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ABSTRACT

A numerical procedure is presented for simulating three dimensional turbulent
flow problems. The mass-averaged Navier-Stokes equations are solved together
with the low-Reynolds k - o two-equation turbulence model. The standard
Galerkin approach is used for spatial discretisation.  Stabilisation and
discontinuity capturing is achieved by the addition of an appropriate diffusion.
An explicit muliistage time stepping scheme is used to advance the solution in
time to steady state. The study of realistic problems involving complex
geometries can be achieved by using parallel computers. The results of a
simulation involving transonic turbulent flow about a complete aircraft are
presented. ' :

NOMENCLATURE

Ty - weight coefficient for edge 77, in direction x;

Dy weight coefficient for face f

D, D, dissipation of k & @ defined by Eq. (6)

Dy diffusion of k in direction x; defined by Eq. (5)
D, diffusion of ® in direction x; defined by Eq. (5) -
e FE internal and total energy

F inviscid flux in direction x;

G viscous flux in direction x;

k turbulence kinetic energy
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4 number of boundary faces connected to node T
my number of edges connected to node I
M, lumped mass matrix

p pressure :

PP, production of k & ® defined by Eq. (6)
Pr Prandti number

Pr, turbulent Prandt] nomber

g; heat flux in direction x;

Re Reynolds number

h) SOurce term

Sy strain tensor defined as (u;; + 1;; )2

t time :

T temperature

u; velocity in direction x;

U vector of unknowns

X i - th coordinate

Greek symbols

oo, B, B, o, 0, turbulence model closure constants

The simulation of inviscid compressible flow over realistic aerodynamic
configurations may now be routinely accomplished using an unstructured mesh
It has been demonstrated that accurate inviscid flow

approach [1,2,3].
simulations require relatively small meshes and that calculations can be
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¥ specific heat ratio

0; Kronecker delta

i melecular viscosity

/A turbulent viscosity

P density

® turbulence specific dissipation
T stress tensor defined by Eq. (3)
T; turbulent stress defined by Eq. (3)
Super'scripté ‘

- prescribed normal boundary flux

n normal flux

f turbulent
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performed, in a reasonable time, on a wide variety of computer platforms.
However, the simulation of viscous compressible flows over complete aircraft
remains a challenging task. The presence of the viscous dominated regions in
the flow domain, requires the use of highly stretched elements close to solid
boundaries and this impacts on the performance of the solution algorithm. In
- this work, we employ an unstructured grid finite element approach which has
already been tested for several configurations in both the laminar and turbulent
flow regimes [4, 5]. Turbulent flow is simulated using the low-Reynolds k — w
turbulence model [6]. The generation of an appropriate unstructured grid over a
general three dimensional body, is a non-trivial task. Here, a capability is
employed in which layers of highly anisotropic tetrahedral are generated near
solid surfaces by an advancing normal method. The remainder of the grid is
completed by the generation of isotropic tetrahedra using a Delaunay approach
[7].  Accuracy considerations will require the use of very large grids when
realistic -configurations are analysed and a paraliel implementation of the
solution algorithm is used to reduce the clapsed time requirements of the
approach. The result .of a simulation of transonic turbulent flow over B60

aircraft is included.

GOVERNING EQUATIONS

The system of governing equations for a compressible turbulent flow comprises
the mass-averaged equations of mass, momentum and energy. In the context of
two-equation turbulence modelling, the system is closed by introducing transport
equations for the turbulence kinetic energy k and the turbulence specific
dissipation . The complete system of-governing equations is written in the non-
dimensicnal conservative form

oU | oF 967 _

7 T =S. _ _
ot =~ dz; Oz . _ (1
where the summation convention is employed and -
A ' [ pU; r 0 I
puy put; + pdy; _ Ty
Pz _ puat; 4 pby; N : Toj
U= |pus) T7=|pugu; +pds| G = T3 ©
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and S=[00000 P, -D¢ P, - D) for iandj = 1,2,3. Hereall of
the variables are time-averaged mean values and the dimensionless form
employed is based upon the density, velocity and molecular viscosity of the free
stream and a characteristic length of the problem. In the above equations,
denotes time, x;, the coordinate relative to a Cartesian coordinate system Ox,x,x;,
u; the velocity in direction x; , o density, p the pressure and &; the Kronecker
delta. The total energy per unit mass is defined as E = e + uu/2 + k, where e is
* the mass-averaged specific heat ratio . obeying the equation of state p = p (¥ —
1)1y, where Tis the temperature. The stress tensor, T}, represents the effect of
both molecular and eddy viscosities and, for a Newtonian fluid, may be written

