
Malaysian Journal of Civil Engineering 19(1) : 17-25 (2007) 

 

Abstract : Development of an innovative porous submerged breakwater structure which could 

be used for the purpose of coastal restoration is underway in the Coastal & Offshore Engineering 

Institute’s research laboratory. Prior to developing the structure, laboratory investigations on 

models (typifying porous submerged breakwater structures) that could provide experimental 

information of the influence of porosity on non-breaking wave transformations have been 

undertaken. A series of tests to study the effect of porosity of submerged breakwater model 

structures on the process of non-breaking wave transformations have been carried out. A hollow 

framework-shaped test model was used. Three models each with three different porosities 

ranging from 0.40 to 0.80 were constructed. From laboratory tests, results obtained have been 

analysed to check the performance of the models to attenuate waves. Test results have indicated 

that the transmission coefficient, KT increased with increasing model porosity. The wave 

reflection coefficient, KR of the model tested ranged from 0.01 to 0.31. Energy loss of the 

primary waves was found to be highest when the parameter kd was equal to 1.9 and lowest when 

the porosity of the model was found to be large. 

  

Keywords : Permeable breakwater; Porosity; Submerged breakwater; Wave attenuation; Wave 

Transmission 

 

Abstrak : Kerja-kerja untuk membangunkan satu pemecah ombak tenggelam yang berliang 

untuk kegunaan pemulihan pantai secara inovatif sedang dilaksanakan di makmal penyelidikan 

Institut Kejuruteraan Pantai dan Lepas Pantai. Sebelum merekabentuk  struktur itu, kajian 

makmal ke atas model kajian yang mencontohi struktur pemecah ombak poros ditenggelami 

yang dapat mengesahkan pengaruh keliangan terhadap kelemahan tenaga ombak telah dikaji. 

Satu siri ujian yang merangkumi kajian untuk memperoleh maklumat tentang pengaruh keliangan 

pada struktur tersebut terhadap proses penghantaran ombak yang tidak pecah telah dijalankan. 

Model kajian yang merupakan rangka yang berongga telah digunakan. Tiga model pemecah 

ombak berliang yang bergeomatrikan tiga nilai keliangan yang berbeza dari 0.40 to 0.80 telah 

dibina. Daripada kajian makmal, hasil yang diperolehi telah dianalisis untuk memantau prestasi 

model kajian dalam melemahkan tenaga ombak. Hasil kajian menunjukkan bahawa koefisien 

penghantaran, KTt, bertambah dengan peningkatan nilai keliangan. Koefisien pantulan ombak, KR 

didapati berada di dalam julat 0.01 hingga 0.31. Kehilangan tenaga ombak adalah tinggi bila 

parameter kd adalah bersamaan dengan 1.9 dan rendah bila keliangan adalah besar. 
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1.0 Introduction 

 

Breakwaters have been constructed along shorelines to decrease wave energy on its 

leeward side so as to reduce shoreline erosion. Wave energy dissipated in the lee of a 

submerged breakwater after transmission by the process of friction, wave breaking or 

wave reflection can be measured by determining the wave transmission coefficient, KT. 

The wave transmission coefficient is defined as the ratio of the transmitted wave height 

(Ht) shoreward of the breakwater to the incident wave height (Hi) seaward of the 

breakwater. In physical modelling, the value of KT is the parameter to illustrate the 

effectiveness of a low crested submerged breakwater to attenuate the waves. The larger 

the value of wave transmission coefficient obtained, the lesser is the wave attenuation 

and vice-versa. For the range where 0 < KT < 1, a value of zero would imply that there 

existed no transmission such as in the case of high or impermeable breakwaters. Whilst, 

a value of one would infer that there existed complete transmission such as in the case 

of the absence of a breakwater. 

According to Pilarczyk (2003) low crested and submerged structures, such as the 

detached breakwaters and artificial reefs have been commonly used on their own or in 

combination with artificial sand nourishment to protect coastlines. The construction of 

these structures allowed the hydraulic loading on the shoreline to be reduced to a 

required level so that the dynamic equilibrium of the shoreline could be maintained.  In 

order to achieve this goal, the structures have been designed to allow the transmission of 

a certain amount of wave energy over the structure by overtopping and also some 

transmission through the porous structure or through wave breaking and energy 

dissipation on the shallow crest of the submerged structures. Black and Mead (1999) 

mentioned that considerable research has been undertaken to understand the shoreline 

response of exposed offshore breakwaters especially when built in the field or outside 

the laboratory but insufficient work has been carried out to study the effect of 

submerged offshore reefs. 

With regard to laboratory tests on porous or permeable submerged breakwaters, 

many related researches have been carried out since the mid-60’s. These included 

Newman (1965) whose investigations involved wave propagation over two-dimensional 

obstacles. Sollitt and Cross (1972) have developed a widely used model of porous flow 

induced by waves. Dattatri et al (1978) experimentally studied the porosity effect on 

wave transformation over permeable submerged breakwaters using very small range 

porosity values. They used the value of 1 (a thin plate), 0.42, 0.41 and 0 (impermeable). 

