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Abstract: Large amount of mollusc shell are usually disposed off and can a create nuisance due 

to odor and its quantity. Therefore this study aims explored the adsorption capacity of green 

mussel (Perna viridis) shell for cadmium, chromium and lead from aqueous solutions.. The 

adsorbent has prepared from powdered green mussel shell in the form of carbonized adsorbents 

shells at 600°C. The carbonization process was conducted for four hours and allowed to cool at 

room. Characterization of pH, bulk density, moisture content and ash content was also 

conducted. The effect of various operational parameters such as concentration, pH, temperature 

and sorption time on the adsorption of heavy metals were investigated using batch process 

experiments It was found that green mussel shell can be used as a low cost adsorbent for the 

removal of heavy metals in aqueous solution. The maximum ion adsorption capacities followed 

the trend lead > chromium > cadmium and the percentage adsorption was found to depend on the 

concentration of the adsorbent present, the solution pH, temperature and the sorption. This shows 

that the adsorption of metal ions on the adsorbent is chemisorption. Kinetic treatment of the 

results gave a pseudo-second order type of mechanism while the adsorption characteristics of the 

adsorbent followed the Freundlich adsorption isotherm. The results obtained proved that green 

mussel shells can be alternative resources of adsorbent materials. 
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1.0  Introduction  

 

Large tonnes of mussel shell are disposed illegally and dumped into public waters and 

reclaimed lands annually. The shell wastes are generated from fisheries industry. Only 

very small proportions of the shells are recycled as additives in animal husbandry, 

poultry farming, soil fertilizers and coating materials and fish fodders. Enormous 

amounts of these materials are dumped and become environmental burden (Vukovic  et 

al., 2010 ; Du  et al., 2011 and Alidoust  et al., 2015). Therefore, alternative approaches 
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for recycling waste mussel shells are needed. The ideal solution would be to convert the 

waste mussel shells to a product that is both beneficial and economically viable.  

 

It is well known that various types of mollucs’s shell have been used as natural 

adsorbent for nutrient and heavy metal (Odoemelam and Eddy, 2009; Du  et al, 2012; 

Peña-Rodríguez  et al., 2013; Yoshimura and Shiomi, 2014;Seco-Reigosa  et al., 

2014;Hossain  et al, 2015 and Alidoust  et al., 2015). It contains a large amount of 

organic compounds and macromolecules that can form framework for other 

macromolecular components, strongly implying that it have a potential to be used as 

adsorbent. It consist of more than 95% of CaCO3 with small amount of SiO2, protein and 

polysaccharide ( Liu  et al., 2009 ;Du  et al., 2012 and Lu  et al., 2015). Shells are made 

up of three layers, Oladoja  et al.,(2013) reported that the hypostracum, is the innermost 

layer, followed by the ostracum, as the basic shell building layer and the periostracum as 

the outermost layer. All the layers have different microstructures. The strength and 

toughness of the shell are determined by the thickness of the individual layers and their 

microstructure. The periostracum is made of sclerotized proteins. This outermost shell 

layer, is not made of calcium carbonate, but of an organic material called conchin, a 

mixture of organic compounds, mostly of proteids. Conchin does not only make the 

outer shell layer, but is also embedded between the calcium carbonate crystals of deeper 

layers. The prismatic layer, hypostracum is a form of aragonite, a type of calcium 

carbonate. It is composed of calcite prisms surrounded by a conchiolin matrix, with the 

prisms oriented at an angle to the surface.  

