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Abstract: A modified stress model based on the principle of plasticity to predict the ultimate 

bending strength of solid timber beams was developed. The model is capable to predict the 

actual bending strength of timber beams better than the existing stress models. The two main 

controlling parameters of the model are the ultimate tensile and compressive strengths of the 

beam material. The proposed model was verified through a series of laboratory experiments 

using a local hardwood timber, Dark Red Meranti. A number of specimens consisting of 12 

beams, 10 tension specimens and 15 compression specimens were tested. The ultimate 

bending moment from test results were compared against the proposed and existing stress 

models. A significant non-linear relationship exists between load and deformation of timber in 

both bending and compression, but the stress-strain relationship is linear in tension.  The 

strain is distributed linearly across the beam section and the neutral axis tends to shift towards 

the tensional side when the beam is loaded beyond the proportional limit. Although the tensile 

strength of the timber is larger than its compressive strength, the modulus of elasticity in 

tension and compression is approximately the same. 

 

Keywords: timber beams, ultimate strength prediction, bending tests 

 

Abstrak: Satu model tegasan diubah suai berpandukan prinsip plastik bagi penganggaran 

kekuatan lentur muktamad rasuk kayu padu telah dibangunkan.  Model ini berupaya 

menganggar kekuatan lentur sebenar rasuk kayu dengan lebih tepat berbanding model tegasan 

sedia ada.  Dua parameter kawalan bagi model ini adalah kekuatan tegangan dan kekuatan 

mampatan muktamad bahan rasuk.  Pengesahan model yang dicadangkan telah dilakukan 

melalui satu siri ujian makmal menggunakan kayu keras tempatan, Meranti Merah Tua.  

Sebilangan spesimen yang terdiri daripada 12 rasuk, 10 spesimen tegangan dan 15 spesimen 

mampatan telah digunakan dalam ujian makmal. Moment lentur muktamad daripada 

keputusan ujian dibandingkan dengan model tegasan yang dicadangkan dan model tegasan 

sedia ada. Keputusan ujian makmal mendapati wujud hubungan tidak linear yang ketara di 

antara beban dan ubah bentuk kayu dalam lenturan dan mampatan, sebaliknya hubungan 

tegasan-terikan adalah linear dalam tegangan.  Taburan terikan teragih secara linear pada 

sepanjang keratan rasuk dan paksi nutral cenderung untuk beranjak ke bahagian tegangan 

rasuk pada ketika rasuk dibebani dengan beban melepasi had kadaran.  Walaupun kekuatan 

tegangan kayu lebih besar daripada kekuatan mampatan, modulus elastik dalam tegangan dan 

mampatan didapati hampir sama. 

 

Katakunci: rasuk kayu, ramalan kekuatan muktamad, ujian lenturan 

 



  

1.0 Introduction 

 

Plastic theory has been applied quite successfully in the analysis of flexural 

strength of reinforced concrete and steel structures. In the analysis of 

reinforced concrete beam sections, the actual parabolic compressive stress 

distribution is simplified as an equivalent rectangular stress distribution 

(plastic stress distribution). Similarly, steel beam sections are also analysed 

using plastic stress distribution for both tension and compression parts. It is 

possible to obtain the plastic stress distribution from ductile materials, such as 

steel which behaves as a perfectly plastic material. However, the linear stress 

distribution (elastic stress distribution) has  been used in the analysis of timber 

beam sections although timber shows some limited ductility in bending and 

axial compression. 

The actual flexural stress distribution pattern of a timber beam section at 

the failure stretch is very complex. To simplify this complexity, various 

modified mathematical stress models have been developed. The accuracy of 

the model outcome would depend upon how close the assumed model to the 

true stress distribution. Plasticity models for timber beam sections had been 

studied by many researchers (e.g. Moe, 1961; Nwokoye, 1972; Zakic,1973; 

Bazan, 1980; Buchanan, 1990). Most of the researchers introduced different 

forms of compressive stress distribution with a triangular tensile stress 

distribution pattern.  