They concluded that porosity did not significantly affect the transmission coefficient. 

Since the porosity range is small, the actual influence of porosity on the porous 

submerged breakwaters could not properly be ascertained. Hence, more research work is 

required. More recently, Gu and Wang (1991), Losada (1995, 1996), Huang (2003) and 

Ting et al. (2004)  have continued the research further. Porosities of test models used in 

their experiments ranged from 0.35 to 0.42. The investigators have noted that 
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permeability of submerged structures have some influence on nearshore wave 

transformation. From the review of many related published literature in this field, it is 

acknowledged that more information were needed from efforts both in the laboratory 

and the field.  In particular, the effects of porosity on the characteristics of wave 

attenuation around submerged breakwaters need to be ascertained. Information obtained 

could stimulate the efficient application, development and design of promising 

submerged porous structures as coastal engineering solutions in the field.   

The primary objective of this laboratory study is to investigate the effectiveness of a 

porous submerged obstacle to varying wave conditions. The wave transmission, wave 

reflection and energy lost under various breakwater porosities acted upon a range of 

wave conditions have been looked into. The research work has been mooted so that 

information obtained from the experiments and literature could be used in the design of 

a workable and innovative porous submerged breakwater structure to be adopted as a 

breakwater-artificial reef system for use under typical Malaysian shoreline conditions. 

 

2.0 Experimental Set-Up 

 

The experiments were performed in a wave flume with dimensions 15 m (length) x 1 m 

(width) x 0.54 m (height). Figure 1 illustrates the equipment used in the laboratory set-

up. Three different porous test models which were each 0.90 m long, 0.90 m wide and 

0.20 m high were constructed. The tested models shaped similar to that used by Ting et 

al (2004), consisted of square cross-section of different sizes making up a rectangular 

framework structure. The test models were made from steel. A typical test model used 

in the experiments is shown in Figure 2. The test models were fabricated with three 

different porosities of 0.4, 0.6 and 0.8.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: A simple sketch of the experimental setup 
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 Table 1:  Physical dimensions of individual test model unit 

 Model Unit Type Porosity, n Gap size, a (cm) 

1 0.4 2.4 

2 0.6 5.8 

3 0.8 17.8 

 

The porosity, n is defined as the volume of empty space in a model unit divided by the 

total geometrical volume of the test model unit. The physical dimensions of individual 

test model units are presented in Table 1. A solid test model unit with similar outer 

dimensions as the porous units (90 cm length X 90 cm width X 20 cm height) was also 

used in the tests. The still water depth, d was maintained at 0.30 m in the test runs so as 

to maintain a non-breaking wave condition. Each set of test was subjected to regular 

waves covering a range of wave periods from 0.71 sec to 1.03 sec. These values were 

adopted due to the limitation provided by the wave generator and the flume used in the 

test series.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2:  A typical test model with a porosity of 0.6 

 

 

Table 2 illustrates the incident wave conditions used in the experiments. Ten sets of 

wave period ranging from 0.71 s to 1.03 s were used. Ten different wave heights which 

could be generated by the paddle were imposed on the three porous test models in the 

test series. A total of 80 runs were carried out in the test series altogether.  The 

conventional method as used by Dean and Dalrymple (1991) has been adopted to 

separate the measured wave train into its incident and reflected wave components. The 

mean transmitted wave height was determined by taking an average of at least 10 wave 

heights in the wave train. 
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 Table 2 : Typical incident wave conditions generated using the n= 0.4 model unit 

Time Period 

T (s) 

Wavelength 

L (m) 

kd       Wave Height 

HI (cm) 

Relative Wave Steepness 

HI/L 

0.706 0.767 2.458 4.1209 0.0537 

0.734 0.824 2.288 4.4525 0.0540 

0.758 0.873 2.158 4.7984 0.0549 

0.789 0.938 2.010 5.838 0.0622 

0.818 0.998 1.889 6.1182 0.0613 

0.855 1.075 1.754 6.7926 0.0632 

0.896 1.160 1.625 6.9015 0.0595 

0.937 1.244 1.515 5.9646 0.0479 

0.985 1.342 1.404 6.3700 0.0474 

1.037 1.448 1.302 6.6788 0.0461 

 

3.0  Experimental Results and Discussion 

 

There were three main parameters used to describe the characteristics of wave 

attenuation by the test models. These were: 

 

(i) reflection coefficient, KR which is expressed by  

 

I

R
R H

H
K                    (1) 

 where   HR  is reflected wave height (m) and HI   is incident wave height (m) 

 

 

(ii) transmission coefficient, KT  as given by : 
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 where   HT  is transmitted wave height (m) and  HI  is  incident wave height (m) 
 

