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ABSTRACT 
 
The Artificial Neural Network (ANN) is a method of computation inspired by 
studies of the brain and nervous systems in biological organisms.  A neural 
network method is considered as a robust tools for modelling many of complex 
non-linear hydrologic processes. It is a flexible mathematical structure which is 
capable of modelling the rainfall-runoff relationship due to its ability to 
generalize patterns in imprecise or ‘noisy’ and ambiguous input and output data 
sets. This paper describes the application of multilayer perceptron (MLP) and 
radial basis function (RBF) to predict daily runoff as a function of daily rainfall 
for the Sungai Lui, Sungai Klang, Sungai Bekok, Sungai Slim and Sungai Ketil 
catchments area.  The performance of ANN is evaluated based on the efficiency 
and the error.  It has been found that the ANN has a potential for successful 
application to the problem of runoff prediction. 
 
Keywords:       Artificial Neural Network, MLP, RBF, Rainfall-Runoff Modelling  
 
 
 
 
 
 
 
INTRODUCTION 
 



  
 

The relationship of rainfall-runoff is known to be highly non-linear and complex.  
The rainfall-runoff relationship is one of the most complex hydrologic 
phenomena to comprehend due to the tremendous spatial and temporal variability 
of watershed characteristics and precipitation patterns, and the number of 
variables involved in the modelling of the physical processes [1].  Hydrologists 
are often confronted with problems of prediction and estimation of runoff, 
precipitation, contaminant concentrations, water stages, and so on [2].   Although 
many watersheds have been gauged to provide continuous records of stream 
flow, hydrologists are often faced with situations where little or no information is 
available.  In such instances, simulation models are often used to generate 
synthetic flows. The available rainfall-runoff models are HEC-HMS, MIKE-11, 
SWMM, etc.  These models are useful for the hydrologic and hydraulic 
engineering planning and design as well as water resources management; e.g., 
hydropower generation, flood  protection and irrigation. The existing popular 
model is considered as not flexible and they require many parameters. Obviously, 
the models have their own weaknesses.  Therefore, in view of the importance of 
the relationship between rainfall-runoff, the present study was undertaken in 
order to develop rainfall-runoff models that can be used to provide reliable and 
accurate estimates of runoff. 
 

ANN models have been used successfully to model complex non-linear input-
output relationships in an extremely interdisciplinary field. The natural behaviour 
of hydrological processes is appropriate for the application of ANN method.  In 
terms of hydrologic applications, this modelling tool is still in its nascent stages 
[2].  Several studies indicate that ANN have proven to be potentially useful tools 
in hydrological modelling such as for modelling of rainfall-runoff processes [3, 
4, 5, 1]; flow prediction [6, 7]; water quality predictions [8]; operation of 
reservoir system [9, 10]; groundwater reclamation problems [11]; etc.  The 
objective of the present study are to develop rainfall-runoff models using ANN 
methods.  The modelling work is carried out using 5 years period of the rainfall 
and runoff records from five selected catchments in Peninsular of Malaysia.  
Those are Sungai Lui (Selangor), Sungai Bekok (Johor), Sungai Slim (Perak), 
Sungai Ketil (Kedah), and Sungai Klang (Kuala Lumpur) in the central part of 
Malaysia.  Sg. Ketil catchment is a fully natural area and covers about 704 km2 of 
catchment area.  The Sg. Lui (68.1 km 2 ), Sg. Bekok (350 km 2 ) and Sg. Slim 
(455 km 2 ) catchments are semi-developed area.  While, the Sg. Klang catchment 
is a fully developed area consists of 468 km2 of catchment area. 
 