 

 

 

 

Figure 1: Existing stress models for timber beams: (a) Elastic Stress Model; (b) Moe’s Stress 

Model; (c) Nwokoye’s Stress Model; (d) Zakic’s Stress Model; (e) Stress Model by Bazan and 

Buchanan 

 

In this study, a modified stress model is proposed to predict the ultimate 

bending strength of solid timber beams using both primary and secondary 

research data as inputs. Compared to the previous stress models, the 

modification was made by introducing an additional parabolic-shaped stress 

distribution to increase the area of compressive stress distribution. Using the 

experimental data, the results predicted by the model were compared with that 

obtained from the existing models. A new parameter called moment 

coefficient (ψ) was introduced in the newly modified model. It is derived from 

the equations of the stress models by using the strength ratio (n) of the 

ultimate and compressive strengths of the beam material. 

(a) (b) (c) (d) (e) 



  

1.1 Existing Stress Models 

 

The traditional strength analysis of a timber beam is done using classical 

elastic method with the assumption that the shape of the stress distribution 

diagram is as shown in Figure 1(a). According to the elastic stress model, 

ultimate tensile, Ftu in the top and compressive stresses, Fcu in the bottom of 

the fibres are assumed equal at failure. It means that the ratio of tensile stress 

to compressive stress, n, is equal to 1. So, the neutral axis is at the mid-depth 

of the beam section, i.e., γ = 0.5, and both stress and strain are linearly 

distributed up to the failure point. According to classical elastic stress model, 

the elastic moment capacity (Melastic) of the timber beam can be described as,  
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Moe (1961) assumed that the compressive stress distribution of a timber 

beam section at failure should be rectangular from compression edge to some 

depth where the stress immediately increased to the maximum compressive 

stress (Fcu) as shown in Figure 1(b). Then, it decreased linearly passing 

through the neutral axis. However, the shape of tensile stress distribution is 

still triangular and linear up to the failure and the neutral axis is no longer 

positioned at the mid-depth of the beam at failure. Moe (1961) also assumed 

that modulus of elasticity is the same for tension and compression, and the 

ultimate tensile stress (Ftu) at failure is greater than the ultimate compressive 

stress (Fcu). The ultimate moment capacity (Mu) of a timber beam, according 

to Moe’s stress model, can be derived as, 
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Nwokoye (1972) proposed that the shape of the compressive stress 

distribution at the failure of a timber beam should be a trapezoidal shaped as 

shown in Figure 1(c), and the position of the neutral axis is not at the mid-

depth of the beam. Nwokoye also assumed that modulus of elasticity for 

tension and compression is the same, but the ultimate tensile stress at failure is 

greater than the ultimate compressive stress. He agreed that the shape of the 

tensile stress distribution is triangular and linear up to failure. According to 

Nwokoye’s stress model, the ultimate moment capacity (Mu) of the beam can 

be determined as, 
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Zakic (1973) assumed that the stress diagram for compressive zone of a 

timber beam at failure is a second-degree parabolic shaped and the neutral axis 



  

is not position at the mid-depth of the beam as shown in Figure 1(d). The 

ultimate tensile stress is greater than the ultimate compressive stress in the 

beam section. Like other researchers, he assumed that the shape of the tensile 

stress distribution is triangular and linear up to failure. The ultimate moment 

capacity (Mu) of the beam in  Zakic’s stress model can be expressed as, 
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Bazan (1980) adopted the bi-linear stress model as shown in Figure 1(e). 

This model assumed the same modulus of elasticity for tension and 

compression. It is obvious that strain softening was considered in this 

plasticity model for compressive stress-strain relationship. However, like other 

researchers, he assumed the tensile stress distribution to be triangular and 

linear up to failure. He also agreed that the ultimate tensile stress (Ftu) is 

greater than the ultimate compressive stress (Fcu) by a factor of n, which is 

greater than 1. According to Bazan’s stress model, the ultimate moment 

capacity (Mu) of the beam can be derived as, 
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Buchanan (1990) also assumed a bi-linear model with some similarity to 

the model proposed by Bazan (1980). Unlike Bazan, Buchanan (1990) 

proposed that the relationship between the reducing stress, Fcu.(1 – c), and the 

increasing strain, ( εc – εo ), is directly related to the slope (m) of the falling 

branch of the modulus of elasticity in modified compressive stress-strain 

curve. The ultimate moment capacity (Mu) of the beam, according to 

Buchanan’s stress model can be described as, 
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1.2 Some Observations on Existing Stress Models 

 

