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Abstract: Most of soil structure interaction methods for analyzing large-section supports such as 

barrette foundation modeling the barrette and surrounding soil using 3D FE model. In which, the 

model leads to a large finite element mesh of a large system of linear equations to be solved. In 

this paper, a Composed Coefficient Technique (CCT) is adapted for analyzing barrette. The 

technique takes into account the 3D full interactions between barrette and the surrounding soil. 

Due to the high rigidity of the barrette relative to the surrounding soil, a uniform settlement along 

the barrette height can be considered. This enables to compose the stiffness coefficients of the 

soil matrix into composed coefficients, which consequently leads to a significant reduction in the 

soil stiffness matrix. The validity and the examinations presented in this research work were 

carried out with an application for analyzing barrette by CCT. This analysis can be extended for 

modeling the nonlinear behavior of single barrette and barrette-raft. In which, the barrette can be 

treated as single unit having a uniform settlement. 
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1.0 Introduction 

 

Heavy loaded structures need to be supported on deep foundations such as barrette. 

Analyzing this system of foundation is a complex task because it is a three-dimensional 

problem including the interaction between barrettes and soil. Considering this 

interaction requires a long computational time where a huge soil matrix is required to 

verify the compatibility among barrette and soil. The standard models for analyzing this 

complex problem depend on a full three-dimensional analysis, which leads to very large 

number of elements, and thus these models are time consuming even for the fast 

computers of today, especially when analyzing barrette group or barrette raft. A similar 

foundation element of pile maybe considered as a less complicated problem than that of 

the barrette cross section. Piles in most cases are circular in shape with small cross-

section area, while that of the barrette is large with a rectangular shape. Therefore, pile 

can be treated as a beam member exposed to point loads on its nodes, while barrette 
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treated as a block member. There are many available methods used to analyze piles most 

of them are used also to analyze barrette with equivalent cross section area to that of the 

pile (Basu  et al., 2008; Lei  et al., 2007 ; Seo  et al., 2009).  

 

Other alternative methods to analyze the barrettes are those using the full three 

dimensional finite element methods (Fellenius  et al., 1999; Thasnanipan  et al., 1998; 

Thasnanipan  et al., 2001; Shulyatiev  et al., 2013; Lin  et al., 2014). For single pile, pile 

group and piled raft, El Gendy (2007) presented a technique based on the flexibility 

coefficients an efficient analysis by using Composed Coefficient Technique (CCT) to 

reduce the size of the entire soil stiffness matrix. In this technique, the pile is treated as a 

rigid member having a uniform settlement for all nodes along its shaft and base. CCT 

enables to assemble pile coefficients in composed coefficients. This technique is applied 

efficiently for many studies (Hattab, 2007; Reda, 2009; Rabiei, 2009, 2010, 2016; 

Kamash, 2009, 2012; Kamash  et al., 2014; Ibrahim  et al., 2009; Mobarak, 2010; El-

Labban, 2011; Moubarak, 2013; Chieruzzi  et al., 2013; El Gendy  et al., 2013, 2014). 

This technique is also further developed to be used in this study for analyzing the 

barrette based on both flexibility coefficients and full 3D FE. The Advantage of the 

CCT is that interaction of soil elements with the barrette elements are taken into 

consideration. The proposed analysis reduces considerably the number of equations that 

needs to be solved. Another point of view to choice of the CCT for the barrette analysis 

is that the designer is interested in the soil settlements and contact forces at different 

levels on the barrette height not at each barrette node. The application of CCT enables 

the nonlinear response of the barrette by a hyperbolic relation between the load and 

settlement of the barrette. 

 

 

2.0 Mathematical Modeling 

 

2.1 Modeling Single Barrette Using Flexibility Coefficients 

 

Following the CCT for modeling pile foundation by El Gendy (2007), a composed 

coefficient ks [kN/m] representing the soil stiffness of the barrette is developed. The 

mathematical formulation of the composed coefficient ks for different cases of barrette 

analyses will be described in the forthcoming items. 

 

2.1.1 Soil Stiffness Matrix  

 

The rectangular cross sectional barrette shown in Figure 1 is divided into a number of 

shaft elements and base elements with ns nodes, each acted upon by a distributed stress. 