das

2
Tz'_j = ,[L (51.7 e 1 auktﬁ ) + Tfj Wlth

AN
Ht Ug
o= e (% 5nta) - 5okt

(3

Here S; = (u;,; + ;.2 and [, is the turbulence v1scosuy defined as o kae/a) In
addition, the heat flux in direction x; is modelled as '

- e\ 9T @)
( (Pr + P'rt) dz; '
and ;
ij .= RLG M + 'u—t g;; .
(5)

The production and disstpation of & and ware modelled as

Ou; aw
P = Titj 5;; Pw‘ = ?Pk
Dk = ﬁ*pwk‘ Dw = ﬁpwz (6) .

In the above equations, § = 3/40, B'=009 o =590 =1 0=0,=2are
closure constants. '
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Imitial / Roundary Conditions
Suppose that the solution is required in a spatial domain, Q , which is bounded
by a closed surface, T, with unit outward normal vector n = (n;, ny n3). The
correct specification of a problem governed by equation (1) will then require the
definition of an initial condition and appropriate boundary conditions. For the
wnitial condition, it will be assumed that free stream values are imposed
everywhere in Q at some time r = ¢,. At a wall boundary, the no slip condition u;
= 0 is imposed. If the wall is assumed to be isothermal, the temperature of the
wall will also be prescribed, while a zero heat flux condition is imposed if the
wall 1s assumed to be adiabatic. The turbulence kinetic energy, £, is set to zero
at a wall while @ is required to demonstrate the correct asymptotic behaviour as
the wall is approached. At a far field boundary, the conditions which have to be
imposed will depend upon the local nature of the flow.

SOLUTION ALGORITHM

A weak variational formulation of the problem is adopted as the starting point
for the development of an approximate solution procedure. The region Q is
discretised into an unstructured assembly of tetrahedral elements and a Galerkin
weighted residual method is employed [8]. A piecewise linear finite element
approximation is sought, with the integrals appearing in the Galerkin statement
being evaluated using an edge-based data structure [2]. The result, at node I of
the mesh, is the equation :
[ML%E] = [Mg]; S;+
tlr

mrood . . . .
=2 G H® ) — (G4 G )3+

s=1 :

£ '
(2_D{(6F7 + 2F, 4+ Fp,)- |

f= i _ %)
(6G7+2G}, + G701y

where the summations extend over the m; edges, and the I, boundary faces
connected to node /. The term {...} is only non-zero if node I is on the -
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Sketch 1 Domain decomposition; Interior edges (solid lines) and
Interface edges (dashed lines)

boundary, the overbar presents a prescribed normal boundary flux, C” neand Dyare
the weight functions associated with edge /I, and face f, respectively, and ML is
the lumped mass matrix. :

This formulation represents a central difference type of approximation and, in

order to produce a practical scheme; a consistent numerical flux is substituted for

the actual inviscid flux. This is accomplished by using a flux function designed

to produce an unstructured grid implementation of the artificial dissipation

scheme of Jameson et al. [1]. This flux function consists of a blend of

stabilisation and discontinuity capturing operators, with a pressure sensor

controlling the magnitude of the discontinuity capturing term. The solution is -
advanced by an explicit three-stage Runge-Kutta shceme.