All existing stress models quoted in this paper assumed triangular tensile 

stress distribution regardless of different compressive stress distributions. The 

models used direct tension and compression test results to predict the strength 

of timber beams. Except elastic stress model, all other model had been 

developed based on non-linear nature of timber in compression through the 

fact that timber is stronger in tension than in compression. The elastic model 

ignored the non-linear behaviour of wood in compression and, hence, under-



  

estimated the strength of timber beams. Stress models developed by Moe 

(1961) and Buchanan (1990) are difficult to utilise because they require 

additional parameters, i.e. compressive strength reduction factor (c) for Moe’s 

stress model and the slope (m) of the falling branch from modified stress-strain 

curve in axial compression for Buchanan’s stress model.  

 

2.0 Development of the Modified Stress Model 

 

2.1 Theoretical Assumptions 

 

In developing a modified version of stress, the following assumptions are 

made, 

a) Strain is linearly distributed across the section of the timber beam 

under bending condition up to failure and, hence, plain sections before 

bending remain plain after the bending. 

b) Strength ratio (n) of axial tensile strength to axial compressive strength 

is greater than 1 so that the beam fails in compression first.  

c) Ultimate tensile strength (Ftu) and ultimate compressive strength (Fcu) 

are determined from structural-sized timber specimens. 

d) The stress distribution across the beam depth is linear up to the 

proportional limit stress in bending, beyond which the stress 

distribution formed a pattern as shown in Figure 2 (c). 
 

 

 

 

 
Figure 2:  The theoretical stress distribution pattern 

 

2.2 Formulation of the Stress Model 

 

The current stress model was modified from the work done by Nwokoye 

(1972) where a trapezoidal compressive stress distribution was assumed. The 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

h/2 

h 
centroidal axis 

neutral axis 

cross-section strain diagram stress diagram 

C 

T 

Fcu 

Ftu = nFcu 

parabola 

b 

αh 

 

βh 

γh 

 

(a) (b) (c) 



  

modification was made by introducing an additional parabolic-shaped stress 

distribution in order to increase the area of compressive stress distribution (see 

Figure 2c). Hence, the compressive stress distribution at the ultimate moment 

of the proposed model is a combination of a rectangular stress block and a 

second-degree parabolic stress block with its axis lying along the lower edge 

of the rectangular block. The origin or the vertex of the parabola is at the 

lower right corner of the rectangle. The area of the parabola is equal to two-

third the area of the enveloped rectangle. The triangle at the base of the 

rectangle, shown by the dotted line, is similar in shape of the triangle 

representing the tension stress block. The stress distribution in the cross-

section of the beam just before the failure must satisfy the following 

equilibrium conditions,  

 

a) Internal compressive force (C) = Internal tensile force (T) 

b) Internal resisting moment = External bending moment (Mu) 

 

Considering the stress distribution shown in Figure 2, the resultant internal 

compressive and tensile forces are, 
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Substituting equations (8) and (9) into equilibrium condition (i) yields, 
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From the geometry of the stress distribution diagram shown in Figure 2, 
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From equation (11) to (13), γ can be expressed in terms of n as follows: 
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From equations (12) to (14), expressions for α and β can be written in terms of 

n: 
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According to equilibrium condition in (ii), external bending moment (Mu) is 

equal to internal resisting moment, which is computed by taking moments of 

forces about the neutral axis: 

 

)]
3

2
(n

2

1
)

8

5
(

3

2
)

2
([hbFM

2
cuu  (17) 

 

Substituting the values of α, β and γ from equations (14) to (16) into equation 

(17), 
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Mu from equation (18) can be expressed in the form of elastic moment [Melastic 

in equation (1)] by multiplying with the moment coefficient (ψ) as follows:  
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3.0 Materials and Test Procedures 

 

Dark Red Meranti (DRM) was chosen as the material for test specimens. 

DRM is a tropical hardwood timbers and most commonly used in construction 

in Malaysia. It is classified as a light hardwood with an average density of 730 

kg/m
3
 and specific gravity of 0.47 at 19% moisture content (Choo and Lim, 

1983). According to the latest Malaysian Standard MS 544: Part 2: 2001 

(2001), it is under the strength group S.G. 5 and the mean value of modulus of 

elasticity (MOE) 11200 MPa at moisture content ≤ 19%. Standard structural 

grade stresses at moisture content ≤ 19% for DRM were described as 14.3 



  

MPa for bending, 8.6 MPa for tension parallel to grain, 11.0 MPa for 

compression parallel to grain.  