 
 
 
NEURAL NETWORK MODEL 
 



  
 

An ANN can be defined as ‘a data processing system consisting of a large number 
of simple, highly interconnected processing elements (artificial neurons) in an 
architecture inspired by the structure of the cerebral cortex of the brain’ [12]. The 
ANN try mimic the functioning of the human brain, which contains billions of 
neurons and their interconnections.  Two types of neural network architectures, 
namely multilayer perceptron (MLP) and radial basis function (RBF) network are 
implemented.  The architecture of an ANN is designed by weights between 
neurons, a transfer function that controls the generation of output in a neuron, and 
learning laws that define the relative importance of weights for input to a neuron 
[13]. The objective of ANN is to process the information in a way that is 
previously trained, to generate satisfactory results.   Neural network can learn from 
experience, generalize from previous examples to new ones, and abstract essential 
characteristics from inputs containing irrelevant data [14].  The main control 
parameters of ANN model are interneuron connection strengths also known as 
weights and the biases.  In all cases, the output layer had only one neuron, that is, 
the runoff. 
 

Multilayer Perceptron  
 
The first technique of neural network modelling is the MLP model, and  the 
architecture of a typical neuron with single hidden layer is shown in Figure 1.  
Basically the MLP consists of three layers: the input layers, where the data are 
introduced to the network; the hidden layer, where the data are processed (that can 
be one or more) and the output layer, where the results for given inputs are 
produced.   
 
Each layer is made up of several nodes, and layers are interconnected by sets of 
correlation weights. Each input node unit (i=1,…,m) in input layer broadcasts the 
 
input signal to the hidden layer. Each hidden node (j=1,…,n) sums its weighted 
input signals according to 
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applies its activation function to compute its output signal from the input data as 
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and sends this signal to all units in the hidden layer. Note that ijw  is the weight 

between input layer and hidden layer, jw0  is the weight for the bias; and ix  is the 
input rainfall signal. The net of a neuron is passed through an activation or transfer 
function to produce its result.  Therefore, continuous-transfer functions are 
desirable.  In this study, a sigmoid function used is hyperbolic-tangent (tansig) as 
proposed by [1]. This function is continuous, differentiable everywhere, 
monotonically increasing, and it is the most commonly used in the 
backpropagation networks.  The output is always bounded between 1 and -1, and 
the input to the function can vary between plus or minus infinity )(±∞ .  The tansig 
sigmoid activation function will process the signal that passes from each node by 
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Then from second layer the signal is transmitted to third layer.  The output unit 
( 1=k ) sums its weighted input signals and applies its activation function to 
compute its output signal.  The output node ( 1=k ) receives a target pattern 
corresponding to the input training pattern, computes its error information, 
calculates its weight correction (used to update )(k

jc  later), and its bias correction 

(used to update )(
0
kc  later) term.  Note that, )(k

jc  is the weight between second layer 

and third layer; )(
0
kc  is the weight for bias, and  )(k

y  is the neural network output.  
The error information is transfer from the output layer back to early layers.  This is 
known as the backpropagation of the output error to the input nodes to correct the 
weights. 
 
Back-propagation is the most commonly used supervised training algorithm in 
the multilayer feed-forward networks.  The objective of a backpropagation 
network is to find the weight that approximate target values of output with a 
selected accuracy.  The network weights are modified by minimizing the error 
between a target and computed outputs.  The error between the output of the 
network and the target outputs are computed at the end of each forward pass.  If 
an error is higher than a selected value, the procedure continuous with a reverse 
pass, otherwise, training is stopped. The weights are updated continuously until 
minimum error is achieved.  The least mean square error (MSE) method is used 
to optimize the network weights in backpropagation networks.   
 
 
 
 
 



  
 

 

 

 

 
 
 
 
 
 
 

Figure 1: Structure of a MLP model with single hidden layer 

 
 

Radial Basis Function  
 
The second technique of the neural network modeling is the RBF.  RBF is 
supervised and feed forward neural network. Figure 2 illustrates the designed 
architecture of the RBF. The RBF can be considered as a three layer network. The 
hidden layer of RBF network consists of a number of nodes and a parameter vector 
called a ‘center’ which can be considered the weight vector.  The standard 
Euclidean distance is used to measure how far an input vector from the center is. In 
the RBF, the design of neural networks is a curve-fitting problem in a high 
dimensional space [15].  Training the RBF network implies finding the set of basis 
nodes and weights.  Therefore, the learning process is to find the best fit to the 
training data.  
 