To carry out the analysis, the stresses acting on shaft and base elements are replaced by 

a series of concentrated forces acting on nodes.  
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Figure 1: Barrette geometry, elements and stresses 

 

 

The settlement of the soil at any node i of the barrette may be rewritten in general form 

as: 

 

Q I  = s
jj i,

n

j
i

s


1=

     (1) 

 

where: si is soil settlement on any node i either on the shaft or on the base, (m); Qj is 

contact force on node j, (kN); Qj represents either the forces on shaft nodes or base 

nodes; ns is total number of contact nodes; Ii, j is flexibility coefficient of node i due to a 

unit force on node j (m/kN). Closed form equations for these coefficients are described 

in the Appendix A. Eq. 1 for settlements of the soil adjacent to all nodes of the barrette 

may be written in a matrix form as: 

 

    Q Is = s
     

(2) 

 

where {s} is ns settlement vector; {Q} is ns contact force vector; [Is] is ns×ns soil 

flexibility matrix. Inverting the soil flexibility matrix in Eq. 2, leads to: 

 

    s ks = Q
     

(3) 

where [ks] is ns × ns soil stiffness matrix, [ks] = [Is]
-1

. 
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2.1.2 Rigid Analysis  

 

The barrette is a huge concrete volume, which may be considered as a rigid body 

subjected to vertical loads and moves vertically with a uniform displacement, wo = s1 

=s2=...= sns on all its nodes. Therefore, the unknowns of the problem are reduced to ns 

contact forces and the rigid body displacement wo. Carrying out the summation of all 

contact forces in the Eq. 3, leads to: 

 

k   wo= Q j i,

n

=j

n

=i
i

n

=i

sss


111

   
 

(4) 

 

where ki, j are the coefficients of the soil stiffness matrix [ks]. Eq.4 may be rewritten as: 

 
 woks = Ph      (5) 

 
where the applied force Ph (kN) on the barrette head is the sum of all contact forces Qi, 

Q = Ph
i

n

i

s


1=

, while the composed coefficient ks (kN/m) is the sum of all coefficients of 

the soil stiffness matrix, k  = ks j i,

n

=j

n

=i

ss


11

.  

 

Eq.5 gives the linear relation between the applied load on the barrette head and the 

uniform settlement wo of all barrette nodes. For a single barrette, the applied load on the 

barrette head Ph is given and hence the uniform settlement wo can be determined from 

Eq. 5. Substituting the value of wo in Eq. 3, gives ns unknown contact forces Qi in case 

of considering the barrette as full rigid body. 

 

2.2 Modeling Barrette and Subsoil Using 3D Finite Elements 

 

The barrette and the surrounding subsoil are represented by 3D finite elements as shown 

in Figure 2, which presented a quarter of the mesh and barrettes. Then, the finite element 

method is used for analyzing the barrette and subsoil medium together using solid block 

elements. Each element consists of eight nodes; each node has forces and displacements 

in the three directions. The composed coefficient technique is used to perform the 

analysis of the single barrette and barrette group. 

 

The next paragraphs illustrate the generation of a stiffness matrix of composed 

coefficients for a single barrette. The same procedure can be applied for barrette groups 

or barrette raft. Consider the simple finite element mesh in the cross section of a barrette 

and subsoil shown in Figure 3 as an example. The subsoil has the nodes from 1 to 69, 

while the barrette has the nodes 70 to 90. 
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Figure 2: Quarter mesh of 3D finite elements of a barrette and the surrounding subsoil 

 

 
 

Figure 3: Simple finite element mesh in a cross section of the barrette and subsoil 
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The global stiffness matrix equation of the system of the single barrette and the 

surrounding subsoil can be expressed as: 

 

     kpP δ
     

(6) 

 

where {δ} is 3n displacement vector {u, v, w}; {P} is 3n vector of applied load {px, py, 

pz}; [kp] is (3n×3n) Stiffness matrix; n is number of the total nodes. 

 

The barrette nodes in the matrix equation, Eq. (6) are rearranged to be at the end of the 

matrix. Considering uniform displacements in the three directions due to the high 

barrette rigidity and carrying out the summation of the corresponding stiffness 

coefficients, Eq. (6) can be rewritten and expanded as: 
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where ki, j is the stiffness coefficient of the global stiffness matrix. 

 

Equating displacements in each direction of all nodes on the barrette by uniform 

displacements ux, vy and wz and carrying out the summation of rows and columns related 

to that displacements in Eq. (7), gives the composed coefficients with the force on the 

barrette Qx, Qy and Qz as follows: 
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where Qx is sum of horizontal forces in x-direction on all barrette nodes, Qx=∑Px=0; Qy 

is sum of horizontal forces in y-direction on all barrette nodes, Qy=∑Py =0; Qz is sum of 

vertical forces on all barrette nodes, Qz=∑Pz= Ph; ux is uniform displacement in x-

direction on all barrette nodes, ux= u70= ..= u90. vy is uniform displacement in y-direction 

on all barrette nodes, vx= v70= ..= v90; wz is uniform displacement in z-direction on all 

barrette nodes, wx= w70= ..= w90; i1=3 i -2, i2=3i-1, i3=3i, j1=3j-2, j2=3j-1, j3=3j. Solving 

the above system of linear equations, gives the displacement at each node, in which the 

vertical displacement is equal to the soil settlement at that node. Substituting barrette 

displacements from Eq. (8) in Eq. (7), gives contact forces on the barrette. 