Five large pieces 100 mm x 150 mm x 380 mm of Dark Red Meranti 

timber obtained from a forest at Bandar Tenggara, Johor, were selected. The 

specimens were previously kept to dry naturally in room temperature and 

natural humidity for about three years. The specimens were labelled A, B, C, 

D and E and each specimen was then cut into three different portions to be 

used in bending, tension and compression tests. 

 

3.1 Bending Tests 

 

Beam specimens were fabricated into two different cross-sections with the 

same length according to ASTM standard (D 198-84) (1992). FA, FB, FC, FD 

and FE group beams were cut from each pieces A, B, C, D and E. There were 

three 50 mm x 100 mm x 2100 mm beams fabricated for each of group FA and 

FB and two 50 mm x 150 mm x 2100 mm beams for each of group FC, FD 

and FE. All beam specimens were prepared in order to get 225 mm overhang 

on each end of the span.  

The arrangement of beam test set-up is shown in Figure 3. Four 50 mm 

Omega strain gauges and four 100 mm Omega strain gauges were attached 

alternately to two opposite sides at the centre of the specimen by screwing to 

the small solid brass fixing jigs, which were glued to the specimen using 5-

minute fast drying epoxy glue. The spacing between each strain gauge is 24 

mm for 50 mm x 100 mm beams and 38 mm for 50 mm x 150 mm beams. 

Three Kyowa displacement transducers (LVDT) were placed directly beneath 

the mid span and two loading points of the beam. A Kyowa load cell was 

placed between the hydraulic jack and the load distributor to capture load 

readings. Strain gauges, displacement transducers and the load cell were 

connected to the data-logger to capture the readings throughout the test.  

The strain for the specified depth was calculated from the average readings 

of the two strain gauges at the same depth on opposite sides of the beam. After 

the tests, the beam specimen was cut near the middle span into three 50 mm x 

50 mm pieces of 25 mm thickness for moisture content and density tests. The 

average values were used to represent the actual moisture content and density 

value of the specimen. 

 



  

 
 

Figure 3: Schematic diagram of beam test set-up 

 

 

3.2 Tension and Compression Tests 

 

Tension test specimens were fabricated according to five different groups TA, 

TB, TC, TD and TE, cut from timber pieces A, B, C, D and E. Each group 

contained two 800 mm long tension test specimens, with 200 mm grip length 

and 400 mm in the middle including 250 mm gauge length. The nominal cross 

sectional dimensions of specimens were 50 mm x 25 mm within the grip 

length and 25 mm x 25 mm within the gauge length. Compression test 

specimens were also fabricated into five different groups CA, CB, CC, CD 

and CE cut from the same pieces of timber. The sizes of specimens were 

chosen based on the dimensions specified by ASTM standard (D 198-84). 

Each group contained three 50 mm x 50 mm x 150 mm compression 

specimens.  

The 5000 kN Dartec universal testing machine with 250 kN loading head 

and wedge grips was used for tension tests, and the 250 kN Dartec universal 

testing machine with a swivel loading head was used for compression tests. 

Two 100 mm Omega strain gauges for tension tests and two 50 mm Omega 

strain gauges for compression tests were attached to opposite sides of the 

specimen by screwing to two small solid brass fixing jigs. The jigs were glued 

to the specimen using 5-minute fast drying epoxy glue.  

The strain was calculated from the average of two strain gauge readings 

and the stress from the corresponding load divided by the cross sectional area 



  

of the specimen. After the tests, three 25 mm thick pieces were cut from each 

specimen for moisture content and density tests according to ASTM standards 

(D 2395-83) and (D 4442-92) procedures. The average values were used to 

represent the actual moisture content and density value of the specimen. 

 

4.0 Results and Discussion 

 

4.1 Beam Tests 

 

The beams test has shown a typical bending failure pattern under one-third-

point loads. After the applied load passed the proportional limit, the beams 

started to fail in compression as indicated by wrinkles on the compression 

edge and producing some noises. The wrinkles occurred between the 

maximum moment region and extended from the upper compression edge to 

slightly more than one-half of the beam depth. A further loading beyond the 

proportional limit has caused the compressive stresses across the beam depth 

redistributed and the shifting of neutral axis towards the tension edge.  