The transfer functions of the nodes are governed by nonlinear functions that is 
assumed to be an approximation of the influence that data points have at the center. 
The transfer function of a RBF network is mostly built up of Gaussian rather than 
sigmoids (see[6]).  The Gaussian functions decrease with distance from the center.  
The transfer functions of the nodes are governed by nonlinear functions that is 
assumed to be an approximation of the influence that data points have at the center.   
 
The Euclidean length is represented by jr  that measures the radial distance 
between the datum vector ),...,,( 21 myyyy ; and the radial center ),...,,( 21
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A suitable transfer function is then applied to jr  to give, 
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Finally the output layer ( 1=k ) receives a weighted linear combination of ( )jrφ , 
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Figure 2: Structure of a RBF model 
 
 
 
MODEL APPLICATION 
 
The steps involved in the identification of a nonlinear model of a system are 
selection of input-output data suitable for calibration and verification; selection of 
a model structure and estimation of its parameters; and validation of the identified 
models. 
 
The selection of training data that represents the characteristics of a watershed and 
meteorological patterns is extremely important in modeling [16]. Input variable 
(rainfall) were selected to describe the physical phenomena of the rainfall-runoff 
process, in order to forecast runoff.  Record of 5 years of daily rainfall-runoff 
series of Sungai Lui, Sungai Klang, Sungai Bekok, Sungai Slim and Sungai Ketil 
catchments is selected to evaluate the performance of the neural network model.  
The data used consist of two sets: the first four years was used for model 
calibration (training) in the case of ANN, and the remaining one year of data was 
used for model verification (testing).  The most current data were used in the test 
set to illustrate the capability of model in predicting future occurrences of runoff, 
without directly including the land-use characteristics of the watersheds.  The 
original rainfall- runoff data are normalized before the neural network computation 
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is carried out for MLP model.  Normalization will transform the original data into 
the range of  +1 to –1.  The equation of normalization is: 
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where tx  is the original series, ty  is the transformed series, minx is the minimum 
value of the original series and maxx  is the maximum value of the original series. 
 
The ANN model is suited for modelling highly nonlinear input-output relationships 
such as those encountered in the transformed from rainfall to runoff.  In this 
particular study,the structure of ANN model is designed based on methods by [1].  
This model treat the rainfall as directly related to runoff at the present time t , by 
using the following equation, 

)}({)( txfty =                               (8) 
 
The goodness-of-fit statistics were computed for both training and testing for 
each ANN architecture. The input node at )1( −t  is added as an additional input 
variable to the model.  During training and testing the goodness of fit statistics is 
used to evaluate the suitability of input variable )1( −t .  This procedure is repeated 
by adding rainfall at previous time periods as input variable until there is no 
significant change in model accuracy.  There are no fixed rules about the number 
of nodes in the hidden layer.  A trial and error procedure is generally applied in 
selecting the number of hidden layers and in assigning the number of nodes to 
each of these layers.  [17] proposed that normally neural networks were 
developed using 15, 30, 45, 60 and 100 hidden nodes.  This procedure is also 
considered to examine the performance of neural network model with different 
number of hidden nodes and hidden layers.   
 
 
MODEL PERFORMANCE CRITERIA 
 
The performance of each model is evaluated using the coefficient of efficiency 
(COE), mean square error (MSE), mean absolute error (MAE), and mean relative 
error (MRE).  MSE, MAE, and MRE are the most commonly used performance 
measures in hydrological modeling and the ideal value is zero.  Computed value of 
COE exhibits the model efficiency and the ideal value is 1.0.  The MSE, MAE, and 
MRE are expressed as the following equations: 
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where, piy  and oiy  are the predicted and observed values of output respectively; 
n  is the number of observations or time periods over which the errors are 
computed.   A model with the minimum error is considered the best choice. 
 
 
 
RESULTS AND DISCUSSION  
 
Tables 1-5 present the COE, MSE, MAE, and MRE resulting from MLP and 
RBF models for the five catchments (Sungai Lui, Sungai Klang, Sungai Bekok, 
Sungai Slim and Sungai Ketil). 
 
