written for a point on a crack surface as

Cij (X' )tj (X') + ni( x') [-:-rerSkij (x ' ,x )uk(x )dr(x)

+ ni (x' ) r Skij(x',x)u~r(x)drcr(x)
l-: (5)

n;. (x') r Dkij(xi , x)t~r(x)drer(x)
i:

= ni(x,) .( Dkij(X' ,x)tk(x)dr(x)
Jr-rer

where ur (x) is the component of the displacement and tr (x) is
the unknown distributed cohesive forces applied at the other crack
surfaces, r cr - For traction-free cracks, tr = t f: = O. Equations
(4) and (5) constitute the basis of the DBEM to include an extra
unknown of the cohesive forces in the formulation. .

Equation (4) and (5) can be expressed in matrix form as

(6)

in which A is a coefficient corresponding to the vector X contain­
ing the unknowns u and t, an d F contains the known values of u
and t for the non-crack boundary. IHer] and IGcrJare coefficients
corresponding to the unknown displacement U cr and the unknown
cohesive forces tcr respectively, for the crack boundary. leer] and
(Dcr ] are the fictitious crack boundary conditions corr esponding to
t he vector {ucr} and {ter} resp ectively; and vector {Scr} is a ma­
t erial parameter. Forthe linear relation of a - b.ucr, matrices leer]
and [Der] contain 4 x 4 submatrices given by

o
- 1
o
o
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and vectors {Ucr} , {t cr } and {Scr} are given by

{
if}

{S~) = ~ ,

(8)
where [N] is the transformation matrix from the global to t he lo­
cal reference .system varying node by node on the fict it ious crack
surface. a denotes one of the crack surface and b for the other .

4 Crack modelling strategy

The general modelling st rategy developed in the present pap er can
be summ~rized as follows [12]:

i, The crack botinda~ies are modelled wit h discontinuous quadratic '
, elements, as shown in Fig. 2.

ii. The displacement boundary integral equat ion, eq. (4) , is applied
when the source p oint is located on one of the crack boundary.

iii. The t raction boundary integral equat ion, eq. . (5), is applied
when t he source point is located on the opposit e crack bound­
ary,

iv. The displacement bou ndary integral equat ion, eq. (4), is ap­
plied when the source point is located on the remaining non- .
crack boundaries of the body.

v. Cont inuous quadratic element are used along the remaining
boundary of the body, except at the intersection between a
crack and an edge, where discontinuous elements are required
on the edge in order to avoid a common node at the intersec­
tion (see Fig. 2).

The above modelling strategies are t he key point s of the DBEM.
For a given crack problem, once the modelling st rategy is defined,
the discretizati on of t he boundary was followed and then the final
step was to transform the int egral equat ion into a system of linear
algebraic equat ions, from which t he unknown discrete boundary
variables could be obtained.
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5 Numerical examples

A series of numerical simulations were conducted to demonstrate
the ability of the developed boundary element program to capture
the behaviour of the nonlinear fracture zone in concrete materials.
The simulations include the comparison with the finite element
method and experimental results.

5.1 Example 1: the development of the fracture
zone

Fig. 3 shows a notched beam subjected to three-point bending and
the material properties used in the analysis . It is assumed that
the U - E curve and the a - f:lucr curve are straight lines. The
depth, h = 0.2 m, the notch depth, a.= 0.05 m and the beam span,
l = 0.8 m were used as the geometry of the beam. The analysis
is a plane stress analysis with the width of 1 unit. The initial
boundary element mesh contains 73 nodes with 33 elements. .The
crack extension length is chosen to be 10 mm.

In Fig. 4 the fracture zone and the stress distribution in front of
the crack tip are shown for different positions on the load-deflection
curve. The fracture zone starts to develop as the specimen is sub­
jected to the load. At the early stage of loading a small fracture
zone has developed. The fracture zone further develops until the
maximum load is reached, where the depth of the fracture zone
is about 60 mrn. The stress distribution at the maximum load is
shown in Fig. 4(b).

It can be observed from this example that the material in front
of the crack tip is still able to transfer stress even after the maxi­
mum load is reached. A traction free crack will not propagate until
iteration 10 is reached, where the fictitious crack depth is about 100
mm. This indicates that for a material like concrete, there exists a
noticeable fracture process zone in front of the real crack tip, which
cannot be defined in material like metal. Therefore, the analysis of
concrete using the fictitious crack model is reasonably accurate for
analysing a crack propagation of standard beam sizes.
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5.2 Example 2: comparison with FEM and ex-
perimental results

Among the variety of Mode I fracture experiments, the three-point
bending of a notched beam, tested by Petersson [8], was selected for
the analysis. The major advantage of this example is that this beam
has been repeatedly used in experiments so that the necessary ma­
terial parameters , such as fracture energy, GF , are carefully spec­
ified. This allows the numerical results to be fairly matched with
the experimental results. In the experimental investigation [8], six
beams were tested in order to determine the value of GF. The
highest value of GF obtained was 137 N/m and the lowest was 115
N/m. In the numerical analysis, the value of GF of 124 N/m was
chosen as a reasonable value to fit the exp erimental investigation.
The beam is of depth h = 0.2 m, span length l = 2.0 rn, thickness
b = 0.05 m and the ratio between the notched depth and the beam
depth, afh, is chosen as 0.5. The material properties of the beam
are E; = 30000 MPa; f£= 3.33 MPa; 1/ = 0.2 and GF =124 Nzrn.
In the BEM analysis, the a - 6.ucr curve is assumed to be a linear
straight line (8L) and a bilinear line (BL). The initial boundary
element mesh is shown in Fig. 5(a) and contains 93 nodes with 41
elements. The analysis of the crack growth was performed byincre­
meriting the crack length for 10 rom at every iteration. Figures 5(b)
and (c) also shows the deformated shape of the beam for iteration
4 and 8.