The load-deflection curves of the beams (Figure 4) are plotted using the 

deflection data at the mid span of the beams.  The curves show that the beams 

are stressed well beyond the proportional limit. The curves can be divided into 

two different potions, i.e. linear portion (elastic stage) and non-linear portion 

(inelastic stage) with a rising slope. Non-linear portion of the curve occupies a 

significant amount (over 50%) of total deflection for most of the specimens 

tested. 
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Figure 4: Typical load-deflection curve for timber beams 

 



  

Load-strain Curve (Beam FE-2)
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Figure 5: Typical load-strain curve for timber beams 
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Figure 6: Typical strain distribution diagram for timber beams 

 

Figure 5 is the load-strain curves of the beam drawn using average data 

from eight strain gauges. The curves show a non-linear relationship between 

loads and strains under inelastic condition. As a result of the downward 

movement of neutral axis and the redistribution of compressive stresses, 

tension fibres are subjected to relatively increased tensile stresses to maintain 

the equilibrium of the beam. These increases in stress are no longer 

proportional to the load on the beam.  

Figure 6 is the strain distribution diagrams across the beam depth that was 

developed from three different loading stages: the elastic stage, the 

proportional limit stage and the inelastic stage at ultimate load. Linear 

distributed strains across the beam depth were observed in all loading stages. 

Deviation of strain from the linear distribution in some cases, especially at the 



  

ultimate loading stages, may be due to the wrinkles, which appeared near mid 

span during the inelastic range of loading and has interfered with the action of 

strain gauges.  

Table 1 presents the summary of beam test results.  It was observed that 

when the applied load is small or within the elastic range, the initial position 

of neutral axis was slightly above or below the mid-depth of the beam. At the 

proportional limit load, the position of neutral axis still remained in the same 

position as in the elastic range. Then the neutral axis moved towards the 

tension edge of the beam until the ultimate load was reached. The position of 

neutral axis was described as the neutral axis position factor (γ). 

 
Table 1: Summary of beam test results 

    At Proportional Limit Load  At Ultimate Load 

Beam 

Label 

[EC] 

(MPa) 

[EC/ET] [ET] 

(MPa) 

[Fpl]  

(MPa) 
[ C] 

(x10
-6

) 

[ T]  

(x10
-

6
) 

[ pl ]  [Mu]  

(kN-m) 
[ TU] 

(x10
-6

) 

[Ft] 

(MPa) 
[ u ] 

FA-1 13913 0.91 15363 39.79 2860 2590 0.49 
 

3.65 2960 45.48 0.34 

FA-2 15069 0.95 15809 30.59 2030 1935 0.45  2.33 1970 31.14 0.45 

FA-3 14941 1.03 14463 38.47 2575 2660 0.50  3.88 4575 66.17 0.44 

FB-1 16308 0.93 17592 41.34 2535 2350 0.49  5.49 5270 92.71 0.41 

FB-2 19911 1.18 16909 48.78 2450 2885 0.48  5.68 5555 93.93 0.40 

FB-3 20982 1.23 17119 40.92 1950 2390 0.49  5.56 5585 95.61 0.40 

FC-1 20880 0.93 22343 54.18 2595 2425 0.49  14.77 6195 138.42 0.45 

FC-2 18371 1.02 18024 47.76 2600 2650 0.49  12.47 5800 104.54 0.46 

FD-1 24003 1.24 19409 49.69 2070 2560 0.50  13.45 5290 102.67 0.45 

FD-2 12614 0.84 14970 47.68 3780 3185 0.47  12.15 5840 87.42 0.36 

FE-1 14330 1.11 12910 28.02 1955 2170 0.49  6.25 3140 40.54 0.45 

FE-2 15610 1.28 12227 33.56 2150 2745 0.49  8.89 4785 58.50 0.44 

 

The proportional limit stress (Fpl) of the beam was estimated from the 

load-deflection curves in Figure 4. First, a straight line was drawn passing 

through the points within the linear portion of the curve. Then the point of 

inflection was defined as the proportional limit load (Ppl). The proportional 

limit stress (Fpl) was calculated from the proportional limit load, the moment 

arm and the section properties of the beam.  