 

Metals are an inherent component of the environment that can be a potential hazard to 

human beings and animals. Heavy metals contamination is one of the vital factors for 

decline of water quality that has an obvious impact on seafood diversity. Heavy metal 

consumption from contaminated sites poses a higher health risk to human. It is one of 

the vital factors for decline in water quality that has an obvious impact on aquatic 

diversity. Studies have shown that heavy metal toxicity and accumulation not only 

depends on metal concentrations but on other factors as well. These include the form in 

which the metal component is present, the type and concentration of other materials and 

the integration of physicochemical parameters, such as temperature, dissolved oxygen 

(DO), salinity, sediment grain size, pH and organic carbon. In the aquatic environment, 

the minute quantities of some metals, such as: copper, zinc, iron, manganese and nickel 

are essential for biological systems to function but their excessive concentration can be 

toxic to living organisms. Other metals such as cadmium, mercury, arsenic and lead are 

non-essential and therefore have toxic effects on living organisms (Heath, 1995 and 

Sany et al., 2013). A possible solution would be to convert the waste shells into 

calcium-based alkaline adsorbent products. The use of non-living material offers several 

advantages: it is not necessary to supply nutrients and it is not possible for the system to 

fail due to a sudden or unexpected surge in metal concentration killing the biomass. 

Depending on metal ion and concentration, the rate and degree of metal sequestration 

can vary greatly between shells of different species. This attribute may enable specific 
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mollusk and certain highly mineralized crustacean shell materials to be used singly or in 

combination to selectively remove one or several different types of metal ions at 

different rates. The objective of this study to produce adsorbent from green mussel shell 

waste for heavy metal removal. 

 

 

2.0   Materials and Methods 

 

2.1  Sample Collection and Preparation 

 

Green mussel (Perna virids) shell waste was collected from Teluk Jawa, Masai, Pasir 

Gudang. The shells were sorted to commercial size (60-80 mm), cleaned from mud and 

barnacle, washed thoroughly with tap water and rinsed with deionized water and oven 

dried at 105°C for 24 hours. Then, the shells were grinded using Wellmax grinder. 

 

2.2   Carbonization 

 

Carbonization of the shell was conducted using a muffle furnace (Carbolite Sheffield 

England LMF 4) which allows limited supply of air. Carbonization was done at 600°C 

for four hours and allowed to cool at room temperature for 24 hours then preserved in a 

sample container for future use. 

 

2.3   Aqueous Solution of Heavy Metal 

 

All reagents used for this study were analytical reagent grade and were procured from 

Merk, Dermstadt, Germany. 1000 mg/l aqueous solutions of the metals ions from the 

stock. Working solutions of 10 mg/l were prepared from appropriate aliquots diluted to 

the appropriate concentration. The total concentration of each metal ion in the aqueous 

solution was confirmed by analysis using Atomic Adsorption Spectrometer (AAS) 

model PinAAcle 900T (Perkin Elmer).  

 

2.3   Batch Adsorption Studies 

 

Stock solution of cadmium, chromium and lead of 10 mg/L was prepared. Adsorption 

studies of heavy metal on the green mussel shell-derived adsorbent were carried out in 

batch mode. Adsorption experiments to study the effect of initial concentration were 

carried out by contacting 0.1 g of adsorbent with 30 mL of heavy metal solution of 10 

mg/L concentrations at constant temperature (30 
o
C) in 250 mL Erlenmeyer flasks. The 

effect of initial concentration was then evaluated on various adsorbent for comparison. 

Removal percentage and adsorption capacity of cadmium, chromium and lead by the 

mussel shell was calculated using the following equation 1 and 2.  



Malaysian Journal of Civil Engineering 29 Special Issue (1):56-68 (2017) 59 

 
% R = (     )/   * 100 (1) 

where    = Initial concentration (mg/L) and   = Final concentration(mg/L) 

 

 

   
        

 
 

(2) 

 

   is the equilibrium adsorption capacity (mg/g),    and    are the initial and 

equilibrium concentrations of the heavy metal solution (mg/L), respectively, V is the 

volume of the heavy metal solution (mL/L), and m is the mass of the adsorbent (mg/g).  

 

2.4    Characterization of Adsorbent 

 

The surface morphology of the raw and carbonized was analyzed using scanning 

electron microscope (Model JEOL JSM-6390LA). The Fourier transform infrared 

(FTIR) spectroscopy analysis was conducted using FTIR spectrophotometer (Model 

Shimadzu IRAffinity-1) in the range of 400-4000 cm
-1

 wavelength with 4 cm
−1

 

resolution. FTIR characterization was used to determine the functional groups present 

on the surface of the samples.  