 
Table 1: Results of the Sungai Lui catchment 
 

TRAINING  
MODEL COE 

R 
MSE 

(cumecs) 
MAE 

(cumecs) 
MRE 

 
*18-18-1 0.635 0.926 0.685 1.208  

MLP *18-18-7-1 0.622 0.921 0.680 1.172 
RBF 18 input 

nodes 
0.982 0.898 0.618 0.769 

TESTING  
MODEL COE 

R 
MSE 

(cumecs) 
MAE 

(cumecs) 
MRE 

 
*18-18-1 0.641 0.654 0.518 1.385  

MLP *18-18-7-1 0.654 0.650 0.515 1.343 
RBF 18 input 

nodes 
0.966 0.596 0.442 1.510 

*input nodes-hidden nodes-output nodes; cumecs-meter cubic second 
 
 
 
 
 
 



  
 

Table 2: Results of Sungai Klang catchment 
 

TRAINING  
MODEL COE 

R 
MSE 

(cumecs) 
MAE 

(cumecs) 
MRE 

 
*17-19-1 0.689 16.942 11.658 0.750  

MLP *17-19-8-1 0.637 16.604 11.920 0.811 
RBF 17 input 

nodes 
0.645 14.645 9.866 0.582 

TESTING  
MODEL COE 

R 
MSE 

(cumecs) 
MAE 

(cumecs) 
MRE 

 
*17-19-1 0.759 16.618 11.717 0.630  

MLP *17-19-8-1 0.785 16.493 12.174 0.688 
RBF 17 input 

nodes 
0.710 14.995 9.814 0.435 

*input nodes-hidden nodes-output nodes; cumecs-meter cubic second 
 
 

Table 3: Results of Sungai Bekok catchment 
 

TRAINING  
MODEL COE 

R 
MSE 

(cumecs) 
MAE 

(cumecs) 
MRE 

 
*17-23-1 0.711 0.727 0.560 0.109  

MLP *17-23-2-1 0.714 0.755 0.591 0.119 
RBF 17 input 

nodes 
0.761 0.740 0.564 0.110 

TESTING  
MODEL COE 

R 
MSE 

(cumecs) 
MAE 

(cumecs) 
MRE 

 
*17-23-1 0.737 0.522 0.420 0.086  

MLP *17-23-2-1 0.731 0.586 0.490 0.103 
RBF 17 input 

nodes 
0.782 0.498 0.382 0.078 

*input nodes-hidden nodes-output nodes; cumecs-meter cubic second 
 
 
 
 
 
 
 



  
 

Table 4: Results of Sungai Slim catchment 
 

TRAINING  
MODEL COE 

R 
MSE 

(cumecs) 
MAE 

(cumecs) 
MRE 

 
*17-20-1 0.661 0.145 0.114 0.002  

MLP *17-20-12-1 0.624 0.148 0.115 0.002 
RBF 17 input 

nodes 
0.903 0.140 0.104 0.002 

TESTING  
MODEL COE 

R 
MSE 

(cumecs) 
MAE 

(cumecs) 
MRE 

 
*17-20-1 0.729 0.159 0.130 0.002  

MLP *17-20-12-1 0.710 0.157 0.126 0.002 
RBF 17 input 

nodes 
0.958 0.159 0.114 0.002 

*input nodes-hidden nodes-output nodes; cumecs-meter cubic second 
 
 

Table 5: Results of Sungai Ketil catchment 
 

TRAINING  
MODEL COE 

R 
MSE 

(cumecs) 
MAE 

(cumecs) 
MRE 

 
*17-18-1 0.613 0.600 0.442 0.015  

MLP *17-18-5-1 0.620 0.618 0.453 0.015 
RBF 17 input 

nodes 
0.690 0.574 0.407 0.013 

TESTING  
MODEL COE 

R 
MSE 

(cumecs) 
MAE 

(cumecs) 
MRE 

 
*17-18-1 0.740 0.637 0.525 0.018  

MLP *17-18-5-1 0.726 0.605 0.482 0.016 
RBF 17 input 

nodes 
0.678 0.561 0.411 0.014 

*input nodes-hidden nodes-output nodes; cumecs-meter cubic second 
 
 
 