Assuming that there is a linear stress-strain relationship for extreme 

tension fibres of the beams, the extreme fibre tensile stress (Ft) is calculated 

from the MOE of extreme tension fibres (ET) and the maximum tensile strain 

(εTU) (Figure 6). The MOE of extreme tension fibres (ET) is calculated by 

dividing the proportional limit stress (Fpl) with the tensile strain at 

proportional limit (εT), which corresponds to the proportional limit load (Ppl) 

(Figure 5). 



  

The ultimate bending strengths are predicted from the tension and 

compression test results by using the proposed stress model. The predicted 

strengths are compared with the actual bending strengths of the beams. 

 

4.2 Comparison between Theoretical and Experimental Results 

 

The proposed stress model is compared with other existing stress models by 

means of the experimental results. However, stress models by Moe (1961) and 

Buchanan (1990) were not included as these models require more parameters 

(see Section 1.2). Table 2 presents the summary of the result. Figure 7 shows 

the comparison of stress models using theoretical and experimental moments. 

It is obvious that all the stress models under-predicted the ultimate strength of 

DRM timber beams. Compared to the experimental results, the elastic stress 

model is the most conservative with mean and standard deviation of -39.57% 

and 0.05, respectively. The trend line shows linear correlation between the 

predicted and experimental moments but lies far below the ideal line. Other 

stress models by Nwokoye (1972), Zakic (1973) and Bazan (1980) also under-

predicted the actual strength of the beams by more than 20%. The variation of 

the test data, i.e. standard deviation is about the same as those predicted by 

elastic stress model.  Their trend lines also show linear correlation and lie 

below but closer to the ideal line than that of the elastic stress model. By 

comparing with other stress models, the new stress model closely under-

predicted the ultimate moment with the mean of -18.10% and the standard 

deviation of 0.07. The linear trend line of the new model also lies nearest to 

the ideal line compared with other stress models. 

Of all the five models discussed above, the elastic stress model 

consistently under-predicts the ultimate strength of timber beams. It is because 

the model assumes the elastic stress distribution for the ultimate strength of 

timber beams, which is obviously not behaving as an elastic beam at ultimate 

load. The other three existing models, especially Nwokoye’s and Zakic’s 

models, also under- predicted the strength of beams but much closer to the 

experimental results than the elastic model. However, as summarised in Table 

2 and Figure 7, the newly modified stress model is capable to better predict the 

ultimate strength of timber beams. 

 

 

 

 

 

 

 

 

 

 

 



  

Table 2: Comparison of ultimate moments (Mu) for stress models 

Beam Label FA-1 FA-2 FA-3 FB-1 FB-2 FB-3 FC-1 FC-2 FD-1 FD-2 FE-1 FE-2
Fcu

Experimental Ftu

Results n
Mu 3.65 2.33 3.88 5.49 5.68 5.56 14.77 12.47 13.45 12.15 6.25 8.89

Elastic Melastic 2.18 2.19 2.20 3.15 3.17 3.18 8.60 8.61 8.37 8.43 4.93 5.21

Stress Model %Difference -40.28 N.A. -43.27 -42.64 -44.18 -42.80 -41.75 -30.92 -37.79 -30.61 N.A. -41.44

Nwokoye's Mu 3.16 3.17 3.19 4.09 4.12 4.13 9.80 9.82 10.61 10.69 7.38 7.79

Stress Model %Difference -13.44 N.A. -17.76 -25.56 -27.55 -25.76 -33.62 -21.28 -21.09 -11.98 N.A. -12.38

Zakic's Mu 3.05 3.06 3.08 4.09 4.12 4.13 10.32 10.33 10.72 10.80 7.04 7.43

Stress Model %Difference -16.56 N.A. -20.74 -25.47 -27.46 -25.67 -30.14 -17.16 -20.33 -11.13 N.A. -16.40

Bazan's Mu 2.89 2.90 2.91 3.81 3.83 3.85 9.42 9.43 9.94 10.01 6.71 7.08

Stress Model %Difference -20.93 N.A. -24.89 -30.66 -32.51 -30.84 -36.20 -24.34 -26.13 -17.61 N.A. -20.32