 

2.5    Variation of dosage 

 

In order to determine the removal efficiency with respect to different adsorbent dosage, 

experiments were performed by varying adsorbent of 10 mg, 30 mg, 50 mg, 100 mg and 

200 mg in 30 mL of cadmium, chromium and lead solution at 10 mg/L concentration at 

ambient temperature. For these experiment, the Erlenmeyer flask were agitated at 120 

rpm using orbital shaker (PSU-10i, Grant Bio) for 4 hours to attain equilibrium and 

keeping others variables constant. Analysis was conducted in replicates. 

 

2.6   Variation of agitation 

 

In order to determine the removal efficiency with respect to different agitation, 

experiments was performed at 90 rpm, 120 rpm and 150 rpm at 30 mL of cadmium, 

chromium and lead solution with a concentration of 10 mg/L, 0.1 g adsorbent were used 

at ambient temperature. This experiment was conducted for 4 hours to attain equilibrium 

and keeping others variables constant. Analysis was conducted in replicates. 

 

2.7    Variation of contact time 

 

The effect of contact time on the removal of sample was determined by measuring of the 

adsorbate (cadmium, chromium and lead cadmium, chromium and lead) at 2, 4, 8, 16 
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and 24 hours and other variables were kept constant. The equilibrium was also 

determined. Analysis was conducted in replicates. 

 

2.8    Variation of Initial Metal Ion Concentration 

 

In order to determine the removal efficiency with respect to different adsorbate 

(cadmium, chromium and lead) concentration, experiments were performed by varying 

adsorbate concentration of 0.5 mg/L, 2 mg/L, 6 mg/L, 8 mg/L and 10 mg/L at 8 hours 

and keeping other variables constant. 

 

2.9   Variation of pH Value 

 

To study the effect of pH on adsorbate (cadmium, chromium and lead) removal, the 

solution was agitated at room temperature using orbital shaker at different pH at 3,5,7,9 

and 11. 0.1 M HCl and 0.1 M NaOH buffer was used at 4 hours and keeping other 

variables constant. 

 

 

3.0  Results and Discussion 

 

3.1    Characterization of Adsorbent 

 

FESEM micrographs and FTIR of the raw green mussel and green mussel adsorbent 

carbonized with 600°C are presented in Figures 1(a) and (b), respectively. From Figure 

1(a), the FESEM micrograph shows presence of flaky sheet phase layer structure, rough 

and disordered surface with low porosity structure and rudimentary pores. Carbonization 

with 600°C adsorbent resulted presence of wide pores, relatively smooth with spherical 

particles of porous structure confirming occurrence of thermal decomposition. This 

activation process is dependent on the raw material which is composed mainly of 

calcium carbonate.  

 

  
                         (a)                           (b) 
Figure 1: FESEM micrographs of (a) Raw green mussel shell, (b) Carbonized with 600°C 
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From the FTIR spectrum obtained (data not shown), The FTIR patterns of adsorbent 

(raw and carbonized) and adsorbent with heavy metal were nearly the same. This 

indicated that green mussel adsorbed heavy metals without changing its surface 

chemistry (Tan  et al., 2013). The main functional groups responsible for adsorption 

process were the hydroxyls, carbonyls, carboxylic and amides (Durve & Chandra, 

2014). Clear shifts were observed at wavenumber of 3452.00 cm
-1

 (raw adsorbent) to 

3450.94 cm
-1

 (cadmium loaded), 3355.61 cm
-1

 (chromium loaded) and 3453.49 cm 
-1

 

(lead loaded), which indicated the surface -OH group was one of the functional group 

responsible for adsorption. The peak in the frequency range of 1000-1200 cm
-1

 is related 

to the C=O stretch (COOH) in amides, alcohol, carboxylic acids and esters. The peak at 