 

 

3.0 Numerical Results 

 

The proposed method for analyzing barrette using CCT outlined in this paper was 

implemented in the program ELPLA. With the help of this program, an analysis of two 

verification examples is carried out first to judge the proposed method for both linear 

and nonlinear analyses. Then, a comparative examination of modeling for analyzing 

single barrette is carried out. Finally, case studies for barrettes on the soil of the new 

area of East Port Said are presented. 

 

3.1 Validity of Nonlinear Analysis of Single Barrette 

 

Thasnsnipan  et al. (1998) and Lin  et al. (2014) carried out load tests of single barrettes 

having a rectangular cross section embedded in a multi-layered soil medium. In the load 

tests, results of barrette load tests are obtained from Bangkok, Thailand subsoil area and 

Taipei, Thailand subsoil area. 
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The load on the barrette head and barrette geometry for the chosen cases are listed in 

Table 1 and Table 2. The subsoil of each case consists of different layers, each layer 

having a different Modulus of Elasticity Es and Poisson's ratio νs as listed in Table 3 and 

Table 4 (Thasnsnipan  et al., 1998; Plaxis Bulletin, 2012).  

 

 
Table 1: Loads and barrette geometries 

Load (kN) Height (m) Cross section 

14000 

61.8 0.82 m × 2.7 m 28000 

35000 
 

Table 2: Barrette geometries 

Height (m) Cross section 

44 0.80 m × 2.5 m 

 

 

 
Table 3: Subsoil properties 

Layer 

No. 
z (m) Es (kN/m

2
) νs (-) 

1 12.5 5000 0.33 

2 23 60000 0.33 

3 37 80000 0.3 

4 40 20000 0.33 

5 53 80000 0.30 

6 58 20000 0.33 

7 

 

∞ 

 

80000 

 

0.30 

 
 

Table 4: Subsoil properties 

Layer 

No. 
z (m) Es (kN/m

2
) νs (-) 

1 26.46 93793 0.25 

2 28.40 253293 0.25 

3 30.44 221593 0.25 

4 33.60 88391 0.25 

5 36.80 131381 0.25 

6 40.80 192106 0.25 

7 42.44 166948 0.25 

8 ∞ 229738 0.25 
 

 

 

A comparison of the results of a single barrettes in a multi-layered soil medium of the 

present analysis using flexibility coefficient with Thasnsnipan  et al. (1998) and Lin  et 

al. (2014) are presented herein, The height of the barrette is divided into equal elements, 

each element has a height of h = 1.0 (m). Both the barrette length and width are divided 

into four equal elements. The barrettes are analyzed nonlinearly using a hyperbolic 

function to represent the real load settlement curve relation. In the analysis, the barrette 

is assumed to be fully rigid having a uniform settlement. 

 

A limit barrette load Ql has been used as a parameter geometry for the hyperbolic curve 

of nonlinear response of load settlement relation. (Russo, 1998) suggested a limiting 

shaft friction not less than 180 kN/m
2
 meeting undrained shear strength of 200 kN/m

2
. 

To carry out the present nonlinear analysis a limit shaft friction of ql = 220 kN/m
2
 is 

considered, which gives a limit barrette load of Ql = 96 MN to compare with the result 

with those of  (Thasnsnipan  et al., 1998), A limit barrette load of Ql = 50 MN is taken, 

to compare with the result with those of (Lin  et al., 2014), where it is assumed from the 

load settlement curve of (Lin  et al., 2014).  

 

The barrette load-settlement relations obtained from the present nonlinear analysis using 

flexibility coefficient are compared with those of the load tests carried out by 
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(Thasnsnipan  et al., 1998; Lin  et al., 2014) in Figure 4 and Figure 5 respectively. From 

these figures, it can be concluded that the difference of the measured and computed 

settlement is less than 10.0 [%], which have a very small value of 0.04 cm and 0.16 cm 

compared with those of (Thasnsnipan  et al., 1998; Lin  et al., 2014) respectively. It is 

also very small when compared to the barrette dimensions. It also shows that the 

verification of the load-settlement behavior of the present nonlinear analysis are in good 

agreement with those of measured load settlement tests carried out by (Thasnsnipan  et 

al., 1998; Lin  et al., 2014).  