 (iii)  wave energy loss, EL (or KL as used herein) can be determined from : 
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Figure 3 illustrates a plot of the transmission coefficient, KT against the 

dimensionless parameter kd (where k is the wave number and d is the water depth) for 

the three model units whose porosities were 0.4, 0.6 and 0.8 at the relative depth of 

submergence, ds/d which equals 0.30. It is demonstrated that wave attenuation is not 
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significantly affected when the porosities of the submerged breakwater increased. KT 

reached 0.71, when the porosity of the model was 0.8 and a kd at 1.40. Most KT values at 

n = 0.80 varied between 0.53 to 0.71. When the porosity reduced to 0.6, KT varied 

around 0.44 to 0.60. The KT values ranged from 0.36 to 0.57 when the porosity 

decreased further to 0.4. In all test cases, KT is lowest when kd varied between 1.90 to 

2.50. KT was observed to increase with decreasing kd which implied that the longer the 

waves (that is, the lower the kd values), the larger the transmission coefficient. Within 

the limits of the test results it has been illustrated that the more porous the test models, 

the more capable they were to attenuate longer waves. The presence of the porous 

feature of the model has allowed the longer wave to penetrate the structure and to lose 

its energy before being transmitted to the leeside to result in a higher KT value. 

 

 
 

Figure 3: Wave transmission coefficients over the submerged breakwater at various porosities  

 

Figure 4 shows a plot of the reflection coefficient, KR versus kd at ds/d = 0.3. The 

results illustrated that model porosity is not sufficiently significant to influence the KR 

value. KR is highest at a value of about 0.31 when the porosity of the model is 0.4 and 

lowest at a value of 0.01 when the porosity increased to 0.8. It was also obvious from 

Figure 4 that for the tested model, the reflection coefficient was unlikely to reduce 

below 0.01. It was also obvious from both Figures 3 and 4 that less porous models 

corresponded to a larger KR but smaller KT and vice versa. 
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Figure 4:  Wave reflection coefficients due to waves traveling over submerged breakwater with 

various porosities and at a relative depth of submergence, ds/d = 0.3 

 

Figure 5 indicates the effect of wave energy loss due to the presence of porous 

submerged breakwater test models at ds/d = 0.3 in the flow. Generally, it was seen that 

for the larger porosity test model (n = 0.8), the energy loss or KL value was maintained 

at about 0.8 and decreased when kd < 2. The KL values varied between  0.80 and 0.90 

when the porosity of the test model was 0.6 and was lowest when kd reached a value of 

about 1.51.  
 

 
 

Figure 5: Wave loss coefficients due to waves traveling over submerged breakwater with various 

porosities and at a relative depth of submergence, ds/d = 0.3 
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When the porosity of the model was 0.4, KL was highest when 1.75 < kd < 2.16 and the 

highest value of KL = 0.82 was reached when kd = 1.75. It was observed that models 

which were less porous tended to dissipate greater wave energy. Energy loss was lesser 

when the porosity was larger and least for the most porous model (n = 0.80). Also, wave 

energy loss increased as the model porosity decreased at small kd values but this was not 

so obvious when the kd values were larger. The longer the wave (i.e. the lower the kd 

values), the lesser the energy that would be dissipated.  
  

Table 3: Comparison of results to illustrate the effects of porosity on KT, KR and KL 

Results from the present investigations  

for ds/d = 0.3 

 
Results from Ting et al (2004)  

for ds/d = 0.2 

Porosity 

(n) 

KT KR KL 
 

Porosity 

(n) 

KT KR KL 

0.40 0.37-0.57 0.11-0.31 0.79-0.92  0.421 0.50-0.76 0.05-0.30 0.63-0.83 

0.60 0.44-0.60 0.06-0.27 0.77-0.89  0.588 0.63-0.80 0.01-0.19 0.59-0.77 

0.80 0.53-0.71 0.01-0.24 0.71-0.83  0.805 0.73-0.84 0.02-0.10 0.53-0.68 

 

As shown in Table 3, the present results generally show similar trend with those found 

by Ting et al (2004).. The results showed that there existed an increase in KT when the 

porosity values increased. This meant that as the test models were more porous the more 

capable they were to transmit waves. The values of KR and KL decrease with an increase 

in the porosity value. 
 

4.0 Conclusions 

 

This study addressed how  variation of porosity of a submerged porous obstacle, 

typifying a submerged permeable breakwater, affects non-breaking wave 

transformations. The important findings of the laboratory investigations are as follows : 

 
a) The increase in porosity slightly affected the attenuation of transmitted waves. 

The highest KT  of about 0.70 was observed when the porosity of the model was 

0.8. The KT values reduced with smaller porosity values. 

 

b) The reflection coefficient, KR decreases with increasing porosity with the 

highest value of 0.31 observed  when the porosity of the model was 0.4 and  

 

c) lowest at around 0.01 when the porosity was 0.8. 

 

d) The porous test models were relatively less effective in dissipating wave energy 

against longer waves (that is, lower kd values) compared to shorter wave (that 

is, high kd values). 

 



Malaysian Journal of Civil Engineering 19(1) : 17-25 (2007) 25 

e) Results from the present investigations also showed that the values of the wave 

energy loss, KL decrease with an increase in the porosity value and vice versa. 
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