1796.41 cm
-1

 in adsorbent and 1796.15-1796.21 (adsorbent with heavy metal) may be 

due to the graphite structure (C=C) of carbonized green mussel shell. The intensities of 

the C–O bands of CaCO3 between 1500 and 500cm
−1

 were the strongest. C–O stretching 

vibration at 1440 to 1450cm
−1

. The peaks at 1425.17 cm
-1

 and 1426.75 to 1428.11 cm
-1

 

indicate the involvement of the H-C-H asymmetric and symmetric stretches and C-H 

alkanes stretch. These peaks are attributed to asymmetric stretch; out-of-plane bend and 

in-plane bend vibration modes for CO3. The out-of-plane C–O bending vibrations at 

710.45 cm
−1

 for carbonized adsorbent and 709.19 – 709.58 cm
−1

 for adsorbent with 

heavy metal. At 470.48 cm
-1

 for adsorbent without heavy metal the band was assigned to 

Si-O stretching. Only raw adsorbent shift of these band indicated presence of Si-OH 

group. Naiya et, al. ( 2011) reported major shift of these band also indicated that Si-OH 

group is responsible for adsorption. 

 

3.2    Variation of Dosage 

 

Presence of higher dosages of green mussel shell where heavy metal removal efficiency 

slightly increased from 50 % to 67 % for cadmium, 70 % to 93 % for chromium and 

51 % to 97 % for lead (Figure 2). In fact, increasing adsorbent amount provides more 

chance for the heavy metal ions to adhere to the adsorbent surface due to increase in 

number of available adsorption sites and surface area. Cd has increase adsorption 

capacity from 1.5 to 2.0 mg/g, Cr from 1.9 to 2.5 mg/g and Pb from 1.5 to 2.8 mg/g. At 

dosage above 100 mg, the removal percentage of heavy metal is marginal. Experimental 

results, with regard to 30 mL of aqueous heavy metal solution, initial heavy metal 

concentration of 10 mg/L, adsorbent dosage of 100 mg and agitating speed of 120 rpm 

for 4 hours, produced optimal removal percentage of 60 to 97 % and 1.7 to 2.9 mg/g 

adsorption capacity. Pb shows good effective adsorption capacity and adsorption 

percentage. In fact, Pb produce optimal removal at 30 mg adsorbent which it is a good 

criteria as adsorbent i.e only 30 mg of adsorbent for optimal adsorption than 100 mg for 

Cd and 200 mg for Cr needed to get optimal removal. 
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Figure 2 : Effect of adsorbent dosage on cadmium, chromium and lead adsorption 

 

 

3.3    Variation of Agitation 

 

Equilibrium time at suitable agitation speed is another important operational parameter 

for an economical wastewater treatment process. Figure 3, show that increase in 

agitation speed will increase removal efficiency until equilibrium adsorption was 

established. Agitation speed was kept at 90,120 and 200 rpm at 4 hours respectively. At 

90 rpm, Cd adsorption percentage was only 57%, increased to 64% at 120 rpm and 65% 

at 150 rpm. For Cr, adsorption percentage for 90 rpm was 86%, 120 rpm at 89 % and 

150 at 90%. Adsorption percentage for Pb was effective but the adsorption capacity was 

static at 2.8 mg/g. This study shows that equilibrium adsorptions were established within 

120 rpm for adsorbent in which Cd, Cr and Pb adsorption capacity and removal 

percentage from removal efficiencies. 

 

 

 
Figure 3 : Agitation at different rpm 
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3.4    Variation of Contact Time 

 

Cadmium removal efficiency increased from 56% to 78 %, chromium 90% to 94 % and 

lead 93% to 96 % (Figure 4) respectively, with increasing time. Greater amounts of 

metal ions were adsorbed by green mussel shell as the agitating time increases. This 

study shows Cd adsorption using green mussel was not very effective compared to Cr 

and Pb adsorption. It was observed that the removal percentage increased rapidly at the 

initial stages because more unsaturated surface and active sites were available on the 

adsorbent surface area. As the adsorption process proceeds, more surface and active 

sites are available on the adsorbent surface area. Usually, the metal ions create a 

monolayer on the adsorbent surface (Abbaszadeh, Wan Alwi, Webb, Ghasemi, & 

Muhamad, 2016). As the result, the adsorbent surface area becomes gradually 

exhausted, and the sorption capacity decreased. Based on the results of cadmium, 

chromium and lead uptake by green mussel shell was obtained after 8 hours, and the 

uptake trend increased and then become steady after 8 hours indicating Cd, Cr and Pb 

adsorption capacity were 2.1, 2.6 and 2.7 mg/g at equilibrium. 