 

 

 
Figure 4:Load settlement curve 

 
Figure 5:Load settlement curve 

 

 

3.2 Examination of Models Used CCT with Those Used in Traditional 3D FE. 

 

A single barrette having a rectangular cross section embedded in subsoil layers is 

analyzed using different numerical models, as follows: 

 
1- Model (1): 3D finite element model of soil and CCT for barrette. 

2- Model (2): Flexibility coefficient model of soil and CCT for barrette. 

3- Model (3): 3D traditional finite element model analyzed by program SAP 3D. 

4- Model (4): 3D traditional finite element model analyzed by program PLAXIS 3D. 

 

In 3D traditional finite element models of SAP 3D and PLAXIS 3D the barrette-soil 

systems are represented by block elements. The composed coefficient technique CCT is 

implemented in both models presented in this study. In this case, the barrette is treated 

as a rigid body having uniform settlement. This technique reduces the commotional time 

and size of the problem as these two terms considered as main difficulties in the three 

dimensional problems.      

 

The results of the four models are compared for verification. The barrette shown in 

Figure 6 is considered and analyzed linearly. Different loads on the barrette head with 

different dimensions are studied and not included in this paper. Only the barrette of 3.0 
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m length, 1.0 m width and 20.0 m height with a load of 2100 kN is presented in this 

paper as an example.  

 

 

 
Figure 6: Single barrette with subsoil 

 
Table 5: Subsoil properties 

Soil z [m] Es [kN/m
2
] νs [-] 

(A) 40 20000 0.30 

(B) 40 5000 0.30 

(C) 100 5000 0.30 

(D) 40 20000 0.30 

100 5000 0.30 

(E) 40 5000 0.30 

100 20000 0.30 

 

 

As listed in Table 5, five study cases were considered, as follows: 

 

 Case (A), (B) and (C) contains single soil layer. 

 Case (D) includes two different soil layers with a relatively harder top layer. 

 Case (E) includes two different soil layers with a relatively harder bottom layer. 

 

For models 1 to 3, the height of the barrette is divided into equal elements, each of 2.0 m 

height. The barrette length and width are divided into two equal elements. In model 4 

analyzed by PLAXIS 3D, the generation of the elements are created automatically and it 

chosen to be very fine. To ensure full interaction between the isotropic elastic half-space 

soil medium and the barrette, the dimension of the soil around the barrette is extended 

enough. To verify that many trial with different distances in the 3 spaces are carried out. 

The barrette is analyzed linearly and the barrette is assumed to be fully rigid having a 

uniform settlement.   
  

H
 =

 2
0
 m

 

L = 3.0 m 

Soil 

Es (kN/m2) 

νs  (-) 
z

  
  (m) 

 

 

z 



Malaysian Journal of Civil Engineering 29(3):273-288 (2017) 283 

 

In the first model, the barrette and the soil elements are solved as double symmetric 

system to reduce the number of equations to one quarter. Consequently, the 

computational time is also reduced. The barrette settlements obtained from the different 

models are compared. Table 6 shows the settlement results for the different models. 

 

 
Table 6: Comparison between settlements obtained from different models 

Case  

Settlements [cm] 

Present analysis 
Model (3) SAP 3D Model (4) PLAXIS 3D 

Model (1) 3D FE  Model (2) FC 

A 0.588 0.549 0.580 0.576 

B 2.123  2.198 2.202 2.157 

C 2.396  2.577 2.491 2.453 

D 0.746  0.929 0.773 0.781 

E 2.201  2.284 2.288 2.244 

 

 

From those results, it can be seen that the results of the present study are in good 

agreement with those obtained by the other models for different cases. 

 

3.3 Examination of Mathematical Models Using CCT 

 

A single barrette having a rectangular cross section embedded in different subsoil 

conditions is analyzed using the two different models based on CCT technique: 

 
1. 3D finite element model. 

2. Flexibility coefficient model. 

 

Results of 3D finite element model are compared with those using flexibility coefficient 

model. In 3D finite element model, the barrette-soil systems are represented by block 

elements, each consists of eight nodes. The composed coefficient technique CCT is 

implemented in both 3D finite element and flexibility coefficient models. In this case, 

the barrette is treated as a rigid body having uniform settlement. This technique reduces 

the commotional time and the size of the problem as these two terms considered as main 

difficulties in the three dimensional problems.   