PARALLEL SOLVER

A paralle! implementation of the flow solver is achieved by using the single
program multiple data concept, in conjunction with the use of standard PVM or
MPI routines for message passing. No attempt has been made to optimise the
coding for performance on any particular computer platform. The starting point
for using a parallel solver is to decompose the mesh for the original
computational domain into a number of smaller meshes of sub-domains, as
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illustrated in Sketch 1. For the example to be presented here, this is achieved be
employing the recursjve spectral bisection software of Simon [9]. Following this
decomposition, the nodal points and the mesh edges are locally renumbered
~within each sub-domain. The goveming equations are then solved on the
individual sub-domains using the standard algorithm, with the sub-domain
solutions being patched together to produce the solution of the original problem.
In the edge based flow solver, the main data structure takes the form of a pointer
form edges to points. In the main computation, consisting of loops over edges in
the mesh, information from points is gathered to edges and edge information is
scattered and added to points. In the parallel implementation, edges in the mesh
are owned by only one domain and are not duplicated. Nodal points are owned
by one domain, but are duplicated at sub-domain boundaries, creating a halo of -
dummy points, to enforce data locality. At the start of each time step, the
interface nodes obtain contributions from the interface edges. These partially
updated interface nodal contributions are then broadcast to the corresponding
interior nodes in the neighbouring sub domains. A loop over the inferior edges is
followed by the receiving of the interface node contributions and the subsequent
updating of all interior nodal values, The sending of the updated values back to
the interface nodes completes a time step of the procedure. The process is
implemented. in such a way that it attempts to allow computation and
communication to take place concurrently.

RESULTS

To demonstrate the performance of the solution algorithm, transonic tarbulent
flow over a model of B60 aircraft is considered. This configuration consists of
wing, fuselage, pylon and nacelle. The free stream conditions are -defined by a
Mach of 0.8 and an angle of attack 2.738 degrees, while the Reynolds number is
10 x 10° based on the mean aerodynamic chord. The generated surface grid is
shown in Figure 1 and contains 66,796 triangular elements on the body and the
symmetry plane. In the viscous mesh generation process, 18 layers of the
elements in the first layer being 5 x 10 the mean aerodynamic chord. The
complete volume grid consists of 3,478,261 tetrahedral elements and 587,008
nodal points. The simulation was performed on a CRAY T3D, using 64
processors, and required 25 x 10-6 seconds per time step per nodal point. The
computed distribution of the pressure contours, after 25,000 time steps, on the
wing is shown in Figure 1. It is seen that a complex shock pattern is formed on
the upper surface of the wing. This adds to the complexity of the flow domain
by inducing shock-shock and shock-boundary layer interactions. Tt is therefore
crucial to predict the position and strength of the shock accurately. Two main
factors which control the accuracy of resuits are the level of numerical
dissipation and the mesh spacing size. In this problem, the numerical dissipation
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was kept to a minimum and a reasonably fine surface mesh was used. However,
the resolution of the shock can be further improved by refining the size of
elements near the leading edge of the wing and/or using adaptivity methods to
refine the shock locally. In both cases, a considerable increase in the number of
elements is expected which results in even more expensive computations. The
detail of mesh, Mach, pressure and density contours for a plane cut through the
engine are shown in Figures 2 and 3. These figures show the complexity of the
flow about the engine and the significance of the engine outflow. The figures
also show the shock waves on the upper surface of the wing and the high
- pressure waves in front of the engine. In Figure 4, surface pressure coefficients
for two different sections of the wing are compared with the experimental data.
It is seen that the computed pressures for the lower surface are in good
agreement with the experimental data. The computed pressures for the upper
surface are also of the correct level and in some parts coincide with the data from
experiment. The shock wave on the upper surface of the wing is also well
represented and confirms the suitability of the proposed method.

CONCLUSIONS

It has been demonstrated that turbulent comipressible transonic flow about a
complete aircraft can be simulated by using a parallel unstructured grid
approach. A finite clement based algorithm has been presented for the
simulation of three dimensional compressible turbulent flows on unstructured
grid approach. A finite element based algorithm has been presented for the
simulation of three dimensional compressible turbulent flows on unstructured
tetrahedral grids. Turbulence is modelled with the two-equation k — @ model and
the resulting numerical scheme is implemented in terms of an edge based data
representation of the mesh. The results obtained for a model aircraft show that
simulations with desirable accuracy can be conducted for industrial
configurations. The running time requirements need to be reduced before the

approach can be routinely employed in the design environment. - ‘ 1
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Figure 2 A plane cut through engine
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Figure 3 A plane cut through engine
(top: pressure contours, bottom: density contours).
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Figure 4 Compari-son of computed pressure coefficient distributions
(plus) with experimental data (diamonds).
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