The comparison of the numerical and experimental load-deflection
curve is shown in Fie. 6 for the same value of GF with two different
shapes ofthe softening curve, namely a linear straight line (8L) and
a bilinear line (BL). A good agreement was found for both BEM
analysis and FEM analysis. An accurate match for the experiment
is obtained when the bilinear line is applied. In contrast, the lin­
ear straight line leads to a solution that clearly falls outside the
experimental scatter. Hence, for this type of concret e the bilinear
line proposed by Petersson [8], obviously comes close to the exper­
imental result and at least is a better presentation than the linear
straight line. Therefore, it is shown that the numerical simulation
for such types of fracture problems is found to be extremely sensi­
tive to the input of the basic softening properties, i.e. the shape of
the softening branch and the value of GF .
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5.3 Example 3: . mixed mode prob lem i- single
notched

The first four examples were concerned with Mode I crack prop­
agation employing a linear st r aight line (SL) and a bilinear line
(BL). In this example, a more general case of mixed mode fracture
in a single notched beam, tested by Arrea & Ingraffea [13), will be
discussed . Fig. 7 shows the configur ation of t he beam. The condi­
t ion of load ing is non- symmetric, which implies that the fracture
propagating from the notch will show opening as well as sliding
(mixed-mode). In t he experiments, the load was applied at point
C of the steel beam AB and was controlled by a feedback mech­
anism, with the crack mouth slid ing.displacement (CMSD) as a
control parameter. CMSD refers to the relative displacement mea­
sured along the vert ical direction between notch surfaces. IIi the
numerical analysis the control parameter was the crack length in- ,
crement. In this example the crack length increment was taken as
20 mm, The concrete was modelled as linearly elastic in compres­
sion with t he following parameters: Ec = 24800 MPa, v = 0.18,
f: = 2.8 MPa and GF = 100 N/m. The beam had a thickness of
0.156 m.

The BEM results was compared ' with the two FEM results,
firstly by Rots & Blaauwendraad [14] who used a prescribed crack
path and secondly by Alfaiate et ol. [15] who used a non-prescrib ed
crack path. For all analyses a bilinear line (BL) of softening curve
was used. In BEM analysis the initial total number of nodes were
79 with 37 elements, as shown in Fig . 8(a). Also shown in Fig. 8 are
the deformation shape for certain crack increments and finally t he
crack path, as shown in Fig. 9. From the deformation shape and
the final crack path shown in Fig . 8 and 9, the BEM solut ion gives
an excellent illustration of t he real behaviour of a beam subjected
to shear loading. As in the experimental investigation or in the
FEM analysis, the crack path was predicted to propagate towards
the load. This was also demonstrated in the BEM analysis.

The solution of the analysis is summarized in Fig . 10 and 11. .
Fig. 10 shows the' load P against the crack mouth sliding displace­
ment (CMSD) . Fig . u shows the load P against the displacement
at poin t C, which is t he application ofload. The displacement at
point C is calculated from t he displacement value at A and Busing
a suitable interpolation function by assuming t hat th e steel beam '
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is infinitely stiff.
The results shown in Fig. 10 indicated that t he pattern of the

curves agreed for all of the analyses and it falls nicely within the
experiment al scatter at an early stage of loading, but started to ·
deviate after the peak load was reached. The experimental re­
sults obt ained by Arrea & Ingraffea [13J lie in the shaded area. In
this figure, the load-CMSD curves obtained num erically by Rots
& Blaauwendraad [14) and Alfaiate et 01. [15] using FEM analysis
were also shown. The former used a prescribed crack path while the
latter used a non-prescribed crack path. In the analysis, Rots con­
sidered two approaches which were a discrete crack approach and
a smearedcrack approach. Using a smeared crack approach it was
not possible to observe the post-peak region due to the numerical
problems related with t he model. The peak load obtained either
by BEM or FEM analysis is smaller than the experimental. This
may be due to the assumption that the aggregate.interlock was not
taken into account. When dealing with mixed mode problems , the
presence of shear stress will also influence the results and somehow
it must be t aken as another cracking parameter.

In addition to the load-CMSD response, the load-deflection re­
sponse has also been recorded, as shown in Fig. 11. The 1000­
deflection curve exhibits a sharp snap-back behaviour. In the ex­
perimental investigation this snap-back can be det ected if constant
crack mouth sliding displacement is imposed. On the other hand,
the snap-back behaviour can be capt ured numerically when using
crack length increments as a controlling parameter. For a mixed
mode problem, this scheme was applied by Carpinteri & Valente
[8] in FEM analysis. The experiment al load-deflection curves have
not been reported by Arrea & Ingraffea [13], so that a direct com­
parison with the experimental resul ts is not possible. However , th e
curve produced by the BEM analysis agreed well with the FEM
analysis .

6 Conclusion

From t his paper it can be concluded t hat the dual boundary element
formulation in conjunction with ficti tious ·crack model has been
developed and s hown computationally effective to analyse crack
propagation in concrete . .The use of the fictitious crack model to
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represent the fracturing process in concrete seemed to agree well
with t he experimental results . However , t he ty pe of the soften­
ing prop erties demonstrated by the stress-deformation curves also
played an important role. Two typ es of stress-deformation curves
were tested which were a linear straight line (SL) and a bilinear
line (BL). An accurate fit to t he experiment is obtained when t he
bilinear line is applied.
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