 

The purpose of the comparative study is showing the limitations and differences in both 

results and also to be a guideline to determine which model may be preferably used in 

the analysis. The barrette shown in Figure 7 is considered and analyzed linearly for 

twelve different cases of loads, subsoil and geometries. Analysis covered a wide range 

of variables of barrette length L and barrette height H. The effect of these variables on 

the settlement is also investigated. The barrette geometry for the chosen cases is listed in 

Table 7, while the loads on the barrette head of each case are listed in Table 8. 
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Figure 7: Single barrette with subsoil (A) 

 

 
Table 7: Barrette geometries. 

Length/ 

Height 
L = 1.5 L = 2.0 L = 2.5 L = 3.0 

H = 20 Case 1 Case 2 Case 3 Case 4 

H = 30 Case 5 Case 6 Case 7 Case 8 
 

Table 8: Barrette loads. 
Length/ 

Height 
L = 1.5 L = 2.0 L = 2.5 L = 3.0 

H = 20 1050 1400 1750 2100 

H = 30 1200 1600 2000 2400 
 

 

 

Table 9: Subsoil properties. 

Soil z [m] Es [kN/m
2
] νs [-] 

(A) 2 H 5000 0.30 

(B) 0.4 H 5000 0.40 

1.2 H 8000 0.35 

2 H 10000 0.30 

 
(C) 0.6 H 5000 0.40 

2 H 25000 0.30 

(D) 0.6 H 25000 0.30 

2 H 5000 0.40 

 

 

The eight cases of loads and geometries are analyzed with different subsoil as listed in 

Table 9 as follows: 

 

 Soil (A) Single layer. 

 Soil (B) Three different layers extended from a weak layer to a hard one. 

 Soil (C) Two different layers, the first is a weak layer and the second is a hard one. 

 Soil (D) Two different layers, the first is a hard layer and the second is a weak one. 

 

H
 (

m
) 

L (m) 

Es = 5000 kN/m2 
νs= 0.30    - 

Z
 

 =
2

H
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A single barrette is analyzed in a single soil layer, and the height of the barrette is 

divided into equal elements, of 1.0 m height each. The barrette length and width are 

divided into two equal elements. To ensure full interaction between the isotropic elastic 

half-space soil medium and the barrette, the dimension of the soil around the barrette is 

extended enough. The barrette is analyzed linearly and the barrette is assumed fully rigid 

having a uniform settlement. In the 3D finite element model, the barrette and the soil 

elements are solved as double symmetric system to reduce the number of equations to 

quarter. Consequently, the computational time is also reduced. The barrette settlements 

obtained from both analyses are compared. Figure 8 to Figure 11 show the settlement 

results and the difference in the calculated settlements for the two models. From these 

figures and tables, it can be concluded that: 

 

 For the four cases, settlements are identical for both models. The maximum 

difference in the settlement of both models lies between 0.1 cm and 0.2 cm, which is 

equal to a very small value when compared with the barrette dimensions.  

 

 Finally, both flexibility coefficient and 3D finite element models can be used safely 

in the linear analysis of single barrette. 

 

 Due to the less number of nodes in flexibility coefficient model rather than 3D finite 

element model, the first model consumes less computation time in the analysis. 

 

 
Figure 8: Comparison between settlements, Soil 

(A) 

 
Figure 9: Comparison between settlements, Soil 

(B) 
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Figure 10: Comparison between settlements, 

Soil (C) 

 
Figure 11: Comparison between settlements, 

Soil (D) 

 

4.0 Conclusions 

 

An application of CCT on barrettes as large-section supports is presented. The proposed 

technique considers the 3D full interactions between barrette and soil. From application 

of CCT technique on real soil, it can be concluded that: 

 

 Both flexibility coefficient and 3D finite element models can be used safely in the 

linear analysis of single barrette in cases of half space soil, soil consists of different 

layers extended from weak to hard layers, and the results are identical.  

 

 For soils that consist of different layers extended from hard layer to weak one, the 

maximum difference in the settlement between both models is high and reaches 

twice. It is found that settlements from 3D finite element model are less than those 

of flexibility coefficient model. This is related to, in 3D finite element mode, the 

first harder layer is to act as a support for the next weaker soil layer, where the soil is 

treated as continuum structure connected together and maybe resist soil tension. In 

this case interface elements between the two layers maybe inserted to enhance the 

results.   

 

 Flexibility coefficient model can be used safely to model all cases of soil conditions. 

 

 Due to the less number of nodes in flexibility coefficient model rather than 3D finite 

element model, the first model consumes less computation time in the analysis. 
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