 
 
 
 



  
 

Table 6: The average, minimum, and maximum flow 
 

Flow  
(cumecs) 

 
TRAINING 

 Average Minimum Maximum 

Sungai Lui  1.501   0.00    7.73 

Sungai Klang 17.503   2.00 119.00 

Sungai Bekok  1.998   0.91    4.19 

Sungai Slim  0.676   0.43    1.37 

Sungai Ketil  1.921   0.70    5.15 

Flow 
 (cumecs) 

 
TESTING 

 Average Minimum Maximum 

Sungai Lui  0.880   0.02     2.83 

Sungai Klang 20.732   5.00 117.00 

Sungai Bekok  1.774   1.17     3.50 

Sungai Slim  0.708   0.50     1.37 

Sungai Ketil  1.817   1.15     4.47 
       * cumecs-meter cubic second 

 
In general, there are two families of model (MLP and RBF) with three types of 
neural models.  The first is MLP with one hidden layer; the second is MLP with 
two hidden layer; and finally the third is the RBF model.  The development of 
neural network model structure adopt the method by Tokar and Johnson (1999).  
The results are shown in Table 1 (Sungai Lui with 18 input nodes); Table 2 ( 
Sungai Klang with 17 input nodes); Table 3 (Sungai Bekok with 17 input nodes); 
Table 4 (Sungai Slim with 17 input nodes); and Table 5 (Sungai Ketil with 17 
input nodes).  Sungai Ketil catchment (704 km2) is 10 times bigger than Sungai Lui 
catchment (68.1 km2) and 2 times bigger than Sungai Bekok catchment (350 km2).  
When, Sungai Klang and Sungai Slim have relatively the same magnitude of 
catchment area.  The average, minimum, and maximum flow of the five rivers are 
shown in Table 6.  It can be seen that the levels of efficiency of the five catchments 
were improved in the testing stage when the models were trained properly.  Further 
the COE for Sungai Bekok is better than the Sungai Ketil.  Probably, the size of the 
catchment contribute to the inaccuracy of neural modelling.  A large fully 
developed catchment such as Sungai Klang generates considerably a higher peak 



  
 

flood discharge.  The neural network model require sufficient amount of data with 
a large peak discharge during training and generalization.   
 

Results of COE, MSE, MRE, and MAE for Sungai Lui, Sungai Bekok and Sungai 
Slim reflect that the RBF models consistently display a better performance 
compared to the MLP model.  Further more, the advantage of RBF is that it can be 
trained much faster than the MLP.  It is also found that ANN performance is hardly 
influenced by the level of non-linearity, and the selection of training data. A large 
number of training data sets are required to perform successful training. 
 
The number of hidden layer neurons significantly influences the performance of a 
network.  If this number is small, the network may not achieve a desired level of 
accuracy, while with too many nodes it will take a long time to get trained and may 
sometimes over fit the data.  The application of two hidden layer appear to be an 
advantage for a bigger and large catchment such as Sungai Ketil.  It can be seen 
that the smaller catchment as Sungai Lui and Sungai Bekok is sufficient for a 
single hidden layer of neural model structure. 
 
Obviously, the application of neural network method in modelling the relationship 
between rainfall and runoff for Sungai Lui, Sungai Klang, Sungai Bekok, Sungai 
Slim and Sungai Ketil is appropriate.  The results reflect that the performance of 
neural network model is satisfactory and it is feasible for rainfall-runoff model in 
Malaysia catchment.  The inaccuracy of model could be clarified by utilization of 
longer period of training data with many events of peak discharge. 
 
 
CONCLUSIONS 
 
The potential of artificial neural network models for prediction runoff has been 
presented in this paper. The non-linear nature of the relationship of rainfall-runoff 
processes is appropriate for the application of ANN methods.  Results of ANN 
models reflect that the application of neural network method is feasible for model 
the rainfall-runoff relationship in Malaysia region.  Apparently, the neural network 
has the ability to predict runoff accurately using the rainfall data as input variable. 
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