 

 

 
Figure 4 : Effect of contact time on cadmium, chromium and lead 

 

 

3.5    Variation of Initial Metal Ion Concentration 

 

The removal efficiency of cadmium decreased from 80 to 59 % and increased for 

chromium and lead at 28 to 92 % and 79 to 95 % (Figure 5) respectively when the initial 

concentration was increased from 1 to 20 mg/L. The pattern can be predicted because 

higher initial concentration of metal ions intensifies the adsorption capacity (qe) 

initially, but as the process proceeds, the higher amount of adsorbate is confronted with 

a limited (constant) availability of active sites on the adsorbent surface. The adsorption 

capacity for Cd, Cr and Pb were calculated as 1.7, 2.5 and 2.6 mg/g, respectively. Cd 

shown decreasing adsorption of heavy metal different from Cr and Pb that increase with 

adsorption when heavy metal solution increased. More cadmium ions are left 
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unabsorbed in the solution due to the powerful driving force from initial concentration 

to overcome the resistance to the mass transfer of ions between the aqueous solution and 

solid phase and saturation of the binding sites. Consequently, the adsorption efficiency 

decreases. Correspondingly, at lower concentration, the ratio of metal ions over the 

adsorption surface is low. Therefore, the metal ions quickly adhere to the available of 

adsorption sites, resulting in higher adsorption efficiency. 

 

 

 
Figure 5 : Initial concentration of Cd, Cr and Pb 

 

 

3.6   Variation of pH Value 

 

Figure 6 shows pH for Cr, Cd and Pb adsorption. Increase in pH shows increase in 

adsorption. However for Cr adsorption, the adsorption reached equilibrium at pH 9-11. 

The adsorption percentage was 96% to 99%. For Cd and Pb, the adsorption percentage 

shows that adsorption was best at both condition either acidic or alkaline. At pH. 7 the 

adsorption percentage reduced. All metals showed equilibrium was reached at pH 9-11. 
 

 
Figure 6 : Effect of pH on cadmium, chromium and lead adsorption 
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3.7    Adsorption Model Isotherm and Kinetic 

 

From Table 1, it can be seen that the green mussel shell has a maximum adsorption 

capacity of 2.09 mg/g to form monolayer coverage for Cr. This isotherm is suitable for 

representing chemisorption on a set of distinct localized adsorption site. However, the 

negative value of Langmuir constant indicated the inadequacy adsorption of heavy metal 

using green mussel shell as adsorbent. Freundlich isotherm is usually used for non-ideal 

adsorption on heterogeneous surfaces. The heterogeneity arises from the presence of 

different functional groups on the surface, and the various adsorbent-adsorbate 

interactions. KF parameter follows the sequence of Pb > Cr > Cd. The n parameter was 

different from 0.4 to 1.7. KF values indicate that Pb is the one with the highest 

adsorption (KF = 4.18), followed by Cr and Cd. This model assumes that when the 

adsorbent concentration increases, the concentration of adsorbate (Cd, Cr and Pb) on the 

adsorbent surface also increased and correspondingly, the sorption energy exponentially 

decreased over the completion of the sorption centre of the adsorbent. It is proven that 

the Freundlich model provides a better fit for explaining the adsorption of heavy metal 

onto all modified adsorbents. For adsorbate, the maximum adsorption capacities follows 

the order of Cr > Pb >Cd. 