New Stress Mu 3.25 3.26 3.28 4.24 4.27 4.28 10.31 10.32 11.04 11.12 7.56 7.99

Model %Difference -11.03 N.A. -15.48 -22.74 -24.81 -22.95 -30.22 -17.25 -17.93 -8.45 N.A. -10.18

Mu

Melastic

Fcu

Ftu

n

% Difference

28.27

46.43 56.22 53.62 59.69 47.01

29.34 41.75 46.66 45.59

% Difference of Mu in terms of => Mean Standard Deviation

1.661.58 1.35 1.15 1.31

Bazan's Stress Model -2644.38% 5.98

Elastic Stress Model -3956.70% 4.96

Nwokoye's Stress Model -2104.12% 7.22

: [(Predicted Mu - Experimental Mu) / Experimental Mu] x 100%

: Ultimate compressive stress averaged from compression tests (MPa)

: Ultimate tensile stress averaged from tension tests (MPa)

: Strength ratio (Ftu/Fcu)

: Elastic moment (kN-m)

New Stress Model by KMZ -1810.20% 7.07

Zakic's Stress Model -2110.68% 5.97

: Ultimate moment (kN-m)
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Figure 7: Comparison stress models using theoretical and experimental moments 

 

 

 

 

 



  

5. Conclusions 

  

A modified stress model for timber beams based on the previous existing 

models and principle of plasticity was developed. The following conclusions 

are drawn, 

 

a) A new theoretical stress model for the prediction of the ultimate 

strength of tropical hardwood timber beams is proposed. It is simply 

expressed in terms of elastic moment (Melastic) and moment coefficient 

(ψ), which is a function of strength ratio (n) of the beam material.  

b) The proposed model predicts the ultimate bending strength of 

structural sized specimens of Dark Red Meranti (DRM) timber beams 

better than the existing stress models. 

c) The distribution of strain across the beam depth at mid span of timber 

beams is linear at all stages of loading up to near failure condition. The 

position of neutral axis remains at the mid-depth of the timber beam up 

to the proportional limit, beyond which it moves towards the tension 

side as a result of stress redistribution until the beam fails. 

d) The strength ratio (n) of ultimate tensile strength (Ftu) to ultimate 

compressive strength (Fcu), obtained from direct tension and 

compression tests of structural sized timber specimens was greater than 

1.  

e) The mean values of the modulus of elasticity (MOE) for tension and 

compression fibres of the beams are approximately the same and the 

mean MOE in axial tension is approximately equal to the mean MOE 

in axial compression.  

 

Nomenclature 

 
b = width of the beam cross-section 

C = internal compressive force on the cross-section of the beam 

c = strength reduction factor for the compression stress block (c < 1) 

EC = modulus of elasticity for extreme compression fibres of the beam 

ET = modulus of elasticity for extreme tension fibres of the beam 

Fcu  = ultimate compressive strength of the beam material obtained from  

compression tests 

Fpl  = proportional limit stress of the beam 

Ft  = maximum tensile stress in extreme tension fibres of the beam 

Ftu  = ultimate tensile strength of the beam material obtained from tension tests 

h = depth of the beam cross-section 

m = slope of the falling branch of the modified compression stress-strain 

curve in Buchanan’s stress model 

Melasic  = elastic bending moment capacity of the beam 

Mu = ultimate bending moment capacity of the beam 



  

n = the strength ratio or the ratio of ultimate tensile strength to ultimate 

compressive strength of the beam material (n = Ftu /Fcu and n 1) 

T = internal tensile force on the cross-section of the beam 

α  = position factor of compressive stress block measured from the  

compression edge of the beam 

β  = position factor of compressive stress block measured from neutral axis 

γ  = neutral axis position factor of the beam measured from the tension edge 

γpl  = neutral axis position factor of the beam at proportional limit 

γu  = neutral axis position factor of the beam at ultimate load 

εC  = compressive strain of beam fibres at proportional limit 

εc  = maximum compressive strain at extreme fibre in Bazan’s stress model 

εo  = compressive strain at proportional limit stress in Bazan’s stress model 

εT  = tensile strain of beam fibres at proportional limit 

εTU  = maximum tensile strain of beam fibres at ultimate load 

ψ  = moment coefficient of stress models 
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