 
Table 1 : Adsorption isotherm parameters for Cd, Cr and Pb using Langmuir and Freundlich 

Isotherm 

Adsorption isotherm model 

 

Parameter value 

Langmuir isotherm 

 

 Cd Cr 

 

Pb 

Equation y = 4.573x - 

7.546 

 

y = 0.479x - 

0.031 

y = 0.513x - 

0.020 

qm (mg/g) 0.2187 2.0877 1.9493 

KL (L/mg) -0.6059 -15.4515 -25.6502 

R
2 

0.960 0.999 0.999 

Freundlich isotherm 

 

Equation y = 0.584x - 

0.395 

 

y = 2.311x 

+0.984 

 

y = 1.605x 

+1.430 

 

KF (mg/g)(L/mg)
1/n 

0.674 2.675 4.179 

1/n 0.584 2.311 1.605 

R
2 

0.974 0.476 0.797 

 

The linear forms of the pseudo-first-order and second-order equations, rate constants, 

expected metal uptake and correlation coefficients is described. and represented in Table 

2 and 3. For the pseudo first order model the correlation coefficient (R
2
 = Cd=0.978, 
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Cr=0.762, Pb=0.785) and the calculated metal uptake with this model is lower than the 

expected metal uptake for Cr and Pb. Indicating that the chemisorption process is not a 

first order reaction. The pseudo second order reaction in chemisorption is based on the 

sorption capacity on the solid phase. The correlation coefficient in the pseudo second 

order reaction (R
2
 = 0.999) is high for all heavy metal, k is the pseudo-second-order rate 

constant are in range 6-42 min
-1 

and the calculated metal adsorption is much nearer to 

the expected value suggesting that the chemisorption process comply to pseudo second 

order model. The results indicate that the kinetic behaviour of Cr, Cd and Pb on green 

mussel shell as adsorbent can be satisfactorily explained with the pseudo-second-order 

sorption equation. Based on the assumption step, chemical sorption or chemisorption 

involving valency forces through sharing or exchange of electrons between adsorbent 

and adsorbate. 

 

 
Table 2 : The pseudo-first–order parameter of heavy metal adsorption at different concentration 

of Cd, Cr and Pb 

                 Element 

Parameter 

Cd 

 

Cr 

 

Pb 

 

Equation y = -0.410x + 0.110 y = -0.381x - 0.903 y = -0.426x - 1.064 

qe experiment 0.9681 2.3544 2.1465 

qe calculated 1.1163 0.405 0.345 

k1 0.410 0.381 0.426 

R
2
 0.978 0.762 0.785 

 
Table 3 : The pseudo-second–order parameter of heavy metal adsorption at different 

concentration Cd, Cr and Pb 

 

                 Element 

Parameter 

Cd 

 

Cr 

 

Pb 

 

Equation y = 1.028x - 0.025 y = 0.423x - 0.006 

 

y = 0.466x + 0.035 

 

qe experiment 0.9681 2.3544 2.1465 

qe calculated 0.9728 2.3641 2.1459 

k2 42.2681 29.8206 6.2046 

 

R
2
 0.999 0.999 0.999 
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4.0   Conclusions 

 

Green mussel shell as an aqua cultural solid waste, was successfully utilized as a low-

cost alternative adsorbent for the removal of hazardous heavy metal like cadmium, 

chromium and lead. Since in this work is abundantly and locally available, the resulting 

expected to be economically viable for removal heavy metal from aqueous solution. 

FESEM micrographs illustrated that carbonization treatment with 600°C developed 

porosity on the surface of the adsorbent. The FTIR spectrum obtained for the functional 

groups responsible for adsorption process like hydroxyls, carbonyls, carboxylic and 

amides. The relative study of adsorption percentage capacity, shown that can adsorb 

more than 99% of heavy metal. The equilibrium adsorption data indicated that the 

equilibrium sorption fitted well with the Freundlich isotherm, displaying higher 

regression coefficient, R
2
 value. The monolayer adsorption capacity of green mussel 

waste was found to be 2.09 mg/g. The adsorption kinetics can be well described by the 

pseudo-second-order model equation. Based on the results obtained, mussel shells have 

the potential to be an alternative and inexpensive adsorbent for heavy metal treatment in 

aqueous phase, respectively.  
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